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By the end of today . . .

� You’ll be able to frame many machine learning tasks as classification
problems

� Apply logistic regression (given weights) to classify data

� Learn naïve bayes from data
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Classification

Probabilistic Classification

Given:

� A universe X our examples can come from (e.g., English documents
with a predefined vocabulary)

� Examples are represented in this space.
� A fixed set of labels y ∈C= {c1,c2, . . . ,cJ}
� The classes are human-defined for the needs of an application (e.g., spam

vs. ham).

� A training set D of labeled documents with each labeled document
{(x1,y1) . . .(xN ,yN)}

We learn a classifier γ that maps documents to class probabilities:

γ : (x ,y)→ [0,1]

such that
∑

y γ(x ,y) = 1
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Classification

Generative vs. Discriminative Models

Generative

Model joint probability p(x ,y)
including the data x .

Naïve Bayes

� Uses Bayes rule to reverse
conditioning p(x |y)→ p(y |x)

� Naïve because it ignores joint
probabilities within the data
distribution

Discriminative

Model only conditional probability
p(y |x), excluding the data x .

Logistic regression

� Logistic: A special mathematical
function it uses

� Regression: Combines a weight
vector with observations to create
an answer

� General cookbook for building
conditional probability distributions
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Motivating Naïve Bayes Example

A Classification Problem

� Suppose that I have two coins, C1 and C2

� Now suppose I pull a coin out of my pocket, flip it a bunch of times,
record the coin and outcomes, and repeat many times:

C1: 0 1 1 1 1
C1: 1 1 0
C2: 1 0 0 0 0 0 0 1
C1: 0 1
C1: 1 1 0 1 1 1
C2: 0 0 1 1 0 1
C2: 1 0 0 0

� Now suppose I am given a new sequence, 0 0 1; which coin is it
from?
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Motivating Naïve Bayes Example

A Classification Problem

This problem has particular challenges:

� different numbers of covariates for each observation

� number of covariates can be large

However, there is some structure:

� Easy to get P(C1), P(C2)

� Also easy to get P(Xi = 1 |C1) and P(Xi = 1 |C2)

� By conditional independence,

P(X = 010 |C1) = P(X1 = 0 |C1)P(X2 = 1 |C1)P(X2 = 0 |C1)

� Can we use these to get P(C1 |X = 001)?
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Motivating Naïve Bayes Example

A Classification Problem

Summary: have P(data |class), want P(class |data)

Solution: Bayes’ rule!

P(class |data) =
P(data |class)P(class)

P(data)

=
P(data |class)P(class)
∑C

class=1 P(data |class)P(class)

To compute, we need to estimate P(data |class), P(class) for all classes
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Motivating Naïve Bayes Example

Naive Bayes Classifier

This works because the coin flips are independent given the coin
parameter. What about this case:

� want to identify the type of fruit given a set of features: color, shape and
size

� color: red, green, yellow or orange (discrete)

� shape: round, oval or long+skinny (discrete)

� size: diameter in inches (continuous)
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Motivating Naïve Bayes Example

Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily
independent:

Given category “apple,” the color “green” has a higher probability given
“size < 2”:

P(green |size< 2, apple)> P(green |apple)
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Motivating Naïve Bayes Example

Naive Bayes Classifier

Using chain rule,

P(apple |green, round ,size = 2)

=
P(green, round ,size = 2 |apple)P(apple)
∑

fruits P(green, round ,size = 2 | fruit j)P(fruit j)

∝ P(green | round ,size = 2,apple)P(round |size = 2,apple)

×P(size = 2 |apple)P(apple)

But computing conditional probabilities is hard! There are many
combinations of (color ,shape,size) for each fruit.
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Motivating Naïve Bayes Example

Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

P(green | round ,size = 2,apple) = P(green |apple)

P(round |green,size = 2,apple) = P(round |apple)

P(size = 2 |green, round ,apple) = P(size = 2 |apple)
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Estimating Probability Distributions

How do we estimate a probability?

� Suppose we want to estimate P(wn =“buy ′′|y =SPAM).

buy buy nigeria opportunity viagra
nigeria opportunity viagra fly money

fly buy nigeria fly buy
money buy fly nigeria viagra

� Maximum likelihood (ML) estimate of the probability is:

β̂i =
ni
∑

k nk
(1)

� Is this reasonable?
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Estimating Probability Distributions

The problem with maximum likelihood estimates: Zeros (cont)

� If there were no occurrences of “bagel” in documents in class SPAM,
we’d get a zero estimate:

P̂( “bagel”| SPAM) =
T SPAM, “bagel”
∑

w ′∈V T SPAM,w ′
= 0

� →We will get P( SPAM|d) = 0 for any document that contains bagel!

� Zero probabilities cannot be conditioned away.
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Estimating Probability Distributions

How do we estimate a probability?

� For many applications, we often have a prior notion of what our
probability distributions are going to look like (for example, non-zero,
sparse, uniform, etc.).

� This estimate of a probability distribution is called the maximum a
posteriori (MAP) estimate:

βMAP = argmaxβ f (x |β)g(β) (2)

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 14 / 19



Estimating Probability Distributions

How do we estimate a probability?

� For a multinomial distribution (i.e. a discrete distribution, like over
words):

βi =
ni +αi
∑

k nk +αk
(3)

� αi is called a smoothing factor, a pseudocount, etc.

� When αi = 1 for all i , it’s called “Laplace smoothing” and corresponds to
a uniform prior over all multinomial distributions (just do this).

� To geek out, the set {α1, . . . ,αN} parameterizes a Dirichlet distribution,
which is itself a distribution over distributions and is the conjugate prior
of the Multinomial (don’t need to know this).
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Naïve Bayes Definition

The Naïve Bayes classifier

� The Naïve Bayes classifier is a probabilistic classifier.
� We compute the probability of a document d being in a class c as

follows:

P(c|d)∝ P(c)
∏

1≤i≤nd

P(wi |c)

� nd is the length of the document. (number of tokens)
� P(wi |c) is the conditional probability of term wi occurring in a document

of class c
� P(wi |c) as a measure of how much evidence wi contributes that c is the

correct class.
� P(c) is the prior probability of c.
� If a document’s terms do not provide clear evidence for one class vs.

another, we choose the c with higher P(c).

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 16 / 19



Naïve Bayes Definition

The Naïve Bayes classifier

� The Naïve Bayes classifier is a probabilistic classifier.
� We compute the probability of a document d being in a class c as

follows:

P(c|d)∝ P(c)
∏

1≤i≤nd

P(wi |c)

� nd is the length of the document. (number of tokens)
� P(wi |c) is the conditional probability of term wi occurring in a document

of class c
� P(wi |c) as a measure of how much evidence wi contributes that c is the

correct class.
� P(c) is the prior probability of c.
� If a document’s terms do not provide clear evidence for one class vs.

another, we choose the c with higher P(c).

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 16 / 19



Naïve Bayes Definition

The Naïve Bayes classifier

� The Naïve Bayes classifier is a probabilistic classifier.
� We compute the probability of a document d being in a class c as

follows:

P(c|d)∝ P(c)
∏

1≤i≤nd

P(wi |c)

� nd is the length of the document. (number of tokens)
� P(wi |c) is the conditional probability of term wi occurring in a document

of class c
� P(wi |c) as a measure of how much evidence wi contributes that c is the

correct class.
� P(c) is the prior probability of c.
� If a document’s terms do not provide clear evidence for one class vs.

another, we choose the c with higher P(c).

Computational Linguistics: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 16 / 19



Naïve Bayes Definition

Maximum a posteriori class

� Our goal is to find the “best” class.

� The best class in Naïve Bayes classification is the most likely or
maximum a posteriori (MAP) class c map :

c map = argmax
cj∈C

P̂(cj |d) = argmax
cj∈C

P̂(cj)
∏

1≤i≤nd

P̂(wi |cj)

� We write P̂ for P since these values are estimates from the training set.
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Naïve Bayes Definition

Naïve Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, recall the Naïve
Bayes conditional independence assumption:

P(d |cj) = P(〈w1, . . . ,wnd
〉|cj) =
∏

1≤i≤nd

P(Xi =wi |cj)

We assume that the probability of observing the conjunction of attributes is
equal to the product of the individual probabilities P(Xi =wi |cj).
Our estimates for these priors and conditional probabilities: P̂(cj) =

Nc+1
N+|C|

and P̂(w |c) = Tcw+1
(
∑

w′∈V Tcw′)+|V |
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Naïve Bayes Definition

Implementation Detail: Taking the log

� Multiplying lots of small probabilities can result in floating point
underflow.

� From last time lg is logarithm base 2; ln is logarithm base e.

lgx = a⇔ 2a = x lnx = a⇔ ea = x (4)

� Since lg(xy) = lg(x)+ lg(y), we can sum log probabilities instead of
multiplying probabilities.

� Since lg is a monotonic function, the class with the highest score does
not change.

� So what we usually compute in practice is:

c map = argmax
cj∈C

[P̂(cj)
∏

1≤i≤nd

P̂(wi |cj)]

argmax
cj∈C

[ ln P̂(cj)+
∑

1≤i≤nd

ln P̂(wi |cj)]
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