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A More Grounded Syntax Theory

= A central question in linguistics is how do we know when a sentence
is grammatical?

= Chomsky’s generative grammars attempted to mathematically formalize
this question

= Linguistic phrases contained a universal, hierarchical structure
formalized as parse trees
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A More Grounded Syntax Theory

= A central question in linguistics is how do we know when a sentence
is grammatical?

= Chomsky’s generative grammars attempted to mathematically formalize
this question

= Linguistic phrases contained a universal, hierarchical structure
formalized as parse trees
= Today

o A formalization
o Foundation of all computational syntax
o Learnable from data
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Context Free Grammars

Definition

N: finite set of non-terminal

symbols Examples of non-terminals:

= Y: finite set of terminal = np for “noun phrase”
symbols = vp for “verb phrase”

= R: productions of the form = Often correspond to multiword
X—=Y;...Y, where XEN, syntactic abstractions
Ye(NUX)

= S: a start symbol within N
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Context Free Grammars

Definition
= N: finite set of non-terminal
symbols Examples of terminals:
= ) finite set of terminal = “dog”
symbols . “play”
= R: productions of the form
n “the”

X—=Y;...Y, where XEN,
Ye(NUX)

S: a start symbol within N
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Context Free Grammars

Definition
= N: finite set of non-terminal
symbols Examples of productions:
= > finite set of terminal = n — “dog’
symbols np n
] —
= R: productions of the form

X—Y;...Y,, where X€N, = np —adj n

Ye(NUX)
S: a start symbol within N
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Context Free Grammars

Definition

N: finite set of non-terminal
symbols

> finite set of terminal
symbols

In NLP applications, by convention
we use S  as the start symbol

R: productions of the form
X—=Y;...Y, where XEN,
Ye(NUX)

S: a start symbol within N
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Flexibility of CFG Productions

= Unary rules: nn  — “man’”
= Mixing terminals and nonterminals on RHS:
o np — “Congress”Vt “the” "pooch”
o np — “the’nn
= Empty terminals
onp —€
oadj —e

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing |



Derivations

A derivation is a sequence of strings sy ...s7 where

s = S, the start symbol

st €X*: i.e., the final string is only terminals

s;, Vi> 1, is derived from s;_; by replacing some non-terminal X in s;_4
and replacing it by some 3, where x — f €R.

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 5/24



Derivations

= A derivation is a sequence of strings s;...st where
= 5, = §, the start symbol
= sy €X*: ie., the final string is only terminals

= 5;,Vi>1,is derived from s;_; by replacing some non-terminal X in s;_4
and replacing it by some 3, where x — f €R.

= Example: parse tree
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Example Derivation

Productions
S —np vp
vp — AdvP vz
Det — “the”
nn — “dot”
vz — "“barked”

S1 =

Natural Language Processing: Jordan Boyd-Graber |
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np — Det nn
np — AdjP nn
Det — “g’

nn — “cat”
vz — “ran”

vVp —vz

np — pro

Det — “an”
nn — “mouse”
vz — “sat”
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Example Derivation

Productions

S —np vp

vp — AdvP vz
Det — “the’”
nn — “dot”

vz — “barked”

So =
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np —Det nn
np — AdjP nn
Det — “&’

nn — “cat”
vz — “ran”

S
/N
NP VP

vVp —vz

np — pro

Det — “an”
nn — “mouse”
vz — “sat”’
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Productions
S —np vp
vp — AdvP vz
Det — “the’”
nn — “dot”
vz — “barked”

S3 =

np — Det nn
np — AdjP nn
Det — “&’

nn — “cat”
vz — “ran”

S

/N

NP VP

/\

Det NN

vVp — vz
np — pro

Det — “an”
nn  — “mouse”
vz — “sat’
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Productions
S —np vp
vp — AdvP vz
Det — “the”
nn — “dot”
vz — “barked”

S4 =

np — Det nn
np — AdjP nn
Det — “g’

nn — “cat”
vz — “ran”

S

/N

NP VP

/\

Det NN

the

vVp —vz

np — pro

Det — “an”
nn — “mouse”
vz — “sat”
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Productions

S —np vp

vp — AdvP vz
Det — “the”
nn — “dot”

vz — “barked”

S5 =

np — Det nn
np — AdjP nn
Det — “g’

nn — “cat”
vz — “ran”

S

/N

NP VP

/\

Det NN

the cat

vVp — vz

np — pro

Det — “an”
nn — “mouse”
vz — “sat”
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Productions

S —np vp

vp — AdvP vz
Det — “the”
nn — “dot”

vz — “barked”

Sg —

np — Det nn
np — AdjP nn
Det — “g’

nn — “cat”
vz — “ran”

S

/N

NP VP

/N

Det NN VZ

the cat

vVp — vz

np — pro

Det — “an”
nn — “mouse”
vz — “sat”
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Productions
S —np vp
vp — AdvP vz
Det — “the”
nn — “dot”
vz — “barked”

S7 =

np — Det nn
np — AdjP nn
Det — “g’

nn — “cat”
vz — “ran”

S

/N

NP VP

/N

vVp —vz

np — pro

Det — “an”
nn — “mouse”
vz — “sat”

Det NN VZ

the cat sat
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S7 =
! S

N

NP VP

/N

Det NN VZ

the cat sat

Example Derivation

Ambiguous Yields

The yield of a parse tree is the collection of terminals produced by the
parse tree. Given a yield s.

Parsing / Decoding

Given, a yield s and a grammar G, determine the set of parse trees that
could have produced that sequence of terminals: Tg(s).
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S7 =
! S

N

NP VP

/N

Det NN VZ

the cat sat

Example Derivation

Ambiguous Yields

The yield of a parse tree is the collection of terminals produced by the
parse tree. Given a yield s.

Parsing / Decoding

Given, a yield s and a grammar G, determine the set of parse trees that
could have produced that sequence of terminals: Tg(s).
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Ambiguity

Example sentence: “The man saw the dog with the telescope”

= Grammatical: Tg(s)>0
= Ambiguous: Tg(s) > 1

| | |
the dog with DT
I

the telescope

= Which should we prefer?
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NP VP

S

DT NN

| I VP PP

the man /\ /\
vt NP N NP
| N | PN
saw D‘T N‘N with DT NN

|

the dog the  telescope
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Ambiguity

Example sentence: “The man saw the dog with the telescope”
= Grammatical: Tg(s)>0

= Ambiguous: Tg(s) > 1

S S
P o /\
DT NN TN
TN NP DT NN
the man | /\ | | VP PP
W NP P the man S N
Vt NP IN NP
DT/\NN N | N | P
‘ | IN NP saw DT NN ity DT NN
the dog ‘ <N ‘ ‘ ‘
with DT NN the dog the telescope

the telescope

= Which should we prefer?
= One is more probable than the other
= Add probabilities!
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Goals

= What we want is a probability distribution over possible parse trees

te Tg(s)
Vt,p(t)>0 Z p(t) =1 (1)

te TG(S)

= Rest of this lecture:
o How do we define the function p(t) (paramterization)

o How do we learn p(t) from data (estimation)
o Given a sentence, how do we find the possible parse trees (parsing /

decoding)
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| Parameterization: Defining Score Function

Parametrization

= For every production @ — 3, we assume we have a function g(a — )

= We consider it a conditional probability of S (LHS) being derived from
a (RHS)
D> gla—p)=1 ()

a—peRa=X

= The total probability of a tree t={a; — f1...a,— B,} is

p(t) = HQ(ai—’ﬁi) 3)
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| Estimation

Estimation

Get a bunch of grad students to make parse trees
for a million sentences

Mitch Markus: Penn Treebank (Wall Street
Journal)

To compute the conditional probability of a rule,

g(np —Det adj nn)~
Count(np — Det adj nn)
Count(np)

Where “Count” is the number of times that
derivation appears in the sentences
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| Estimation

Estimation

Get a bunch of grad students to make parse trees
for a million sentences

Mitch Markus: Penn Treebank (Wall Street
Journal)

To compute the conditional probability of a rule,

g(np —Det adj nn)~
Count(np — Det adj nn)
Count(np)

Where “Count” is the number of times that
derivation appears in the sentences

Why no smoothing?
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| Parsing

Dynamic Programming

= Like for dependency parsing, we build a chart to consider all possible
subtrees

= First, however, we’ll just consider whether a sentence is grammatical or
not

= Build up a chart with all possible derivations of spans

= Then see entry with start symbol over the entire sentence: those are all
grammatical parses
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| Parsing

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules

Given sentence w of length N, grammar (N, %, R, S)
Initialize array C[s, t, n] as array of booleans, all false ()
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| Parsing

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules

Given sentence w of length N, grammar (N, %, R, S)
Initialize array C[s, t, n] as array of booleans, all false ()
fori=0...Ndo
for For each production r; = N; — w; do
set C[i,i,a] —T
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| Parsing

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules

Given sentence w of length N, grammar (N, %, R, S)
Initialize array C[s, t, n] as array of booleans, all false ()
fori=0...Ndo
for For each production r; = N; — w; do
set C[i,i,a] —T
for /=2...n (length of span) do
fors=1...N—/+1 (start of span) do
for k=1.../—1 (pivot within span) do
for each production r=a — 3y do
if 7C[s,s+1,a] then
Cls,s+1,a]—C|[s,s+k—1,B]AC[s+k,s+1,7]
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| Parsing

Chart Parsing

Book the flight through Houston
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| Parsing

Chart Parsing

Book the flight through Houston
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| Parsing

Complexity?

= Chart has n? cells
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| Parsing

Complexity?

= Chart has n? cells

= Each cell has n options
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| Parsing

Complexity?

= Chart has n® cells
= Each cell has n options

= Times the number of productions |G|
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| Parsing

Complexity?

Chart has n? cells
Each cell has n options

Times the number of productions |G|
Thus, O(n®|Gl)
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| Parsing

How to deal with PCFG ambiguity

= |n addition to keeping track of non-terminals in cell, also include max
probability of forming non-terminal from sub-trees

C[s, s+ k,a] —max(C[s,s+k,a],C[s,s+1—1,B]-C[s+1,s+k,7])
= The score associated with S in the top of the chart is the best overall
parse-tree (given the yield)
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| Parsing

Recap

= Hierarchical syntax model: context free grammar
= Probabilistic interpretation: learn from data to solve ambiguity

= |n class (next time):

o Work through example to resolve ambiguity
o Scoring a sentence
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| Parsing

A pcfg

Assume the following grammar

S — np vp | 10| v —  sleeps 0.4
vp — v np|07]| v — saw 0.6
vpo — vp pp|02{nn — man 0.1
vp — Vv 0.1 || nn — woman 0.1
np — dt nn|02]{ nn — telescope | 0.3
np — np pp |08 nn — dog 0.5
pp — p np |10} dt — the 1.0

p — with 0.6

p — in 0.4

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 17/24



| Parsing

Evaluating the probability of a sentence

What is the probability of the parse

S
/\
NP VP
/N
DT NN \'%

the dog sleeps
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| Parsing

Evaluating the probability of a sentence

i0 - 05 - 10 -01 - 02 - 1.0 =0.002
S~~~ S~~~ ~ Y~~~ = ~~—
det —» the n—dog v—sleeps VP =V np—dtn S—npvp
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| Parsing

Span 0

1. C[8,8,nn] =In(0.3) =—1.2

2. C[7,7,dt] =In(1.0) =0.0

3. C[6,6,p] =In(0.6) =—0.51

4. C[5,5,nn] =In(0.5) =—0.69

5. C[4,4,dt] =In(1.0) =0.0

6. C[3,3,v] =In(0.6) = —.51

7. C[3,3,vp] =In(0.6) +In(0.1) = —2.8
8. C[2,2,nn] =In(0.1) =—2.3

9. C[1,1,dt] =In(1.0) = 0.0
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| Parsing

Span 1

1. C[1,2,np]= 0.0 +In( —23 )+In( 02 )=-23+-1.6=-3.9
C[1,1,DT] C[2,2,NN] np—dtn
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| Parsing

Span 1

1. C[1,2,np]= 0.0 +In( ;2’_3/ )+in( 0.2 )=-2.34+—1.6=-3.9
C[1,1,DT] C[2,2,NN] np—dtn

2. C[4,5,np]= 0.0 + —.69 +In( 02 )=-0.69+-1.6=—2.3
C[4,4,DT] C[5,5,NN] np—dtn
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| Parsing

Span 1

1. C[1,2,np]= 0.0 +In( ;2’_3/ )+in( 0.2 )=-2.34+—1.6=-3.9
C[1,1,DT] C[2,2,NN] np—dtn

2. C[4,5np)= 00 + —69 +In( 02 )=-0.69+—1.6=—23
C[4,4,DT] C[5,5,NN] np—dtn

3. C[7,8,np]= 0.0 + —12 +In( 02 )=—-12+-16=-28
C[7,7,0T]  C[8,8NN] np — dtn
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| Parsing

Span 2

1. C[1,3,s]= —8.9 + —28 +In( 1.0 )=-6.7
SN—~— ~—~— ~ v
C[1,2,NP]  C[3,3,VP] s—npvp
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| Parsing

Span 2

1. C[1,3,s]= -39 + —28 +In( 1.0 )=-6.7
~—~— ~— ——
C[1,2,NP]  C[3,3,VP] s—npvp

2. C[3,5vp]= —0.5 + —2.3 +In( 0.7 )=-—2.8-0.36=—3.2
S~~~ ~—

C[3,3,vV] C[4,5NP] vp—vnp
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| Parsing

Span 2

1. C[1,3,s]= —89 + —28 +In( 1.0 )=—67
—— —~—
C[1,2NP]  C[3,3,VP] s —npvp

2. C[3,5vp]= —0.5 + —2.3 +In(
~—~— ~—~—
C[3,3,vV] C[4,5NP] vp —vnp

3. C[6,8,pp] = —0.51 + —2.8 +In(
C[6,6,P] C[7,8,NP] pp — p np
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| Parsing

Span 4

1. C[1,5,s]= —89 + —8.2 +In( 1.0 )=—71
S—~— ~—~— ~ .
C[1,2,NP]  C[3,5,VP] s—npvp
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| Parsing

Span 4

1. C[1,5,s]= —8.9 + —32 +In( 1.0 )=-7.1
~— ~— ~—
C[1,2NP]  C[3,5,VP] s —npvp
2. C[4,8,np]= —23 + —3.3 +In( 08 )=—56+-02=-538
~— ~— ~—
Cl4,5NP]  C[6,8,PP] np — np pp
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| Parsing

Span 5

C[3,8,vp] = max( (4)
32 + —33 + —16 , (5)
—~— —~— ~—~—
C[3,5,vP] C[6,8,PP] VP — VP pp
—05 + —58 + —.36 ) (6)
~—~— ~—~— ~
C3:3V] C[48NP] Vvp— vnp
=max(—8.1,—6.7) =—6.7 (7)
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| Parsing

Span 7

1. C[1,8,s]= —89 + —6.7 =—106
C[1,2NP] C[3,8,VP]
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