
Constituency Parsing

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
INTRO / CHART PARSING

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 1 / 24

Motivation

A More Grounded Syntax Theory

� A central question in linguistics is how do we know when a sentence
is grammatical?

� Chomsky’s generative grammars attempted to mathematically formalize
this question

� Linguistic phrases contained a universal, hierarchical structure
formalized as parse trees

� Today
� A formalization
� Foundation of all computational syntax
� Learnable from data

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 2 / 24

Motivation

A More Grounded Syntax Theory

� A central question in linguistics is how do we know when a sentence
is grammatical?

� Chomsky’s generative grammars attempted to mathematically formalize
this question

� Linguistic phrases contained a universal, hierarchical structure
formalized as parse trees

� Today
� A formalization
� Foundation of all computational syntax
� Learnable from data

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 2 / 24

Context Free Grammars

Context Free Grammars

Definition

� N: finite set of non-terminal
symbols

� Σ: finite set of terminal
symbols

� R: productions of the form
X → Y1 . . .Yn, where X ∈N,
Y ∈ (N ∪Σ)

� S: a start symbol within N

Examples of non-terminals:

� np for “noun phrase”

� vp for “verb phrase”

� Often correspond to multiword
syntactic abstractions

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 3 / 24

Context Free Grammars

Context Free Grammars

Definition

� N: finite set of non-terminal
symbols

� Σ: finite set of terminal
symbols

� R: productions of the form
X → Y1 . . .Yn, where X ∈N,
Y ∈ (N ∪Σ)

� S: a start symbol within N

Examples of terminals:

� “dog′′

� “play ′′

� “the′′

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 3 / 24

Context Free Grammars

Context Free Grammars

Definition

� N: finite set of non-terminal
symbols

� Σ: finite set of terminal
symbols

� R: productions of the form
X → Y1 . . .Yn, where X ∈N,
Y ∈ (N ∪Σ)

� S: a start symbol within N

Examples of productions:

� n → “dog′′

� np → n

� np → adj n

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 3 / 24

Context Free Grammars

Context Free Grammars

Definition

� N: finite set of non-terminal
symbols

� Σ: finite set of terminal
symbols

� R: productions of the form
X → Y1 . . .Yn, where X ∈N,
Y ∈ (N ∪Σ)

� S: a start symbol within N

In NLP applications, by convention
we use S as the start symbol

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 3 / 24

Context Free Grammars

Flexibility of CFG Productions

� Unary rules: nn → “man′′

� Mixing terminals and nonterminals on RHS:
� np → “Congress′′Vt “the′′“pooch′′

� np → “the′′nn
� Empty terminals
� np → ε
� adj → ε

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 4 / 24

Context Free Grammars

Derivations

� A derivation is a sequence of strings s1 . . .sT where

� s1 ≡ S, the start symbol

� sT ∈Σ∗: i.e., the final string is only terminals

� si ,∀i > 1, is derived from si−1 by replacing some non-terminal X in si−1

and replacing it by some β , where x→β ∈R.

� Example: parse tree

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 5 / 24

Context Free Grammars

Derivations

� A derivation is a sequence of strings s1 . . .sT where

� s1 ≡ S, the start symbol

� sT ∈Σ∗: i.e., the final string is only terminals

� si ,∀i > 1, is derived from si−1 by replacing some non-terminal X in si−1

and replacing it by some β , where x→β ∈R.

� Example: parse tree

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 5 / 24

Context Free Grammars

Example Derivation

Productions
s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s1 =
S

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

Productions
s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s2 =
S

VPNP

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation
Productions

s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s3 =
S

VPNP

NNDet

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

Productions
s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s4 =
S

VPNP

NNDet

the

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

Productions
s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s5 =
S

VPNP

NN

cat

Det

the

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

Productions
s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s6 =
S

VP

VZ

NP

NN

cat

Det

the

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

Productions
s → np vp
vp → AdvP vz
Det → “the′′

nn → “dot ′′

vz → “barked ′′
...

np →Det nn
np → AdjP nn
Det → “a′′

nn → “cat ′′

vz → “ran′′
...

vp → vz
np → pro
Det → “an′′

nn → “mouse′′

vz → “sat ′′
...

s7 =
S

VP

VZ

sat

NP

NN

cat

Det

the

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

s7 =
S

VP

VZ

sat

NP

NN

cat

Det

the

Ambiguous Yields

The yield of a parse tree is the collection of terminals produced by the
parse tree. Given a yield s.

Parsing / Decoding

Given, a yield s and a grammar G, determine the set of parse trees that
could have produced that sequence of terminals: TG(s).

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Example Derivation

s7 =
S

VP

VZ

sat

NP

NN

cat

Det

the

Ambiguous Yields

The yield of a parse tree is the collection of terminals produced by the
parse tree. Given a yield s.

Parsing / Decoding

Given, a yield s and a grammar G, determine the set of parse trees that
could have produced that sequence of terminals: TG(s).

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 6 / 24

Context Free Grammars

Ambiguity

Example sentence: “The man saw the dog with the telescope”
� Grammatical: TG(s)> 0
� Ambiguous: TG(s)> 1

S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentence the man saw the dog with
the telescope, under the CFG in figure 1.

5

S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentence the man saw the dog with
the telescope, under the CFG in figure 1.

5

� Which should we prefer?

� One is more probable than the other
� Add probabilities!

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 7 / 24

Context Free Grammars

Ambiguity

Example sentence: “The man saw the dog with the telescope”
� Grammatical: TG(s)> 0
� Ambiguous: TG(s)> 1

S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentence the man saw the dog with
the telescope, under the CFG in figure 1.

5

S

NP

DT

the

NN

man

VP

Vt

saw

NP

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope
S

NP

DT

the

NN

man

VP

VP

Vt

saw

NP

DT

the

NN

dog

PP

IN

with

NP

DT

the

NN

telescope

Figure 3: Two parse trees (derivations) for the sentence the man saw the dog with
the telescope, under the CFG in figure 1.

5

� Which should we prefer?
� One is more probable than the other
� Add probabilities!

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 7 / 24

Probabilistic Context Free Grammars

Goals

� What we want is a probability distribution over possible parse trees
t ∈ TG(s)

∀t ,p(t)≥ 0
∑

t∈TG(s)

p(t) = 1 (1)

� Rest of this lecture:
� How do we define the function p(t) (paramterization)
� How do we learn p(t) from data (estimation)
� Given a sentence, how do we find the possible parse trees (parsing /

decoding)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 8 / 24

Probabilistic Context Free Grammars | Parameterization: Defining Score Function

Parametrization

� For every production α→β , we assume we have a function q(α→β)
� We consider it a conditional probability of β (LHS) being derived from
α (RHS)

∑

α→β∈R:α=X

q(α→β) = 1 (2)

� The total probability of a tree t ≡ {α1→β1 . . .αn→βn} is

p(t) =
n
∏

i=1

q(αi →βi) (3)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 9 / 24

Probabilistic Context Free Grammars | Estimation

Estimation

� Get a bunch of grad students to make parse trees
for a million sentences

� Mitch Markus: Penn Treebank (Wall Street
Journal)

� To compute the conditional probability of a rule,

q(np →Det adj nn)≈
Count(np →Det adj nn)

Count(np)

� Where “Count” is the number of times that
derivation appears in the sentences

� Why no smoothing?

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 10 / 24

Probabilistic Context Free Grammars | Estimation

Estimation

� Get a bunch of grad students to make parse trees
for a million sentences

� Mitch Markus: Penn Treebank (Wall Street
Journal)

� To compute the conditional probability of a rule,

q(np →Det adj nn)≈
Count(np →Det adj nn)

Count(np)

� Where “Count” is the number of times that
derivation appears in the sentences

� Why no smoothing?

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 10 / 24

Probabilistic Context Free Grammars | Parsing

Dynamic Programming

� Like for dependency parsing, we build a chart to consider all possible
subtrees

� First, however, we’ll just consider whether a sentence is grammatical or
not

� Build up a chart with all possible derivations of spans

� Then see entry with start symbol over the entire sentence: those are all
grammatical parses

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 11 / 24

Probabilistic Context Free Grammars | Parsing

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules

Given sentence ~w of length N, grammar (N,Σ,R,S)
Initialize array C[s, t ,n] as array of booleans, all false (⊥)

for i = 0 . . .N do
for For each production rj ≡Na→wi do

set C[i , i ,a]←>
for l = 2 . . .n (length of span) do

for s = 1 . . .N − l +1 (start of span) do
for k = 1 . . . l −1 (pivot within span) do

for each production r ≡α→βγ do
if ¬C[s,s+ l ,α] then

C[s,s+ l ,α]←C[s,s+ k −1,β]∧C[s+ k ,s+ l ,γ]

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 12 / 24

Probabilistic Context Free Grammars | Parsing

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules

Given sentence ~w of length N, grammar (N,Σ,R,S)
Initialize array C[s, t ,n] as array of booleans, all false (⊥)
for i = 0 . . .N do

for For each production rj ≡Na→wi do
set C[i , i ,a]←>

for l = 2 . . .n (length of span) do
for s = 1 . . .N − l +1 (start of span) do

for k = 1 . . . l −1 (pivot within span) do
for each production r ≡α→βγ do

if ¬C[s,s+ l ,α] then
C[s,s+ l ,α]←C[s,s+ k −1,β]∧C[s+ k ,s+ l ,γ]

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 12 / 24

Probabilistic Context Free Grammars | Parsing

CYK Algorithm (deterministic)

Assumptions

Assumes binary grammar (not too difficult to extend) and no recursive rules

Given sentence ~w of length N, grammar (N,Σ,R,S)
Initialize array C[s, t ,n] as array of booleans, all false (⊥)
for i = 0 . . .N do

for For each production rj ≡Na→wi do
set C[i , i ,a]←>

for l = 2 . . .n (length of span) do
for s = 1 . . .N − l +1 (start of span) do

for k = 1 . . . l −1 (pivot within span) do
for each production r ≡α→βγ do

if ¬C[s,s+ l ,α] then
C[s,s+ l ,α]←C[s,s+ k −1,β]∧C[s+ k ,s+ l ,γ]

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 12 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

Book the flight through Houston

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

Det

N

P

N

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

Det

N

P

N

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

NP
Det

N

P

N

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

Det

N

P

N

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

N

P

N

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

N

NP P

N

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

N

NP P

N

NP

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

DP

N

NP P

N

NP

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

DP

N

NP P

PP

N

NP

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

DP

N

NP P

PP

N

NP

NP

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

DP

N

NP P

PP

N

NP

NP
S

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

DP

N

NP P

PP

N

NP

NP

DP

S

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Chart Parsing

0 1 2 3 4 5

Book the flight through Houston

N
V

VP
NP

S

Det

DP

N

NP P

PP

N

NP

NP

DP

S

S

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 13 / 24

Probabilistic Context Free Grammars | Parsing

Complexity?

� Chart has n2 cells

� Each cell has n options

� Times the number of productions |G|
� Thus, O(n3|G|)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 14 / 24

Probabilistic Context Free Grammars | Parsing

Complexity?

� Chart has n2 cells

� Each cell has n options

� Times the number of productions |G|
� Thus, O(n3|G|)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 14 / 24

Probabilistic Context Free Grammars | Parsing

Complexity?

� Chart has n2 cells

� Each cell has n options

� Times the number of productions |G|

� Thus, O(n3|G|)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 14 / 24

Probabilistic Context Free Grammars | Parsing

Complexity?

� Chart has n2 cells

� Each cell has n options

� Times the number of productions |G|
� Thus, O(n3|G|)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 14 / 24

Probabilistic Context Free Grammars | Parsing

How to deal with PCFG ambiguity

� In addition to keeping track of non-terminals in cell, also include max
probability of forming non-terminal from sub-trees

C[s,s+k ,α]←max(C[s,s+k ,α],C[s,s+ l−1,β] ·C[s+ l ,s+k ,γ])

� The score associated with S in the top of the chart is the best overall
parse-tree (given the yield)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 15 / 24

Probabilistic Context Free Grammars | Parsing

Recap

� Hierarchical syntax model: context free grammar

� Probabilistic interpretation: learn from data to solve ambiguity
� In class (next time):
� Work through example to resolve ambiguity
� Scoring a sentence

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 16 / 24

Probabilistic Context Free Grammars | Parsing

A pcfg

Assume the following grammar
s → np vp 1.0 v → sleeps 0.4
vp → v np 0.7 v → saw 0.6
vp → vp pp 0.2 nn → man 0.1
vp → v 0.1 nn → woman 0.1
np → dt nn 0.2 nn → telescope 0.3
np → np pp 0.8 nn → dog 0.5
pp → p np 1.0 dt → the 1.0

p → with 0.6
p → in 0.4

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 17 / 24

Probabilistic Context Free Grammars | Parsing

Evaluating the probability of a sentence

What is the probability of the parse
S

VP

V

sleeps

NP

NN

dog

DT

the

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 18 / 24

Probabilistic Context Free Grammars | Parsing

Evaluating the probability of a sentence

1.0
︸︷︷︸

det→ the

· 0.5
︸︷︷︸

n→ dog

· 1.0
︸︷︷︸

v→ sleeps

· 0.1
︸︷︷︸

vp→ v

· 0.2
︸︷︷︸

np→ dt n

· 1.0
︸︷︷︸

s→ np vp

= 0.002

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 18 / 24

Probabilistic Context Free Grammars | Parsing

Span 0

1. C[8,8,nn] = ln(0.3) =−1.2

2. C[7,7,dt] = ln(1.0) = 0.0

3. C[6,6,p] = ln(0.6) =−0.51

4. C[5,5,nn] = ln(0.5) =−0.69

5. C[4,4,dt] = ln(1.0) = 0.0

6. C[3,3,v] = ln(0.6) =−.51

7. C[3,3,vp] = ln(0.6)+ ln(0.1) =−2.8

8. C[2,2,nn] = ln(0.1) =−2.3

9. C[1,1,dt] = ln(1.0) = 0.0

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 19 / 24

Probabilistic Context Free Grammars | Parsing

Span 1

1. C[1,2,np] = 0.0
︸︷︷︸

C[1,1,DT]

+ ln(−2.3
︸︷︷︸

C[2,2,NN]

)+ln(0.2
︸︷︷︸

np→ dt n

) =−2.3+−1.6=−3.9

2. C[4,5,np] = 0.0
︸︷︷︸

C[4,4,DT]

+ −.69
︸︷︷︸

C[5,5,NN]

+ ln(0.2
︸︷︷︸

np→ dt n

) =−0.69+−1.6=−2.3

3. C[7,8,np] = 0.0
︸︷︷︸

C[7,7,DT]

+ −1.2
︸︷︷︸

C[8,8,NN]

+ ln(0.2
︸︷︷︸

np→ dt n

) =−1.2+−1.6=−2.8

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 20 / 24

Probabilistic Context Free Grammars | Parsing

Span 1

1. C[1,2,np] = 0.0
︸︷︷︸

C[1,1,DT]

+ ln(−2.3
︸︷︷︸

C[2,2,NN]

)+ln(0.2
︸︷︷︸

np→ dt n

) =−2.3+−1.6=−3.9

2. C[4,5,np] = 0.0
︸︷︷︸

C[4,4,DT]

+ −.69
︸︷︷︸

C[5,5,NN]

+ ln(0.2
︸︷︷︸

np→ dt n

) =−0.69+−1.6=−2.3

3. C[7,8,np] = 0.0
︸︷︷︸

C[7,7,DT]

+ −1.2
︸︷︷︸

C[8,8,NN]

+ ln(0.2
︸︷︷︸

np→ dt n

) =−1.2+−1.6=−2.8

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 20 / 24

Probabilistic Context Free Grammars | Parsing

Span 1

1. C[1,2,np] = 0.0
︸︷︷︸

C[1,1,DT]

+ ln(−2.3
︸︷︷︸

C[2,2,NN]

)+ln(0.2
︸︷︷︸

np→ dt n

) =−2.3+−1.6=−3.9

2. C[4,5,np] = 0.0
︸︷︷︸

C[4,4,DT]

+ −.69
︸︷︷︸

C[5,5,NN]

+ ln(0.2
︸︷︷︸

np→ dt n

) =−0.69+−1.6=−2.3

3. C[7,8,np] = 0.0
︸︷︷︸

C[7,7,DT]

+ −1.2
︸︷︷︸

C[8,8,NN]

+ ln(0.2
︸︷︷︸

np→ dt n

) =−1.2+−1.6=−2.8

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 20 / 24

Probabilistic Context Free Grammars | Parsing

Span 2

1. C[1,3,s] = −3.9
︸︷︷︸

C[1,2,NP]

+ −2.8
︸︷︷︸

C[3,3,VP]

+ ln(1.0
︸︷︷︸

s→ np vp

) =−6.7

2. C[3,5,vp] = −0.5
︸︷︷︸

C[3,3,V]

+ −2.3
︸︷︷︸

C[4,5,NP]

+ ln(0.7
︸︷︷︸

vp→ v np

) =−2.8−0.36=−3.2

3. C[6,8,pp] = −0.51
︸ ︷︷ ︸

C[6,6,P]

+ −2.8
︸︷︷︸

C[7,8,NP]

+ ln(1.0
︸︷︷︸

pp→ p np

) =−3.3+−1.6=−3.3

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 21 / 24

Probabilistic Context Free Grammars | Parsing

Span 2

1. C[1,3,s] = −3.9
︸︷︷︸

C[1,2,NP]

+ −2.8
︸︷︷︸

C[3,3,VP]

+ ln(1.0
︸︷︷︸

s→ np vp

) =−6.7

2. C[3,5,vp] = −0.5
︸︷︷︸

C[3,3,V]

+ −2.3
︸︷︷︸

C[4,5,NP]

+ ln(0.7
︸︷︷︸

vp→ v np

) =−2.8−0.36=−3.2

3. C[6,8,pp] = −0.51
︸ ︷︷ ︸

C[6,6,P]

+ −2.8
︸︷︷︸

C[7,8,NP]

+ ln(1.0
︸︷︷︸

pp→ p np

) =−3.3+−1.6=−3.3

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 21 / 24

Probabilistic Context Free Grammars | Parsing

Span 2

1. C[1,3,s] = −3.9
︸︷︷︸

C[1,2,NP]

+ −2.8
︸︷︷︸

C[3,3,VP]

+ ln(1.0
︸︷︷︸

s→ np vp

) =−6.7

2. C[3,5,vp] = −0.5
︸︷︷︸

C[3,3,V]

+ −2.3
︸︷︷︸

C[4,5,NP]

+ ln(0.7
︸︷︷︸

vp→ v np

) =−2.8−0.36=−3.2

3. C[6,8,pp] = −0.51
︸ ︷︷ ︸

C[6,6,P]

+ −2.8
︸︷︷︸

C[7,8,NP]

+ ln(1.0
︸︷︷︸

pp→ p np

) =−3.3+−1.6=−3.3

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 21 / 24

Probabilistic Context Free Grammars | Parsing

Span 4

1. C[1,5,s] = −3.9
︸︷︷︸

C[1,2,NP]

+ −3.2
︸︷︷︸

C[3,5,VP]

+ ln(1.0
︸︷︷︸

s→ np vp

) =−7.1

2. C[4,8,np] = −2.3
︸︷︷︸

C[4,5,NP]

+ −3.3
︸︷︷︸

C[6,8,PP]

+ ln(0.8
︸︷︷︸

np→ np pp

) =−5.6+−0.2=−5.8

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 22 / 24

Probabilistic Context Free Grammars | Parsing

Span 4

1. C[1,5,s] = −3.9
︸︷︷︸

C[1,2,NP]

+ −3.2
︸︷︷︸

C[3,5,VP]

+ ln(1.0
︸︷︷︸

s→ np vp

) =−7.1

2. C[4,8,np] = −2.3
︸︷︷︸

C[4,5,NP]

+ −3.3
︸︷︷︸

C[6,8,PP]

+ ln(0.8
︸︷︷︸

np→ np pp

) =−5.6+−0.2=−5.8

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 22 / 24

Probabilistic Context Free Grammars | Parsing

Span 5

C[3,8,vp] =max((4)

−3.2
︸︷︷︸

C[3,5,VP]

+ −3.3
︸︷︷︸

C[6,8,PP]

+ −1.6
︸︷︷︸

vp→ vp pp

, (5)

−0.5
︸︷︷︸

C[3,3,V]

+ −5.8
︸︷︷︸

C[4,8,NP]

+ −.36
︸︷︷︸

vp→ v np

) (6)

=max(−8.1,−6.7) =−6.7 (7)

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 23 / 24

Probabilistic Context Free Grammars | Parsing

Span 7

1. C[1,8,s] = −3.9
︸︷︷︸

C[1,2,NP]

+ −6.7
︸︷︷︸

C[3,8,VP]

=−10.6

Natural Language Processing: Jordan Boyd-Graber | UMD Constituency Parsing | 24 / 24

	Motivation
	Context Free Grammars
	Probabilistic Context Free Grammars
	Parameterization: Defining Score Function
	Estimation
	Parsing

