

Part of Speech Tagging

Natural Language Processing: Jordan Boyd-Graber University of Maryland

Adapted from material by Jimmy Lin and Jason Eisner

• Given an unobserved sequence of length L, $\{x_1, ..., x_L\}$, we want to find a sequence $\{z_1 \dots z_L\}$ with the highest probability.

- Given an unobserved sequence of length L, $\{x_1, \ldots, x_l\}$, we want to find a sequence $\{z_1 \dots z_l\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_n(k) = \max_{j} \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n}$$
 (2)

- Given an unobserved sequence of length L, $\{x_1, \ldots, x_l\}$, we want to find a sequence $\{z_1 \dots z_l\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_n(k) = \max_{j} \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_n}$$
 (2)

- Given an unobserved sequence of length L, $\{x_1, \ldots, x_l\}$, we want to find a sequence $\{z_1 \dots z_l\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_{n}(k) = \max_{j} \left(\delta_{n-1}(j) \frac{\theta_{j,k}}{\theta_{j,k}} \right) \beta_{k,x_{n}}$$
 (2)

- Given an unobserved sequence of length L, $\{x_1, \ldots, x_l\}$, we want to find a sequence $\{z_1 \dots z_l\}$ with the highest probability.
- It's impossible to compute K^L possibilities.
- So, we use dynamic programming to compute most likely tags for each token subsequence from 0 to t that ends in state k.
- Memoization: fill a table of solutions of sub-problems
- Solve larger problems by composing sub-solutions
- Base case:

$$\delta_1(k) = \pi_k \beta_{k, x_i} \tag{1}$$

$$\delta_{n}(k) = \max_{j} \left(\delta_{n-1}(j) \theta_{j,k} \right) \beta_{k,x_{n}}$$
 (2)

- The complexity of this is now K²L.
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j \delta_{n-1}(j) \theta_{j,k}$$
 (3)

- The complexity of this is now K²L.
- In class: example that shows why you need all O(KL) table cells (garden pathing)
- But just computing the max isn't enough. We also have to remember where we came from. (Breadcrumbs from best previous state.)

$$\Psi_n = \operatorname{argmax}_j \delta_{n-1}(j) \theta_{j,k}$$
 (3)

Let's do that for the sentence "come and get it"

POS	π_k	β_{k,x_1}	$\log \delta_1(k)$
MOD	0.234	0.024	-5.18
DET	0.234	0.032	-4.89
CONJ	0.234	0.024	-5.18
Ν	0.021	0.016	-7.99
PREP	0.021	0.024	-7.59
PRO	0.021	0.016	-7.99
V	0.234	0.121	-3.56

come and get it

Why logarithms?

- More interpretable than a float with lots of zeros.
- Underflow is less of an issue
- Addition is cheaper than multiplication

$$log(ab) = log(a) + log(b)$$
 (4)

POS	$\log \delta_1(j)$	log	$\delta_2(\text{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

POS	$\log \delta_1(j)$	$\log \delta_2({\sf CONJ})$
MOD	-5.18	
DET	-4.89	
CONJ	-5.18	???
N	-7.99	
PREP	-7.59	
PRO	-7.99	
V	-3.56	

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56		

$$\log (\delta_0(V)\theta_{V, CONJ}) = \log \delta_0(k) + \log \theta_{V, CONJ} = -3.56 + -1.65$$

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99		
PREP	-7.59		
PRO	-7.99		
V	-3.56	-5.21	

come and get it

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18		
DET	-4.89		
CONJ	-5.18		???
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	???
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

$$\log \delta_1(k) = -5.21 - \log \beta_{\text{CONJ, and}} =$$

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

$$\log \delta_1(k) = -5.21 - \log \beta_{\text{CONJ, and}} = -5.21 - 0.64$$

POS	$\log \delta_1(j)$	$\log \delta_1(j)\theta_{j,CONJ}$	$\log \delta_2(extsf{CONJ})$
MOD	-5.18	-8.48	
DET	-4.89	-7.72	
CONJ	-5.18	-8.47	-6.02
N	-7.99	≤-7.99	
PREP	-7.59	≤-7.59	
PRO	-7.99	≤-7.99	
V	-3.56	-5.21	

come and get it

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18						
DET	-4.89						
CONJ	-5.18	-6.02	V				
N	-7.99						
PREP	-7.59						
PRO	-7.99						
V	-3.56						
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ				
DET	-4.89	-0.00	Χ				
CONJ	-5.18	-6.02	V				
N	-7.99	-0.00	Χ				
PREP	-7.59	-0.00	Χ				
PRO	-7.99	-0.00	Χ				
V	-3.56	-0.00	Χ				
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ	-0.00	Χ		
DET	-4.89	-0.00	Χ	-0.00	X		
CONJ	-5.18	-6.02	V	-0.00	X		
N	-7.99	-0.00	Χ	-0.00	X		
PREP	-7.59	-0.00	Χ	-0.00	Χ		
PRO	-7.99	-0.00	Χ	-0.00	X		
V	-3.56	-0.00	Χ	-9.03	CONJ		
WORD	come	and		g	et	it	

POS	$\delta_1(k)$	$\delta_2(k)$	<i>b</i> ₂	$\delta_3(k)$	<i>b</i> ₃	$\delta_4(k)$	<i>b</i> ₄
MOD	-5.18	-0.00	Χ	-0.00	Χ	-0.00	Χ
DET	-4.89	-0.00	Χ	-0.00	Χ	-0.00	Χ
CONJ	-5.18	-6.02	V	-0.00	Χ	-0.00	Χ
N	-7.99	-0.00	Χ	-0.00	Χ	-0.00	Χ
PREP	-7.59	-0.00	Χ	-0.00	Χ	-0.00	Χ
PRO	-7.99	-0.00	Χ	-0.00	Χ	-14.6	V
V	-3.56	-0.00	Χ	-9.03	CONJ	-0.00	Χ
WORD	come	and		get		it	