Part of Speech Tagging

Natural Language Processing: Jordan
Boyd-Graber

University of Maryland

Adapted from material by Jimmy Lin and Jason Eisner

Natural Language Processing: Jordan Boyd-Graber |

Part of Speech Tagging |

Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z } with the highest probability.

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging |

Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z} with the highest probability.

= It's impossible to compute K- possibilities.

= So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k.

= Memoization: fill a table of solutions of sub-problems
= Solve larger problems by composing sub-solutions
= Base case:
61(k) =Ttk Prx, (1)
= Recursion:
0,(k) = mjaX(5n_1 (1)) Brx, (2

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 2/17

Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z} with the highest probability.

= It's impossible to compute K- possibilities.

= So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k.

= Memoization: fill a table of solutions of sub-problems
= Solve larger problems by composing sub-solutions
= Base case:
61(k) =Ttk Prx, (1)
= Recursion:
0,(k) = mjaX(5n_1 (1)) Brx, (2

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 2/17

Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z} with the highest probability.

= It's impossible to compute K- possibilities.

= So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k.

= Memoization: fill a table of solutions of sub-problems
= Solve larger problems by composing sub-solutions
= Base case:
61(k) =Ttk Prx, (1)
= Recursion:
0,(k) = mjaX(5n_1 (10,1 Br, (2

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 2/17

Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z} with the highest probability.

= It's impossible to compute K- possibilities.

= So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k.

= Memoization: fill a table of solutions of sub-problems
= Solve larger problems by composing sub-solutions
= Base case:
61(k) =Ttk Prx, (1)
= Recursion:
0,(k) = mjaX(5n_1 (1)0k)Br.x, (2

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 2/17

= The complexity of this is now K2L.

= In class: example that shows why you need all O(KL) table cells
(garden pathing)

= But just computing the max isn’t enough. We also have to remember
where we came from. (Breadcrumbs from best previous state.)

Wy, = argmax;6 1 (/) 0.k ®)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 3/17

The complexity of this is now K2L.

In class: example that shows why you need all O(KL) table cells
(garden pathing)

But just computing the max isn’'t enough. We also have to remember
where we came from. (Breadcrumbs from best previous state.)

Wy, = argmax;6 1 (/) 0.k ®)

Let’s do that for the sentence “come and get it”

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 3/17

POS | 7k | Prx | logdi(k)

MOD | 0.234 | 0.024 -5.18

DET | 0.234 | 0.032 -4.89

CONJ | 0.234 | 0.024 -5.18
N 0.021 | 0.016 -7.99

PREP | 0.021 | 0.024 -7.59

PRO | 0.021 | 0.016 -7.99
\ 0.234 | 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.
2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (4)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 4/17

POS | logd(j) log 6,(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | logd(j) log 6,(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it

Part of Speech Tagging | 5/17

Natural Language Processing: Jordan Boyd-Graber | UMD

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it

log (8(V) By, con) = l0g5o(k) +log By, cony =—3.56 +—1.65

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56 -5.21

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 2?77
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 2?77
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

log 61 (k) =—5.21—log BCONJ, and =

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

come and get it

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it

logd4(k) =—5.21—log ﬂCONJ, and = —5.21—0.64

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 -6.02
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 5/17

POS | 6,(k) | 62(K) | bz | 65(k) 5.(k) | b,
MOD -5.18

DET -4.89

CONJ 518 | -6.02 | V

N -7.99

PREP -7.59

PRO -7.99

\Y -3.56

WORD | come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD

Part of Speech Tagging |

6

POS | 6,(k) | 62(K) | bz | 65(k) 5.(k) | b,
MOD -5.18 -0.00 | X
DET -4.89 -0.00 | X
CONJ 518 | -6.02 | V
N -7.99 -0.00 | X
PREP -7.59 -0.00 | X
PRO -7.99 -0.00 X
Vv -3.56 -0.00 | X
WORD | come and get it

Natural Language Processing: Jordan Boyd-Graber | UMD

Part of Speech Tagging |

6

POS | &:(k) | 8a(k) [bo | 85(k) | b3 [dalk) | b
MOD -5.18 -0.00 | X | -0.00 X
DET -4.89 -0.00 | X [-0.00 X
CONJ -5.18 -6.02 \Y -0.00 X
N -7.99 -0.00 | X | -0.00 X
PREP -7.59 -0.00 | X [-0.00 X
PRO -7.99 -0.00 X -0.00 X
\Y -3.56 -0.00 | X | -9.03 | CONJ
WORD | come and get it

Natural Language Processing: Jordan Boyd-Graber |

Part of Speech Tagging |

6

POS | &:(k) | 8a(k) [bo | 85(k) | b3 [dalk) | b
MOD -5.18 -0.00 | X | -0.00 X -0.00 | X
DET -4.89 -0.00 | X [-0.00 X -0.00 | X
CONJ -5.18 -6.02 \Y -0.00 X -0.00 X
N -7.99 -0.00 | X | -0.00 X -0.00 | X
PREP -7.59 -0.00 | X [-0.00 X -0.00 | X
PRO -7.99 -0.00 X -0.00 X -14.6 \Y
\Y -3.56 -0.00 | X | -9.03 | CONJ | -0.00 | X
WORD | come and get it

Natural Language Processing: Jordan Boyd-Graber |

Part of Speech Tagging |

6

	Finding Tag Sequences
	Viterbi Algorithm
	EM Algorithm

