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Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z } with the highest probability.
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Viterbi Algorithm

= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z} with the highest probability.

= It's impossible to compute K- possibilities.

= So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k.

= Memoization: fill a table of solutions of sub-problems
= Solve larger problems by composing sub-solutions
= Base case:
61(k) =Ttk Prx, (1)
= Recursion:
0,(k) = mjaX(5n_1 (1)) Brx, (2
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= Given an unobserved sequence of length L, {x;,...,x;}, we want to find
a sequence {z; ...z} with the highest probability.

= It's impossible to compute K- possibilities.

= So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k.

= Memoization: fill a table of solutions of sub-problems
= Solve larger problems by composing sub-solutions
= Base case:
61(k) =Ttk Prx, (1)
= Recursion:
0,(k) = mjaX(5n_1 (1)0k)Br.x, (2

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 2/17



= The complexity of this is now K2L.

= In class: example that shows why you need all O(KL) table cells
(garden pathing)

= But just computing the max isn’t enough. We also have to remember
where we came from. (Breadcrumbs from best previous state.)

Wy, = argmax;6 1 (/) 0.k ®)
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The complexity of this is now K2L.

In class: example that shows why you need all O(KL) table cells
(garden pathing)

But just computing the max isn’'t enough. We also have to remember
where we came from. (Breadcrumbs from best previous state.)

Wy, = argmax;6 1 (/) 0.k ®)

Let’s do that for the sentence “come and get it”
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POS | 7k | Prx | logdi(k)

MOD | 0.234 | 0.024 -5.18

DET | 0.234 | 0.032 -4.89

CONJ | 0.234 | 0.024 -5.18
N 0.021 | 0.016 -7.99

PREP | 0.021 | 0.024 -7.59

PRO | 0.021 | 0.016 -7.99
\ 0.234 | 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.
2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (4)

Natural Language Processing: Jordan Boyd-Graber | UMD Part of Speech Tagging | 4/17



POS | logd(j) log 6,(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it
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POS | logd(j) log 6,(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56

come and get it

log (8(V) By, con) = l0g5o(k) +log By, cony =—3.56 +—1.65
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99
PREP -7.59
PRO -7.99
\" -3.56 -5.21

come and get it
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18
DET -4.89
CONJ -5.18 2?77
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 2?77
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it
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log 61 (k) =—5.21—log BCONJ, and =
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it

logd4(k) =—5.21—log ﬂCONJ, and = —5.21—0.64
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POS | log6+(j) | log61(j)0;,cony | log62(CONJ)
MOD -5.18 -8.48
DET -4.89 -7.72
CONJ -5.18 -8.47 -6.02
N -7.99 <—7.99
PREP -7.59 <-—7.59
PRO -7.99 <-—7.99
\" -3.56 -5.21

come and get it
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POS | 6,(k) | 62(K) | bz | 65(k) 5.(k) | b,
MOD -5.18

DET -4.89

CONJ 518 | -6.02 | V

N -7.99

PREP -7.59

PRO -7.99

\Y -3.56

WORD | come and get it
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POS | 6,(k) | 62(K) | bz | 65(k) 5.(k) | b,
MOD -5.18 -0.00 | X
DET -4.89 -0.00 | X
CONJ 518 | -6.02 | V
N -7.99 -0.00 | X
PREP -7.59 -0.00 | X
PRO -7.99 -0.00 X
Vv -3.56 -0.00 | X
WORD | come and get it
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POS | &:(k) | 8a(k) [ bo | 85(k) | b3 [ dalk) | b
MOD -5.18 -0.00 | X | -0.00 X
DET -4.89 -0.00 | X [ -0.00 X
CONJ -5.18 -6.02 \Y -0.00 X
N -7.99 -0.00 | X | -0.00 X
PREP -7.59 -0.00 | X [ -0.00 X
PRO -7.99 -0.00 X -0.00 X
\Y -3.56 -0.00 | X | -9.03 | CONJ
WORD | come and get it
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POS | &:(k) | 8a(k) [ bo | 85(k) | b3 [ dalk) | b
MOD -5.18 -0.00 | X | -0.00 X -0.00 | X
DET -4.89 -0.00 | X [ -0.00 X -0.00 | X
CONJ -5.18 -6.02 \Y -0.00 X -0.00 X
N -7.99 -0.00 | X | -0.00 X -0.00 | X
PREP -7.59 -0.00 | X [ -0.00 X -0.00 | X
PRO -7.99 -0.00 X -0.00 X -14.6 \Y
\Y -3.56 -0.00 | X | -9.03 | CONJ | -0.00 | X
WORD | come and get it
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