
Question Answering

Natural Language Processing: Jordan
Boyd-Graber
University of Maryland
DR. QA

Adapted from material from Danqi Chen

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 1 / 8

Overview of the Document Reader Question Answering

Good source code available!

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 2 / 8

Big idea

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 3 / 8

Start and End Probabilities

Pstart(i)∝exp{~piWs~q} (1)

Pend(i)∝exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Start and End Probabilities

Pstart(i)∝exp{~piWs~q} (1)

Pend(i)∝exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Start and End Probabilities

Pstart(i)∝exp{~piWs~q} (1)

Pend(i)∝exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Start and End Probabilities

Pstart(i)∝exp{~piWs~q} (1)

Pend(i)∝exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Start and End Probabilities

Pstart(i)∝exp{~piWs~q} (1)

Pend(i)∝exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Start and End Probabilities

Pstart(i)∝exp{~piWs~q} (1)

Pend(i)∝exp{~piWe~q} (2)

1. A vector representing our question

2. Vector representing each word in the query text

3. Parameter: here’s the start/end of the answer

This is your objective function! Will backprop into each of these parameters.

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4 / 8

Question Encoding

~q =
∑

j

bj~qj (3)

bj =
exp

�

~w ·qj

	

∑

j ′ exp
�

w ·qj ′
	 (4)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8

Question Encoding

~q =
∑

j

bj~qj (3)

bj =
exp

�

~w ·qj

	

∑

j ′ exp
�

w ·qj ′
	 (4)

Question vector is a weighted sum

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8

Question Encoding

~q =
∑

j

bj~qj (3)

bj =
exp

�

~w ·qj

	

∑

j ′ exp
�

w ·qj ′
	 (4)

The weight is a scalar

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8

Question Encoding

~q =
∑

j

bj~qj (3)

bj =
exp

�

~w ·qj

	

∑

j ′ exp
�

w ·qj ′
	 (4)

A focus parameter learns how to focus on particular words in the question

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5 / 8

Paragraph Encoding

Word Embedding

Exact Match

Token Features

Question Alignment

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Word Embedding

Exact Match

Token Features

Question Alignment

pre-trained word
embedding

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Word Embedding

Exact Match

Token Features

Question Alignment

Part of speech, NER
tags, normalized term
frequency

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Word Embedding

Exact Match

Token Features

Question Alignment

Who is the leader of
the US
Donald Trump is the
president of the
United States

ai ,j =
exp

�

~E(pi) ·E(qj)
	

∑

j ′ E(pi) ·E(qj ′)
(5)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Word Embedding

Exact Match

Token Features

Question Alignment

Who is the leader of
the US
Donald Trump is the
president of the
United States

ai ,j =
exp

�

~E(pi) ·E(qj)
	

∑

j ′ E(pi) ·E(qj ′)
(5)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Create learned
representations

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

LSTM: encode
contextual effects

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Add a backwards
direction as well
(bi-directional LSTM)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Use the concatenation
of these two hidden
layers as the
representation of the
word

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Paragraph Encoding

Pstart(i)∝exp{~piWs~q}
Pend(i)∝exp{~piWe~q}

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6 / 8

Implementation

� Trained on passages

� Backprop through all
layers

� Look at code

https://github.com/
facebookresearch/DrQA/

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 7 / 8

https://github.com/facebookresearch/DrQA/
https://github.com/facebookresearch/DrQA/

More complicated models

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 8 / 8

