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Overview of the Document Reader Question Answering

Q: How many of Warsaw's inhabitants
spoke Polish in 19337

Document
Retriever

Document
Reader

833,500

WiIKIPEDIA O '—E
‘The Free Encyclopedia t

Good source code available!
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Big idea

Super Bowl 50 was an American football game to determine the champion of the
National Football League (NFL) for the 2015 season. The American Football
Conference (AFC) champion| defeated the National Football
Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super
Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the
San Francisco Bay Area at Santa Clara, California. As this was the 50th Super
Bowl, the league emphasized the "golden anniversary" with various gold-themed A: Denver Broncos
initiatives, as well as temporarily suspending the tradition of naming each Super
Bowl game with Roman numerals (under which the game would have been
known as "Super Bowl L"), so that the logo could prominently feature the Arabic
numerals 50.

Q: Which NFL team represented the
AFC at Super Bowl 50?
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Start and End Probabilities

Pstart(i) ocexp {B; W,q} (1)
Pand(i) o<exp {B;Wq} (2

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer
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Start and End Probabilities

Pstart(i) o<cexp {B; Ws3} (1)
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Start and End Probabilities

Pstart(i) o<exp {p; Wsg} (1)
Pend () o<exp {5 W,d} (2)
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Start and End Probabilities

Pstart (i) ocexp {B; Wsq} (1)
Pend (i) o<exp {p; W,g} (2)

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

This is your objective function! Will backprop into each of these parameters.
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Question Encoding

G=> b7 (3)
J
exp{iv- g}

B Zj/exp{W'qj/}
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Question Encoding

Question vector is a weighted sum
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Question Encoding

The weight is a scalar
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Question Encoding

G=> bg (3)
J
exp{iv- g}
b (4)
b Y ep{w g}

A focus parameter learns how to focus on particular words in the question
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Paragraph Encoding

Natural Language Processin

Word Embedding

Exact Match

Token Features

Question Alignment
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Paragraph Encoding

Word Embedding pre-trained word
embedding

Exact Match

Token Features

Question Alignment
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Paragraph Encoding

Part of speech, NER
tags, normalized term
frequency

Word Embedding

Exact Match

Token Features

Question Alignment
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Paragraph Encoding

Who is the leader of
the US
Donald Trump is the
president of the

Word Embedding United States

. _ o®{E(p)-E(q)}
Exact Match 1) Z/’ E(p/) . E(q],)
(5)

Token Features

Question Alignment
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Paragraph Encoding

Create learned
representations

[ I el I
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Paragraph Encoding

LSTM: encode

! contextual effects
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Paragraph Encoding

: : Add a backwards
direction as well

! (bi-directional LSTM)
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Paragraph Encoding

Use the concatenation
of these two hidden
layers as the

representation of the
word
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Paragraph Encoding

Pstart(/) o<exp {5 W;sg}
Pend () o<exp {5 W,g}
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Implementation

# RN document encoder

self.doc_rnn = layers.StackedBRNN(
input_size=doc_input_size,
hidden_size=args.hidden_size,
nun_layers=args.doc_layers,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,
ron_type=self.RNN_TYPES [args. ran_type],
padding=args. rnn_padding,

)

# RN question encoder

= Trained on passages
= Backprop through all T o e

hidden_size=args.hidden_size,
nun_layers=args. question_layers,

dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,

= ook at code
rnn_type=self.RNN_TYPES [args. rnn_typel ,

padding=args. rn_padding,

https://github.com/
facebookresearch/DrQAa/
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https://github.com/facebookresearch/DrQA/
https://github.com/facebookresearch/DrQA/

More complicated models
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