Question Answering

Natural Language Processing: Jordan
Boyd-Graber

University of Maryland

Adapted from material from Dangi Chen

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 1/8

Overview of the Document Reader Question Answering

Q: How many of Warsaw's inhabitants
spoke Polish in 19337

Document
Retriever

Document
Reader

833,500

WiIKIPEDIA O '—E
‘The Free Encyclopedia t

Good source code available!

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 2/8

Big idea

Super Bowl 50 was an American football game to determine the champion of the
National Football League (NFL) for the 2015 season. The American Football
Conference (AFC) champion| defeated the National Football
Conference (NFC) champion Carolina Panthers 24-10 to earn their third Super
Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the
San Francisco Bay Area at Santa Clara, California. As this was the 50th Super
Bowl, the league emphasized the "golden anniversary" with various gold-themed A: Denver Broncos
initiatives, as well as temporarily suspending the tradition of naming each Super
Bowl game with Roman numerals (under which the game would have been
known as "Super Bowl L"), so that the logo could prominently feature the Arabic
numerals 50.

Q: Which NFL team represented the
AFC at Super Bowl 50?

Natural Language Processing: Jordan Boy

Question Answering

Start and End Probabilities

Pstart(i) ocexp {B; W,q} (1)
Pand(i) o<exp {B;Wq} (2

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4/8

Start and End Probabilities

Pstart(i) o<cexp {B; Ws3} (1)
Pend () o<exp {B;W,3d} (2)

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4/8

Start and End Probabilities

Pstart(i) o<exp {p; Wsg} (1)
Pend () o<exp {5 W,d} (2)

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4/8

Start and End Probabilities

Pstart(i) ocexp {B; W,q} (1)
Pand(i) o<exp {B; W.q} (2

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4/8

Start and End Probabilities

Pstart(i) ocexp {B; W.q} (1)
Pand(i) o<exp {B;Wq} (2

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4/8

Start and End Probabilities

Pstart (i) ocexp {B; Wsq} (1)
Pend (i) o<exp {p; W,g} (2)

1. A vector representing our question
2. Vector representing each word in the query text
3. Parameter: here’s the start/end of the answer

This is your objective function! Will backprop into each of these parameters.

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 4/8

Question Encoding

G=> b7 (3)
J
exp{iv- g}

B Zj/exp{W'qj/}

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5/8

Question Encoding

Question vector is a weighted sum

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5/8

Question Encoding

The weight is a scalar

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5/8

Question Encoding

G=> bg (3)
J
exp{iv- g}
b (4)
b Y ep{w g}

A focus parameter learns how to focus on particular words in the question

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 5/8

Paragraph Encoding

Natural Language Processin

Word Embedding

Exact Match

Token Features

Question Alignment

Question Answering

Paragraph Encoding

Word Embedding pre-trained word
embedding

Exact Match

Token Features

Question Alignment

Natural Language Processing: Jordan Boyd-Graber Question Answering | 6/8

Paragraph Encoding

Part of speech, NER
tags, normalized term
frequency

Word Embedding

Exact Match

Token Features

Question Alignment

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Paragraph Encoding

Who is the leader of
the US
Donald Trump is the
president of the

Word Embedding United States

. _ o®{E(p)-E(q)}
Exact Match 1) Z/’ E(p/) . E(q],)
(5)

Token Features

Question Alignment

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Paragraph Encoding

Who is the leader of
the US
Donald Trump is the
president of the

Word Embedding United States

. _ o®{E(p)-E(q)}
Exact Match 1) Z/’ E(p/) . E(q],)
(5)

Token Features

Question Alignment

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Paragraph Encoding

Create learned
representations

[I el I

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Paragraph Encoding

LSTM: encode

! contextual effects

Natural Language Processing: Jordan Boyd-Graber | Question Answering | 6/

Paragraph Encoding

: : Add a backwards
direction as well

! (bi-directional LSTM)

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Paragraph Encoding

Use the concatenation
of these two hidden
layers as the

representation of the
word

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Paragraph Encoding

Pstart(/) o<exp {5 W;sg}
Pend () o<exp {5 W,g}

Natural Language Processing: Jordan Boyd-Graber | UMD Question Answering | 6/8

Implementation

RN document encoder

self.doc_rnn = layers.StackedBRNN(
input_size=doc_input_size,
hidden_size=args.hidden_size,
nun_layers=args.doc_layers,
dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,
ron_type=self.RNN_TYPES [args. ran_type],
padding=args. rnn_padding,

)

RN question encoder

= Trained on passages
= Backprop through all T o e

hidden_size=args.hidden_size,
nun_layers=args. question_layers,

dropout_rate=args.dropout_rnn,
dropout_output=args.dropout_rnn_output,
concat_layers=args.concat_rnn_layers,

= ook at code
rnn_type=self.RNN_TYPES [args. rnn_typel ,

padding=args. rn_padding,

https://github.com/
facebookresearch/DrQAa/

Natural Language Processin

https://github.com/facebookresearch/DrQA/
https://github.com/facebookresearch/DrQA/

More complicated models

Start End
Output Layer | Dense + Softmax H LSTM + Softmax I
<
., .
=
=
q
Modeling Layer
=
g
I gr
Aftention Flow Query2Context and Context2Query
Laver Attention
hy ha hy Uy uy
Phrase Embed s =
Layer 5 5
Word Embed ? T T |:1|
Layer [_ e _
Character
Embed Layer -
X4 Xo X3 X1 . Q1 Qy |
L)
Context Query

Natural Language Processil

