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What’s wrong with PMI?

= PMI-based methods prefer rare words
= E.g., closest to “king”

= Jeongjo (Koryo), Adulyadej (Chakri), Coretta (MLK)
= Hard to scale
= Doesn’t work as well?
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Hyperparameters Matter

= Preprocessing (word2vec)
o Dynamic Context Windows
o Subsampling
o Deleting Rare Words

= Postprocessing (GloVe)
o Adding Context Vectors

= Association Metric (SGNS)

o Shifted PMI
o Context Distribution Smoothing
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Dynamic Context Windows

little wampimuk hiding

word2vec: 1/4 2/4 3/4 4/4 4/4  3/4 2/4
GloVe: 1/4 13 1/2 1/1 11 12 1/3
Aggressive: 1/8 1/4 1/2 11 11 1/2 1/4

The Word-Space Model (Sahlgren, 2006)
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Adding Context Vectors

Skip-Gram Negative Sampling creates word vectors w
= ...and context vectors ¢

Pennington et al. (2014) use w + ¢ to represent word

Levy et al. (2015) find that data size and preprocessing account for
most (if not all) of difference

Natural Language Processing: Jordan Boyd-Graber | UMD Distributional Semantics | 5/9



Smoothing

= Introduced in word2vec for negative sampling (@ = 0.75)

o)
S # o)

= For PMI, helps remove bias toward rare words

Pu(c)
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Smoothing

= Introduced in word2vec for negative sampling (@ = 0.75)

o)
S # o)

= For PMI, helps remove bias toward rare words

Pu(c)

= And makes it about as good as word2vec
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Rant on Evaluation

Analogy and Similarity aren’t that useful

Find a real-world task and optimize for that

Innovation is still possible

Just getting better word vectors is a fruitless cottage industry

Always tune baseline hyperparameters (and recognize what the
hyperparameters are)
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Other Languages are Harder

[fem] [masc]
she saw a brown fox

NN

X' ANNY VY DIn

NXINn AN TA anin

~

he saw a brown fence
[masc] [fem]
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Other Languages are Harder

N'annyol

and when from the house

%0
In shadow

gaal
onion
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Other Languages are Harder

190
book(N). barber(N). counted(V). telll(V). told(V).

nnin

brown (feminine, singular)
wall (noun)
her fever (possessed noun)
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Takeaway

= Word representations very important
= Future: continuous representations in more complicated models

= Future: document representations
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