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By the end of today ...

= You'll be able to frame many machine learning tasks as classification
problems

= Apply logistic regression (given weights) to classify data
= Learn naive bayes from data
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Probabilistic Classification

Given:

= A universe X our examples can come from (e.g., English documents
with a predefined vocabulary)
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o Examples are represented in this space.
= A fixed set of labels y € C = {¢y, ¢y, ..., cy}
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Probabilistic Classification

Given:
= A universe X our examples can come from (e.g., English documents
with a predefined vocabulary)
o Examples are represented in this space.
= A fixed set of labels y € C = {¢y, ¢y, ..., cy}
o The classes are human-defined for the needs of an application (e.g., spam
vs. ham).

= A training set D of labeled documents with each labeled document
{(X1 » Y1 ) (XN)yN)}

We learn a classifier y that maps documents to class probabilities:
r:(xy)—[0,1]

such that 3| 7(x,y) =1

Natural Language Processing: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 3/19



Generative vs. Discriminative Models

Generative

Model joint probability p(x, y)
including the data x.

Naive Bayes

= Uses Bayes rule to reverse
conditioning p(x|y) — p(y|x)

= Naive because it ignores joint
probabilities within the data
distribution

Discriminative

Model only conditional probability
p(y|x), excluding the data x.

Logistic regression

= |ogistic: A special mathematical
function it uses

= Regression: Combines a weight
vector with observations to create
an answer

= General cookbook for building
conditional probability distributions
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A Classification Problem

= Suppose that | have two coins, C; and C,

= Now suppose | pull a coin out of my pocket, flip it a bunch of times,
record the coin and outcomes, and repeat many times:

Cl: 01111

Cl: 110

cC2: 10000001
Cl: 01

Cl: 110111
C2: 001 101
cC2: 1000
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A Classification Problem

= Suppose that | have two coins, C; and C,

= Now suppose | pull a coin out of my pocket, flip it a bunch of times,
record the coin and outcomes, and repeat many times:

Cl: 01111

Cl: 1 10

C2: 10000001

Cl: 01

Cl: 110111

C2: 001101

C2: 1 000
= Now suppose | am given a new sequence, O 0 1; which coin is it
from?
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A Classification Problem

This problem has particular challenges:
= different numbers of covariates for each observation

= number of covariates can be large

However, there is some structure:

= Easy to get P(C;), P(Cy)

= Also easy to get P(X;=1|Cy) and P(X;=1]|C>)
= By conditional independence,

P(X=010|C;)=P(X; =0]Cy)P(Xo=1|Cy)P(X, =0|Cy)

= Can we use these to get P(C; | X =001)?
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Also easy to get P(X; =1|Cy) and P(X;=1|C5)
By conditional independence,

P(X=010|C;)=P(X; =0]Cy)P(Xo=1|Cy)P(X, =0|Cy)

Can we use these to get P(C; | X =001)?

Natural Language Processing: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 6/19



A Classification Problem

This problem has particular challenges:
= different numbers of covariates for each observation

= number of covariates can be large

However, there is some structure:

Easy to get P(C;)=4/7, P(C,)=3/7

Also easy to get P(X;=1|Cy)=12/16 and P(X;=1|C,)=6/18
By conditional independence,

P(X=010|C;)=P(X; =0]Cy)P(Xo=1|Cy)P(X, =0|Cy)

Can we use these to get P(C; | X =001)?
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A Classification Problem

Summary: have P(data| class), want P(class| data)

Solution: Bayes’ rule!

P(data| class)P(class)
P(data)
B P(data| class)P(class)
a 3 P(data| class)P(class)

class=1

P(class|data) =

To compute, we need to estimate P(data| class), P(class) for all classes

Natural Language Processing: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 7/19



Naive Bayes Classifier

This works because the coin flips are independent given the coin
parameter. What about this case:

= want to identify the type of fruit given a set of features: color, shape and
size

= color: red, green, yellow or orange (discrete)

= shape: round, oval or long+skinny (discrete)

= size: diameter in inches (continuous)
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Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily
independent:

Given category “apple,” the color “green” has a higher probability given
“size < 2"
P(green|size < 2, apple) > P(green| apple)
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Naive Bayes Classifier

Using chain rule,

P(apple| green, round, size = 2)
_ P(green, round, size = 2| apple) P(apple)
> s Plgreen, round, size = 2| fruit j) P(fruit )

o< P(green|round, size = 2, apple) P(round | size = 2, apple)

x P(size = 2| apple) P(apple)

But computing conditional probabilities is hard! There are many
combinations of (color, shape, size) for each fruit.
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Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

P(green|round, size = 2, apple) = P(green| apple)
P(round | green, size = 2, apple) = P(round| apple)
P(size = 2| green, round, apple) = P(size = 2| apple)
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How do we estimate a probability?

= Suppose we want to estimate P(w, = "buy”|y = SPAM).
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How do we estimate a probability?

= Suppose we want to estimate P(w, = "buy”|y = SPAM).

buy buy nigeria opportunity  viagra

nigeria  opportunity  viagra fly money
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= Maximum likelihood (ML) estimate of the probability is:

A n;

i = 1
B S (1)

Natural Language Processing: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 12/19



How do we estimate a probability?

= Suppose we want to estimate P(w, = "buy”|y = SPAM).

buy buy nigeria opportunity  viagra

nigeria  opportunity  viagra fly money
fly buy nigeria fly buy

money buy fly nigeria viagra

= Maximum likelihood (ML) estimate of the probability is:

A n;

i = 1
B S (1)

= |s this reasonable?
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The problem with maximum likelihood estimates: Zeros (cont)

= |f there were no occurrences of “bagel” in documents in class SPAM,
we’d get a zero estimate:

T SPAM, “bagel”

—0
Dwev T SPAM w

P( “bagel’| SPAM) =

= — We will get P( SPAM|d) = 0 for any document that contains bagel!
= Zero probabilities cannot be conditioned away.
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How do we estimate a probability?

= For many applications, we often have a prior notion of what our
probability distributions are going to look like (for example, non-zero,
sparse, uniform, etc.).

= This estimate of a probability distribution is called the maximum a
posteriori (MAP) estimate:

Bmap = argmaxg f(x|8)g(B) @)
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How do we estimate a probability?

= For a multinomial distribution (i.e. a discrete distribution, like over

words): i
i i

Bi=x ——
! Zk Nk + Qg
= @; is called a smoothing factor, a pseudocount, etc.
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How do we estimate a probability?

= For a multinomial distribution (i.e. a discrete distribution, like over

words): i
i i

ﬂi:zknk—i—ak

= @; is called a smoothing factor, a pseudocount, etc.

(3)

= When ¢; =1 for all /, it’s called “Laplace smoothing” and corresponds to
a uniform prior over all multinomial distributions (just do this).
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How do we estimate a probability?

= For a multinomial distribution (i.e. a discrete distribution, like over

words): i
i i

- Zk Nk + Qg
= @; is called a smoothing factor, a pseudocount, etc.

Bi 3)

= When ¢; =1 for all /, it’s called “Laplace smoothing” and corresponds to
a uniform prior over all multinomial distributions (just do this).

= To geek out, the set {ay,...,ay} parameterizes a Dirichlet distribution,
which is itself a distribution over distributions and is the conjugate prior
of the Multinomial (don’t need to know this).
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The Naive Bayes classifier

= The Naive Bayes classifier is a probabilistic classifier.

= We compute the probability of a document d being in a class ¢ as
follows:

P(cld) o< P(c) [ | P(wic)

1<i<ny
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The Naive Bayes classifier

= The Naive Bayes classifier is a probabilistic classifier.

= We compute the probability of a document d being in a class ¢ as
follows:

P(c|d) c< P(c l_[ P(w;c)

1<i<ng
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The Naive Bayes classifier

= The Naive Bayes classifier is a probabilistic classifier.

= We compute the probability of a document d being in a class ¢ as
follows:

P(cld) o< P(c) | | P(wilc)

1<i<ny

= ny is the length of the document. (number of tokens)

= P(w;|c) is the conditional probability of term w; occurring in a document
of class ¢

= P(w;|c) as a measure of how much evidence w; contributes that c is the
correct class.

= P(c) is the prior probability of c.

= [f a document’s terms do not provide clear evidence for one class vs.
another, we choose the ¢ with higher P(c).
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Maximum a posteriori class

= Qur goal is to find the “best” class.

= The best class in Naive Bayes classification is the most likely or
maximum a posteriori (MAP) class ¢ map :

Cmap :argrgeaé(P(cﬂd):argrg]jeaé( P(c;) I_[ P(wilc;)

1<i<ny

= We write P for P since these values are estimates from the training set.
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Naive Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, recall the Naive
Bayes conditional independence assumption:

P(dlc) = P((ws,...,wn)e) = | | POXi=wig)

1<i<ng

We assume that the probability of observing the conjunction of attributes is
equal to the product of the individual probabilities P(X; = wlc;).
Our estimates for these priors and conditional probabilities: P(c;) = NI

=~ Tow+1
and P(w|c) = ORI
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Implementation Detail: Taking the log

= Multiplying lots of small probabilities can result in floating point
underflow.

From last time Ig is logarithm base 2; In is logarithm base e.

lgx=a&e28=x Inx=aee?=x (4)

Since Ig(xy) =lg(x) +Ig(y), we can sum log probabilities instead of
multiplying probabilities.
Since Ig is a monotonic function, the class with the highest score does
not change.
So what we usually compute in practice is:

Cmap = argmax [P(c) l_[ P(wilc;)]

1<i<ny

argmax [InP(c;)+ Z In P(w;lc))]

1<i<ng
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