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Abstract

We present a technique that yields algorithms for computing (nearly) optimally reduced
lattice bases with respect to a wide class of basis quality measures. Namely, we get algorithms
for computing lattice bases with minimum orthogonality defect, bases with minimum Gram-
Schmidt decay, Babai-optimal bases, and bases with (1 + ε)-approximately minimum Seysen
condition number. These algorithms are all slight variations of the same technique, and all run
in polynomial time for lattices of fixed rank. To the best of our knowledge, these are the first
algorithms for any of these problems to beat the naive approach, which requires exponential
time in the bit length of the input.

The technique works by breaking a lattice into pieces according to large gaps in its successive
minima, enumerating bases for each of these pieces, and then lifting the bases for each piece to
a basis of the whole lattice. This technique may be of independent interest.

1 Introduction

A lattice L = L(B) = {
∑n

i=1 aibi : a1, . . . , an ∈ Z} of rank n is the set of integer combinations
of some linearly independent vectors b1, . . . , bn ∈ Rn which form the columns of the basis B =
(b1, . . . , bn) ∈ Rn×n. Lattices are well-studied mathematical objects [CS98], and in the last few
decades have found many applications within computer science including in integer programming
(e.g. [Len83, Kan87, Dad12]), coding theory (e.g. [LB14, CDL17]), and especially cryptography
(e.g. [Ajt96, AD97, GGH97, GPV08, Reg09, Gen09]).

Any given basis B of a lattice L is not unique, and a common goal is to compute a “reduced
basis” of L which satisfies useful properties such as having short and nearly orthogonal vectors. The
theory of basis reduction is intimately related to solving lattice problems both approximately and
exactly, and is therefore a major area of study. However, different notions of a “reduced” basis are
useful for solving different computational problems on lattices. These notions are either specified
in terms of a basis B meeting certain “local”, greedy conditions (such as the conditions for a basis
to be LLL-, HKZ-, or Minkowski-reduced), or in terms of (approximately) minimizing a “global”
basis quality function Q (such as the orthogonality defect or Gram-Schmidt decay of the basis).

The two most important computational problems on lattices are the Shortest Vector Problem
(SVP), which is to find a shortest non-zero lattice vector, and the Closest Vector Problem (CVP),
which is to find a closest lattice vector to an input target vector t. A number of algorithms for
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these problems work by finding reduced lattice bases. In terms of approximation algorithms, the
seminal LLL algorithm [LLL82] efficiently computes a basis which yields an approximate solution
to SVP. Such LLL-reduced bases can also be used to solve approximate CVP efficiently via Babai’s
nearest-plane algorithm [Bab86], and have many other applications. In terms of slower but exact
algorithms, Kannan’s algorithm for exact SVP and CVP [Kan87] relies on computing HKZ-reduced
bases [KZ73], which give a greedy way of formalizing of what it means to be a short lattice basis.

The focus of this paper is on giving algorithms for computing bases which are optimally reduced
with respect to various “global” basis quality functions. The global basis quality functions that we
consider are related to fundamental geometric quantities associated with a lattice, and appear in
a wide variety of applications from analyzing the security of cryptosystems to solving approximate
CVP efficiently to constructing low-distortion mappings between lattices. Algorithms that use
bases as preprocessing (such as Babai’s algorithm, discussed below) give particular motivation for
studying algorithms that compute such optimally reduced bases. Indeed, computing an optimally
reduced basis may be computationally expensive, but it can be used many times as preprocessing
after being computed once.

We next introduce and survey the functions that we will consider in this paper: the orthogonality
defect δ, the multiplicative Gram-Schmidt decay η (together with the closely related Babai basis
quality function QBabai), and the Seysen condition number S.

One general way of formalizing what it means for a basis B = (b1, . . . , bn) to be short and
orthogonal is according to its orthogonality defect, defined as

δ(B) :=
n∏
i=1

‖bi‖/‖b̃i‖, (1)

where b̃i is the ith Gram-Schmidt vector of B (i.e., b̃i is the projection of bi onto the orthogonal
complement of span(b1, . . . , bi−1)). It holds that δ(B) ≥ 1 with equality if and only if the vectors
in B are pairwise orthogonal; this is known as Hadamard’s inequality.

The orthogonality defect is a widely-used measure of the quality of lattice bases, and cap-
tures the quality of standard notions of reduced bases. It holds that LLL-reduced bases B have
δ(B) ≤ 2n(n−1)/4 (see, e.g., [Vaz01]), and that HKZ-reduced bases B have δ(B) ≤ nn and are within
a nn/2 factor of optimal (see [LLS90, MG02]). Furthermore, Minkowski-reduced bases (another
greedy way of formalizing short lattice bases) have orthogonality defect at most 2O(n2) [vdWG68],
a characterization which is crucial to Helfrich’s algorithm for computing them [Hel85]. The or-
thogonality defect also appears directly in applications. For example, the original security analysis
of the well-known GGH encryption and signature schemes [GGH97] depends on the difficulty of
computing a basis with low orthogonality defect.

Another key basis quality function is the multiplicative Gram-Schmidt decay

η(B) := max
1≤i≤j≤n

‖b̃i‖/‖b̃j‖ (2)

of a basis B, which is closely related to Babai’s nearest-plane algorithm [Bab86]. The core of Babai’s
algorithm is an algorithm for solving γ-approximate Closest Vector Problem with Preprocessing (γ-
CVPP), where the preprocessing is a basis B.1 The approximation factor γ guaranteed by Babai’s

1Babai’s algorithm is often presented as a polynomial time algorithm for solving approximate CVP. This inter-
pretation comes from first computing an LLL-reduced basis B, and then using B as the preprocessing for the core
CVPP algorithm.
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algorithm depends on B, and so a natural objective is to compute a basis B which yields the smallest
possible value of γ. Babai’s analysis of his algorithm shows that the value of γ is upper bounded by
a function QBabai(B) of the Gram-Schmidt vectors of B with η(B) ≤ QBabai(B) ≤

√
n+ 1 · η(B),

and as such η(B) is a strong proxy for how well B works as preprocessing.
Standard notions of basis reduction, such as those with low orthogonality defect, focus on

ensuring that the vectors in a basis B are relatively short, but make no explicit guarantees about
the lengths of vectors in the dual basis B∗ := (B−1)T of B. Some applications require short primal
bases B, some require short dual bases B∗, and some require B to be well-conditioned so that B
and B∗ both have short vectors simultaneously. To study the question of finding well-conditioned
lattice bases, Seysen [Sey93] defined the matrix condition number

S(B) := max
i∈[n]

‖bi‖‖b∗i ‖ . (3)

By the Cauchy-Schwarz inequality, ‖bi‖‖b∗i ‖ ≥ |〈bi, b∗i 〉| = 1 for primal-dual basis vector pairs
bi, b

∗
i , so S(B) is a measure of how tight the Cauchy-Schwarz inequality is for such pairs.
Seysen showed how to compute a basis B for every lattice L of rank n so that S(B) ≤ nO(logn).

This improved on a result of H̊astad and Lagarias [HL90], who initiated the study of computing
well-conditioned lattice bases and gave an upper bound of exp(O(n1/3)) on a slightly different
condition number which in turn is upper bounded by S(B). There have been a number of follow-
up papers to Seysen’s work ([Sey99, ZAM08, Maz10]), and it has appeared frequently in the coding
theory literature (e.g., [SMH07, ZMS10, YH15]). In another recent application of Seyesn’s work,
Bennett, Dadush, and Stephens-Davidowitz [BDS16] showed how to use well-conditioned bases to
construct low-distortion mappings between lattices.

Generalized basis reduction
We next define a general notion of basis quality function, and the associated computational problem
of finding a basis which minimizes it. This notion captures the orthogonality defect, the Gram-
Schmidt decay, and the Seysen condition number described above.

Definition 1.1. A basis quality function is a mapping Q : ∪∞n=1GLn(R) → R+ from full-rank
lattice bases to the positive reals.

For a basis quality function Q, let Q(L) := inf Q(B), where the infimum is taken over all bases
B of L, and let Q(n) := supQ(L), where the supremum is taken over all lattices of rank at most n.
Call a basis B of L which achieves Q(B) = Q(L) optimal with respect to Q. We will study basis
quality functions Q for which Q(n) is bounded.

The search version of the associated computational problem is then as follows.

Definition 1.2 (Basis Reduction Problem). The γ-approximate Basis Reduction Problem with
respect to a basis quality function Q is the search problem defined as follows. Given a basis B as
input, find a basis B′ of L(B) such that Q(B′) ≤ γ ·Q(L(B)).

In the case where γ = 1, we simply refer to the problem as the Basis Reduction Problem with
respect to Q.
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1.1 Summary of results

The main contribution of this paper is to present a general technique for computing bases which
solve the Basis Reduction Problem with respect to any basis quality function Q which meets
certain conditions. We use this technique to obtain exact algorithms for computing optimal bases
with respect to the orthogonality defect δ and the Gram-Schmidt decay η, as well as the closely
related Babai basis quality function QBabai. We also use this technique to obtain an algorithm for
computing (1 + ε)-approximately optimal bases with respect to the Seysen condition number S.

To the best of our knowledge, this paper is the first work which considers (nearly) exact algo-
rithms for any of these problems. We summarize these results below.

Theorem 1.3 (Orthogonality defect minimization algorithm). There exists an algorithm which,
on input a basis B of a lattice L of rank n, outputs a basis B′ of L which satisfies δ(B′) = δ(L),
and which runs in δ(n)O(n3) ≤ nO(n4) time and polynomial space.

Theorem 1.4 (Gram-Schmidt decay minimization algorithm). There exists an algorithm which,
on input a basis B of a lattice L of rank n, outputs a basis B′ of L which satisfies η(B′) = η(L),
and which runs in (η(n) +

√
n)O(n3) ≤ nO(n3 logn) time and polynomial space.

Theorem 1.4 also holds when η is replaced by the closely related Babai basis quality function
QBabai (see Section 5.2).

Theorem 1.5 (Seysen condition number minimization approximation scheme). There exists an
algorithm which, on input a basis B of a lattice L of rank n and a number ε ∈ (0, 1), outputs a basis
B′ of L which satisfies S(B′) ≤ (1 + ε) ·S(L), and which runs in (n ·S(n)/ε)O(n3) ≤ (n/ε)O(n3 logn)

time and polynomial space.

While the dependence on n in the runtimes of these algorithms is high, the algorithms all run
in polynomial time on lattices of fixed rank n. Indeed, achieving this is a key goal in designing
lattice algorithms, and in particular it is important to avoid dependence on the ratio λn(L)/λ1(L)
of the largest and smallest successive minima of L in the runtime. In other words, our main goal
in this paper is to design fixed-parameter tractable algorithms, where the parameter is the rank n
of the lattice. All of our algorithms achieve this, and are also space efficient.

We also emphasize our technique of “breaking a lattice into pieces according to gaps in its
successive minima” as a primary conceptual contribution. As this paper shows, this technique
works for solving a number of different basis reduction problems, and it may be of independent
interest. Indeed, other techniques for breaking a lattice into pieces according to its geometry have
been applied very successfully (see the discussion in Section 1.3).

1.2 Techniques

We give an outline of the ideas used in our algorithm while deferring definitions and formal state-
ments. Let λ1(L), . . . , λn(L) denote the successive minima of a lattice L of rank n (also setting
λmax = λn), and let v1, . . . ,vn ∈ L denote linearly independent vectors which achieve the suc-
cessive minima of L (i.e. satisfy ‖vi‖ = λi(L)). Let Vk := span(v1, . . . ,vk) and let πk(x) denote
the projection of x ∈ Rn onto V ⊥k . Let ‖x‖ denote the Euclidean norm of a vector x, and let
‖B‖ := maxi∈[n]‖bi‖ denote the maximum norm of a column of a matrix B = (b1, . . . , bn).

Let B be a basis of a lattice L of rank n. The first step behind our algorithm for solving the
Basis Reduction Problem with respect to a basis quality function Q is to prove a characterization
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Figure 1: A visual depiction of Theorem 3.4 and Algorithm 1 for a hypothetical basis quality
function Q. A lattice L of rank n = 2 with ‖vk+1‖/‖vk‖ = λk+1/λk > g(2) for k = 1 (left), together
with L1 := L ∩ Vk (center), and L2 := πk(L) (right). Theorem 3.4, Condition 1 asserts that an
optimal basis of B of L is contained in Bn2 (0, r(Q(n)) · λmax(L)) (the Euclidean ball centered at
the origin with radius r(Q(n)) · λmax(L)), but this ball (shown in red) contains many extraneous
vectors of L as well. Theorem 3.4 further asserts that B has blocks B1 (a basis of L1) contained in
L1∩Bn2 (0, r(Q(n)) ·λmax(L1)) and B2 (a basis of L2) contained in L2∩B(0, r(Q(n)) ·λmax(πk(L))),
each of which contains far fewer extraneous vectors.

which says that if Q(B) ≤ t for some t ≥ 0 then ‖B‖ ≤ r(t) ·λn(L) for some function rn(t). Suppose
that such a characterization holds (which it does for all of the functions Q that we consider), and
that Q(n) is bounded (i.e., an optimal basis B with respect to Q always has Q(B) bounded by a
function of n). Then we can compute an optimal basis B with respect to Q by enumerating all
sequences of vectors b1, . . . , bn ∈ L such that ‖bi‖ ≤ r(Q(n)) ·λn(L) for each i ∈ [n], and outputting
the sequence B := (b1, . . . , bn) for which Q(B) is minimal among all such sequences which are bases
of L.

There is an algorithm which enumerates all lattice vectors in a Euclidean ball of radius t·λ1(L) in
(t·n)O(n) time. Using this algorithm, enumerating all lattice vectors in a ball of radius r(Q(n))·λn(L)
takes (n · r(Q(n)) · λn(L)/λ1(L))O(n) time, and enumerating all sequences of n such vectors takes
(n · r(Q(n)) · λn(L)/λ1(L))O(n2) time. Unfortunately, the ratio λn(L)/λ1(L) may be unbounded as
a function of n, and therefore exponential in the bit length of the input even for lattices of fixed
rank. Therefore this algorithm does not achieve our goal of being fixed-rank tractable.

If L = L1⊕L2 then for many basis quality measures Q we can build an optimal basis by finding
separate, orthogonal bases B1 for L1 and B2 for L2, and concatenating B1 and B2 to form a basis
of B. The key idea for handling the problem of unbounded λn(L)/λ1(L) is to “break L into nearly
orthogonal pieces” according to large multiplicative gaps in its successive minima. More precisely,
the idea is that when λk+1(L)/λk(L) is large for some k ∈ [n− 1], and if a basis quality function Q
meets some conditions, then we can find bases B1, B2 for L1 := L ∩ Vk,L2 := πk(L) respectively,
and use them as blocks in a basis B of L. Intuitively, “L ≈ (L∩ Vk)⊕ πk(L)” when there is such a
gap. See Figure 1 for a visual summary of this technique.

Our algorithm starts by computing the indices 1 ≤ k1 < · · · < km−1 < n which correspond
to large gaps in the successive minima, i.e., indices ki such that λki+1(L)/λki(L) > g(n) for some
threshold g(n). Then for i = 1, . . . ,m, it enumerates bases Bi with low Q(Bi) using the basis
enumeration technique described above for each “lattice piece” Li := πki−1

(L) ∩ Vki (where k0 = 0
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Figure 2: An example of a block projection B1, . . . , Bm for an upper triangular matrix B.

and km = n). Finally, the algorithm lifts these blocks B1, . . . , Bm to an optimal basis B of the
original lattice L. (These blocks form a block projection of B. See Figure 2 and Definition 3.1.) The
key advantage of this block enumeration approach is that, unlike for L, the ratios λmax(Li)/λ1(Li)
are bounded by a function of n.

The full formalization of this technique appears in Section 3. This algorithm is presented as
Algorithm 1, and the technical conditions for this approach to work appear in the paper’s main
theorem, Theorem 3.4. In addition to an upper bound on ‖B‖ for an optimal basis B, Theorem 3.4
requires three further conditions which are roughly as follows: (1) that an optimal basis is such
that spans of its basis blocks and spans of vectors achieving its successive minima “agree” (i.e.
span(b1, . . . , bki) = Vki for all i ∈ [m]), (2) that the quality Q(B) of a basis B is lower bounded
by the quality Q(Bi) of each of its blocks Bi, and (3) that there is a relatively efficient way to lift
blocks B1, . . . , Bm of an optimal basis to an optimal basis.

1.3 Related work

At a high level, our algorithm works by enumerating blocks for a basis, and then building a basis
out of these blocks. Both of these techniques appear in the basis reduction literature. However,
most other algorithms use blocks which are all of the same size, and do not depend on the geometry
of the lattice. Our blocks may be of different size, and the way we pick how to form blocks crucially
depends on the geometry of the lattice.

The classic enumeration-based algorithms of Kannan [Kan87] for computing HKZ-reduced bases
and Helfrich [Hel85] for computing Minkowski-reduced bases work by “repeatedly enumerating the
next Gram-Schmidt vector” of a basis. Our algorithm extends this idea by enumerating not just
Gram-Schmidt vectors, but potentially larger basis blocks. It then uses these blocks to build a basis
of the whole lattice. A number of other basis reduction techniques such as block Korkine-Zolotareff-
reduction (BKZ-reduction) [Sch87] and slide-reduction [GN08] similarly work by computing well-
reduced blocks and then using them to build a basis of the whole lattice. Helfrich’s algorithm is the
most similar to ours of any previous algorithm in that it uses repeated enumeration and lifting. It
also runs in 2O(n3)-time, which is comparable to the running time of our algorithms, showing that
hard basis reduction problems may require high runtimes.

The key technique in this paper is to “break a lattice into pieces according to large gaps in its
successive minima,” which seems natural and should have further applications. Similar ideas have
appeared in other work. In particular, an algorithm by Haviv and Regev [HR14] for determining
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whether two lattices are isomorphic inspired our algorithm. Their algorithm works by splitting
each lattice L into the sublattice L∩ Vk and the projected lattice πk(L) whenever there is any gap
in the successive minima (λk+1(L) > λk(L)); our algorithm only does so when there is a large gap
(λk+1(L)� λk(L)).

Another way to break a lattice into pieces is related to lattice stability. A lattice L is called
stable if det(L) = 1 and det(L′) ≥ 1 for all sublattices L′ ⊆ L. The technique in this paper is
analogous to the technique of “decomposing a lattice into stable lattices” which has been applied in
a number of works, including with great success by Regev and Stephens-Davidowitz in their recent
proof of a reverse Minkowski theorem [RS17]. Namely, this technique decomposes a lattice L by
defining a chain of sublattices {0} = L0 ⊂ L1 ⊂ · · · ⊂ Lm = L of L called the canonical filtration
of L so that the quotient lattices Li/Li−1 (defined as the projection of Li onto span(Li−1)⊥) are
scalings of stable lattices. In Section 7.1 we discuss the relationship between gaps in the successive
minima and lattice stability.

The literature about lattice basis reduction is vast. A good survey of the aspects discussed in
this paper is Chapter 7 in the book by Micciancio and Goldwasser [MG02]. This chapter discusses
the problem of minimizing a number of basis quality functions including the orthogonality defect
δ (which they call the Quasi-Orthogonal Basis Problem), σ(B) := (

∑n
i=1‖b̃i‖

2)1/2 (the Shortest
Diagonal Problem), and M(B) := maxi∈[n]‖bi‖ (the Shortest Basis Problem). It also mentions
LLL-reduction, HKZ-reduction, Minkowski-reduction, and various relationships between all of these
notions of reduction and other lattice problems. It notably does not discuss the Gram-Schmidt
decay of a basis. We do not consider the problems of computing bases which minimize σ or M ,
and note that they are qualitatively different from the basis quality functions that we do consider
in that σ(n) and M(n) are unbounded. Nevertheless, it is likely that techniques similar to ours
would yield algorithms for these problems.

Schnorr [Sch87] also introduced the quantities αn := max‖b1‖/‖b̃n‖ and
βn := max(

∏n
i=1 ‖b̃i‖/

∏2n
i=n+1‖b̃i‖)1/n, where the maxima are taken over all HKZ-reduced bases

B of rank n and HKZ-reduced bases B′ of rank 2n, respectively. Without the “max” over HKZ-
reduced bases, α(B) := ‖b1‖/‖b̃n‖ and β(B) := (

∏n
i=1 ‖b̃i‖/

∏2n
i=n+1‖b̃i‖)1/n are basis quality

functions which are related to the Gram-Schmidt decay of the basis. In particular, η(B) ≥ α(B)
for every basis B. (Ajtai [Ajt08] proved a lower bound on α which therefore implies a lower bound
on η; see Section 7.2.3.)

1.4 Paper organization

In Section 2 we give relevant definitions and present relevant background material about linear
algebra and lattices. In Section 3 we present the main (meta) algorithm and theorems about its
correctness and runtime. In the following three sections we show how to instantiate the meta
algorithm in Section 3 to give algorithms for computing (nearly) optimal bases with respect to four
basis quality functions of interest: the orthogonality defect δ in Section 4, the Gram-Schmidt decay
η and the closely related Babai basis quality function QBabai in Section 5, and the Seysen condition
number S in Section 6. In Section 7 we give motivating discussion and examples. Namely, we
compare notions of basis reduction and also compare our main technique of “splitting a lattice
according to large gaps in its successive minima” to the notion of lattice stability.
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1.5 Open questions

A clear open problem is to get more efficient algorithms for any of the basis reduction problems
considered in this paper. The main focus of our paper was to give algorithms which run in polyno-
mial time for lattices of fixed rank n. However, the dependence on n (roughly (Q(n))O(n3) in each
case) is almost undoubtedly suboptimal. One could try to improve the runtime of our algorithms
by improving our enumeration scheme, or by finding another general technique for basis reduction.
A strength of our technique is that it works for a number of different basis quality functions, but
analyzing each quality function Q separately may yield faster algorithms.

In addition to algorithms, it would also be interesting to study the complexity of the basis
reduction problems presented in this paper. There are natural decision versions of all of these
problems (given a basis B and a quality threshold t ≥ 0 as input, decide whether Q(L(B)) ≤ t),
and proving NP-hardness for any of them would be interesting. To the best of our knowledge, this
is open even for the exact versions of these problems.

An important structural problem is to improve the lower and upper bounds on Q(n) for any of
the basis quality functions Q presented in this paper (see Theorem 2.10). It is of particular interest
whether η(n) = poly(n) (and hence QBabai(n) = poly(n)), since that would imply that Babai’s
nearest-plane algorithm solves instances of γ-CVPP on lattices of rank n with γ = γ(n) = poly(n)
given the right basis as preprocessing. Dadush et al. [DRS14] state this as an open question of
interest. (The present paper arguably makes progress towards this goal by showing how to compute
a Babai-optimal basis for any given lattice, but doesn’t improve the bound on its guaranteed
quality.)

Finally, an important conceptual direction is to study applications of our technique of “breaking
a lattice into pieces according to gaps in its successive minima.” Hopefully this technique and other
notions of “breaking a lattice into pieces of different scale,” such as those related to lattice stability,
have applications to problems besides basis reduction.

1.6 Acknowledgements

I thank Daniel Dadush and Noah Stephens-Davidowitz for many insightful comments about this
paper.

2 Preliminaries

2.1 Linear algebra

The Euclidean norm of a vector x ∈ Rn is ‖x‖ :=
(∑n

i=1 x
2
i

)1/2
. For a matrix B = (b1, . . . , bn),

let ‖B‖ := maxi∈[n]‖bi‖. For r > 0 and t ∈ Rn, let Bn2 (t, r) := {x ∈ Rn : ‖x− t‖ ≤ r} denote
the closed Euclidean n-dimensional ball of radius r centered at t. Let GLn(R) denote the set of
invertible n× n matrices.

Let πS(x) denote the projection of a vector x onto a linear subspace S. Given a full-rank

matrix B = (b1, . . . , bn) and 1 ≤ k ≤ n, let π
(B)
k (x) denote projection of x onto the orthogonal

complement of span(b1, . . . , bk). I.e., π
(B)
k (x) := πspan(b1,...,bk)⊥(x). Let π

(B)
0 denote the identity

mapping.

8



Let b1, . . . , bn be linearly independent vectors. We define their Gram-Schmidt orthogonalization
(or Gram-Schmidt vectors) b̃1, . . . , b̃n as

b̃1 := b1 ,

b̃i := bi −
i−1∑
j=1

µi,j b̃j for i ≤ 2 ≤ n ,

where µi,j := 〈bi, b̃j〉/〈b̃j , b̃j〉. I.e. for all i ∈ [n], b̃i := π
(B)
i−1(bi), where B = (b1, . . . , bn).

A useful way to organize the information in the Gram-Schmidt orthogonalization is in terms of
the QR-decomposition of a matrix. The QR-decomposition decomposes a matrix B ∈ GLn(R) into
B = QR, where Q = (q1, . . . , qn) is an orthogonal matrix with qi := b̃i/‖b̃i‖ and R is an upper
triangular matrix with Ri,i = ‖b̃i‖ and Ri,j = µj,i for i < j. (An orthogonal matrix O ∈ GLn(R) is
a matrix such that OTO = In, where In is the n× n identity matrix.)

2.2 Lattice definitions and facts

A matrix U ∈ Zn×n is unimodular if det(U) = ±1. Two bases B,B′ ∈ GLn(R) generate the
same lattice (satisfy L(B) = L(B′)) if and only if B′ = BU for some unimodular matrix U . The
determinant of a lattice L is defined as det(L) := |det(B)| for some basis B of L. Because all bases
of L are equivalent up to right multiplication by unimodular matrices, det(L) is well-defined. The
rank of a lattice is the column rank of a basis that generates it. A lattice L′ is called a sublattice
of L if L′ ⊆ L.

Given a lattice L of rank n, for 1 ≤ i ≤ n define the ith successive minimum of L as

λi(L) := min{r > 0 : dim(span(L ∩ B(0, r))) ≥ i} .

In other words λ1(L) is the length of a shortest non-zero vector v1 ∈ L, λ2(L) is the length of a
shortest vector v2 ∈ L which is linearly independent of v1, and so on. For convenience, we also
define λ0(L) := 0, and we will sometimes write λmax(L) to denote λn(L), where n is the rank of L.
Let vectors that achieve the successive minima of a lattice L of rank n denote linearly independent
vectors v1, . . . ,vn ∈ L such that for all i ∈ [n], ‖vi‖ = λi(L). When the underlying lattice is clear
from context, we will use Vk to denote span(v1, . . . ,vk) and πk to denote projection onto V ⊥k .

Minkowski’s Second Theorem relates the successive minima of a lattice to its determinant. See,
e.g., [MG02].

Theorem 2.1 (Minkowski’s Second Theorem). Given a lattice L of rank n,
∏n
i=1 λi(L) ≤ nn/2 ·

det(L).

Let dist(t,L) := minx∈L‖x − t‖ denote the distance of a vector t to a lattice L. The covering
radius of a lattice µ(L) := maxx∈span(L) dist(x,L) denotes the distance of the farthest point x ∈
span(L) from L. The following well-known bound relates the covering radius and successive minima
of a lattice. See, e.g., [MG02].

Theorem 2.2. For every lattice L of rank n, µ(L) ≤
√
n

2 · λn(L).

Every lattice L has an associated dual lattice L∗ defined as

L∗ := {x ∈ span(L) : ∀y ∈ L, 〈x,y〉 ∈ Z} .
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Given a basis B = (b1, . . . , bn), we define the dual basis of B as B∗ := (B−1)T = (b∗1, . . . , b
∗
n). It

holds that if B is a basis of L, then the dual basis B∗ of B generates the dual lattice L∗ of L.
So-called transference theorems relate the parameters of a lattice to the parameters of its dual

lattice. In seminal work, Banaszczyk [Ban93] proved the following relationship between the succes-
sive minima of a lattice and its dual.

Theorem 2.3 (Banaszczyk’s transference theorem [Ban93]). For any lattice L of rank n and any
1 ≤ k ≤ n,

1 ≤ λk(L)λn−k+1(L∗) ≤ n .

Lastly, we define the important notion of a size-reduced basis.

Definition 2.4. Call a basis B = (b1, . . . , bn) with Gram-Schmidt vectors b̃1, . . . , b̃n size-reduced
if |µi,j | ≤ 1

2 for all 1 ≤ j < i ≤ n, where µi,j := 〈bi, b̃j〉/〈b̃j , b̃j〉.

Any basis B can be efficiently “size-reduced,” i.e. converted to a size-reduced basis B′ of the
same lattice which has the same Gram-Schmidt vectors.

2.3 Lattice problems

The two most important computational problems on lattices are the Shortest Vector Problem (SVP)
and the Closest Vector Problem (CVP).

Definition 2.5. For γ ≥ 1, the γ-approximate Shortest Vector Problem (γ-SVP) is the search
problem defined as follows. Given a basis B of a lattice L as input, output a non-zero vector
x ∈ L \ {0} such that ‖x‖ ≤ γ · λ1(L).

Definition 2.6. For γ ≥ 1, the γ-approximate Closest Vector Problem (γ-CVP) is the search
problem defined as follows. Given a basis B of a lattice L and a vector t as input, output a vector
x ∈ L such that ‖x− t‖ ≤ γ · dist(t,L).

We also define a variant of CVP which uses preprocessing. This is the variant of CVP which
Babai’s algorithm solves.

Definition 2.7. For γ ≥ 1, the γ-approximate Closest Vector Problem with Preprocessing (γ-
CVPP) is the problem of finding a preprocessing function P and an algorithm A which work as
follows. Given a basis B of a lattice L as input, P outputs a new representation of L. Given P (L)
and a vector t as input, A computes a vector x ∈ L such that ‖x− t‖ ≤ γ · dist(t,L).

The Successive Minima Problem (SMP) is the problem of finding vectors which achieve the
successive minima of a lattice. It is a natural generalization of SVP.

Definition 2.8. For γ ≥ 1, the γ-approximate Successive Minima Problem (γ-SMP) is the search
problem defined as follows. Given a basis B of a lattice L of rank n as input, output linearly
independent vectors v1, . . . ,vn ∈ L such that for all i ∈ [n], ‖vi‖ ≤ γ · λi(L).

In the case where γ = 1, we simply refer to the above problems as SVP, CVP, CVPP, and SMP,
respectively.
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2.3.1 Basis quality functions of interest

This paper gives algorithms for finding optimal bases with respect to four specific basis quality
functions. These algorithms serve as examples of its main technique. We define these basis quality
functions below.

Definition 2.9. Let B = (b1, . . . , bn) be a lattice basis, let b̃1, . . . , b̃n be its Gram-Schmidt orthog-
onalization, and let B∗ = (b∗1, . . . , b

∗
n) be its dual basis. We define four basis quality functions of

interest as follows:

1. The orthogonality defect δ(B) :=
∏n
i=1‖bi‖/‖b̃i‖ = (

∏n
i=1‖bi‖)/det(L).

2. The multiplicative Gram-Schmidt decay η(B) := max1≤i≤j≤n‖b̃i‖/‖b̃j‖.

3. The Babai basis quality function

QBabai(B) :=
(

1 + max
i∈[n]

∑i
j=1‖b̃j‖

2

‖b̃i‖2
)1/2

. (4)

4. The Seysen condition number S(B) := maxi∈[n]‖bi‖‖b∗i ‖.

We next give the best known upper bound on Q(n) for each Q ∈ {δ, η,QBabai, S} defined above.

Theorem 2.10. The following bounds hold:

1. δ(n) ≤ nn ([LLS90]).

2. η(n) ≤ nO(logn) ([LLS90]).

3. QBabai(n) ≤ nO(logn) (since QBabai(B) ≤ O(
√
n) · η(B) for bases B of rank n).

4. S(n) ≤ nO(logn) ([Sey93]).

The upper bounds in Theorem 1.1 appear in the runtimes stated in the theorems in Section 1.1.
All of these upper bounds use HKZ-bases (modified HKZ-bases in the case of S(n)), but nevertheless
HKZ-bases are not always optimal (see Section 7.2.2). As mentioned in Section 1.5, improving the
upper bounds (and finding matching lower bounds) for each of the above basis quality functions is
an interesting open problem.

2.4 Enumeration of short lattice vectors

The following theorem, which gives a low-space algorithm for enumerating short vectors in a lattice,
is a straightforward corollary of Kannan’s Algorithm [Kan87]. See, e.g., [HR14, Corollary 2.16].

Theorem 2.11. There exists an algorithm which, on input a basis B of a lattice L of rank n and
t ≥ 1, enumerates all vectors x ∈ L such that ‖x‖ ≤ t · λ1(L) using (t · n)O(n) time and polynomial
space.
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Corollary 2.12. There exists an algorithm which, on input a basis B of a lattice L of rank n and
t ≥ 1, enumerates all bases B′ of L such that ‖B′‖ ≤ t ·λ1(L) using (t ·n)O(n2) time and polynomial
space.

Proof. The algorithm works as follows. Enumerate all sequences of vectors b′1, . . . , b
′
n ∈ L with

‖b′i‖ ≤ t · λ1(L) for each i ∈ [n] in (t · n)O(n2) time using Theorem 2.11. For each such B′ :=
(b′1, . . . , b

′
n), check whether B′ is a basis of L (this can be done efficiently by checking whether

B−1B′ is unimodular), and if so output it.

Minimizing some basis quality measures depends on a basis having short Gram-Schmidt vectors.
It will therefore be useful to enumerate bases with short Gram-Schmidt vectors. However, in general
infinitely many bases of the same lattice have the same Gram-Schmidt vectors, so it is impossible
to enumerate all bases with Gram-Schmidt vectors shorter than a give length.

On the other hand, if we define equivalence classes of bases, where two bases are equivalent
if and only if they generate the same lattice and have the same Gram-Schmidt vectors, then we
can enumerate a representative from each equivalence class of bases with all Gram-Schmidt vectors
shorter than a given length. For basis quality measures which only depend on the Gram-Schmidt
vectors, such as the Gram-Schmidt decay η, this will allow us to enumerate an optimal basis.

Definition 2.13. Call two bases B = (b1, . . . , bn) and B′ = (b′1, . . . , b
′
n) Gram-Schmidt equivalent

if L(B) = L(B′) and ∀i ∈ [n], b̃i = b̃
′
i.

Lemma 2.14. For every basis B of a lattice of rank n there exists a basis B′ which is Gram-Schmidt
equivalent to B and which satisfies ‖B′‖ ≤

√
n ·maxi∈[n]‖b̃i‖.

Proof. LetB′ denoteB after being size-reduced. Then b̃
′
i = b̃i and ‖b′i‖ ≤ (‖b̃i‖2+1

4

∑i−1
j=1‖b̃j‖

2)1/2 ≤√
i · ‖b̃i‖ for all i ∈ [n]. It follows that ‖B′‖ ≤

√
n ·maxi∈[n]‖b̃i‖.

Combining Lemma 2.14 with Corollary 2.12 will allow us to enumerate (up to Gram-Schmidt
equivalence) all bases B of a lattice with maxi∈[n]‖b̃i‖ less than a given length t.

2.5 Properties of successive minima

A lattice subspace of a lattice L is a linear subspace spanned by vectors of L. The following fact
says that if S is a lattice subspace then the intersection of S with L and the projection of L onto
S⊥ are also lattices. See, e.g., [Dad12, Lemma 2.4.1].

Fact 2.15. Let L be a lattice, and let S be a lattice subspace of L. Then L ∩ S and πS⊥(L) are
lattices.

In particular, Fact 2.15 asserts that L ∩ Vk and πk(L) = πV ⊥k
(L) are lattices, where Vk =

span(v1, . . . ,vk) is the span of vectors achieving the first k successive minima of L. The next fact
relates a basis B whose first k vectors have the same span as a lattice subspace S to bases of L∩S
and πS⊥(L).

Fact 2.16. Let B = (b1, . . . , bn) be a basis of a lattice L, and assume that B satisfies span(b1, . . . , bk) =
S for some lattice subspace S of L. Then (b1, . . . , bk) is a basis of L∩S, and (πS⊥(bk+1), . . . , πS⊥(bn))
is a basis of πS⊥(L).
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We next relate the successive minima of a lattice to the successive minima of L∩Vk and πk(L).
These relationships are folklore.

Lemma 2.17. Let L be a lattice of rank n ≥ 2, and let k ∈ {0, . . . , n− 1}. Then:

1. If k ≥ 1 then for every j ∈ [k], λj(L ∩ Vk) = λj(L).

2. For every j ∈ [n− k],

λk+j(L)−
√
k

2
· λk(L) ≤ λj(πk(L)) ≤ λk+j(L) . (5)

Proof. The statements are clear when k = 0 (recalling that we defined π0 to be the identity map
and defined λ0 = 0), so assume that k ≥ 1. Let v1, . . . ,vn be vectors achieving the successive
minima of L.

For every j ∈ [k], we have that v1, . . . ,vj ∈ L ∩ Vk so λj(L ∩ Vk) ≤ λj(L). On the other hand,
L ∩ Vk ⊆ L, so λj(L ∩ Vk) ≥ λj(L). This proves item 1.

We have that πk(vk+1), . . . , πk(vk+j) ∈ πk(L) are linearly independent by the linear indepen-
dence of v1, . . . ,vn. Therefore λj(πk(L)) ≤ max`∈[j]‖πk(vk+`)‖ ≤ λk+j(L), proving the upper
bound in item 2.

Let u1, . . . ,un−k ∈ πk(L) be vectors achieving the successive minima of πk(L), and let j ∈
[n − k]. By the triangle inequality and the definition of the covering radius, there exist liftings
x1, . . . ,xj ∈ L of u1, . . . ,uj such that πk(x`) = u`, and ‖x`‖ ≤ ‖u`‖ + µ(L ∩ Vk) for every
` ∈ [j]. By the linear independence of v1, . . . ,vk,u1, . . . ,un−k, we therefore have that λk+j(L) ≤
max`∈[j]‖x`‖ ≤ max`∈[j]‖u`‖+µ(L∩ Vk) = λj(πk(L)) +µ(L∩ Vk). Finally, using Theorem 2.2 and

item 1, µ(L ∩ Vk) ≤
√
k

2 λk(L ∩ Vk) =
√
k

2 λk(L). We then have λk+j(L) ≤ λj(πk(L)) +
√
k

2 λk(L).

Subtracting
√
k

2 λk(L) from both sides proves the lower bound in item 2.

3 Main algorithm

A key definition for our approach is a block projection, which we define as follows.

Definition 3.1. Let B = (b1, . . . , bn) ∈ Rn×n be a full-rank matrix. A sequence of matrices
B1, . . . , Bm is a block projection of B if there exist 0 = k0 < k1 < · · · < km = n such that for all

i ∈ [m], Bi = (π
(B)
k(i−1)

(bk(i−1)+1), . . . , π
(B)
k(i−1)

(bki)).

A block projection of an upper triangular matrix B corresponds to a block diagonal matrix
obtained by selecting disjoint blocks centered on the main diagonal of B (see Figure 2). In general
there are many different block decompositions of the same matrix (corresponding to the number
of blocks m and indices k1, . . . , km−1), and many bases of the same lattice share a given block
decomposition. The Gram-Schmidt vectors b̃1, . . . , b̃n of a basis B represent the important special
case of a block projection where m = n and ki = i for i ∈ [n].

We will use the following equivalence between the subspaces spanned by vectors achieving the
successive minima of a lattice (with a sufficiently large gap in its successive minima), and vectors
achieving the successive minima of a projection of the lattice.
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Lemma 3.2. Let L be a lattice of rank n, and let k = n or let 1 < k < n and be such that
λk+1(L)/λk(L) >

√
k/2 + 1. Then for every 1 ≤ i < k, span(ṽi+1, . . . , ṽk) = span(u1, . . . ,uk−i),

where ṽ1, . . . , ṽn is the Gram-Schmidt orthogonalization of vectors achieving the successive minima
of L, and u1, . . . ,uk−1 are vectors achieving the successive minima of πi(L).

Proof. The case when k = n is clear. By definition u1, . . . ,uk−i ∈ V ⊥i and ṽi+1, . . . , ṽk ∈ Vk∩V ⊥i , so
it suffices to show that u1, . . . ,uk−i ∈ Vk. Indeed, then span(u1, . . . ,uk−i) ⊆ span(ṽi+1, . . . , ṽk) =
Vk ∩ V ⊥i , which implies that span(u1, . . . ,uk−i) = span(ṽi+1, . . . , ṽk) since the subspaces have the
same dimension.

Suppose for contradiction that span(u1, . . . ,uk−i) * span(ṽi+1, . . . , ṽk). Then uj /∈ Vk for
some j ∈ [k − i]. Using the triangle inequality and the definition of the covering radius, there
exists a lifting x ∈ L \ Vk of uj such that πi(x) = uj , and ‖x‖ ≤ ‖uj‖ + µ(L ∩ Vi). Using
Theorem 2.2, Lemma 2.17 item 1, and the upper bound in Equation (5), ‖uj‖ + µ(L ∩ Vi) ≤
‖uj‖+

√
i

2 · λi(L ∩ Vi) ≤ λi+j(L) +
√
i

2 · λi(L) ≤ (
√
k

2 + 1) · λk(L). But because x /∈ Vk, this implies

that λk+1(L) ≤ ‖x‖ ≤ (
√
k

2 + 1) · λk(L), which is a contradiction.

We next prove a result which will let us upper bound the ratios λmax(Li)/λ1(Li) for the lattices
Li in Algorithm 1.

Lemma 3.3. Let L be a lattice of rank n, let 0 ≤ i < k ≤ n, and let g(n) ≥ 10
√
n. Assume that

λj+1(L)/λj(L) ≤ g(n) for all i < j < k, and that:

1. Either i = 0, or i > 0 and λi+1(L)/λi(L) > g(n).

2. Either k = n, or k < n and λk+1(L)/λk(L) > g(n).

Then L′ := πi(L) ∩ Vk is a lattice of rank k − i, and λmax(L′)/λ1(L′) ≤ 2 · (g(n))k−i−1.

Proof. Let v1, . . . ,vn denote vectors which achieve the successive minima of L, and let ṽ1, . . . , ṽn
be their Gram-Schmidt orthogonalization. Because Vi = span(v1, . . . ,vn) is a lattice subspace of
L, it holds that πi(L) = πV ⊥i

(L) is a lattice by Fact 2.15. Let u1, . . . ,un−i be vectors which achieve

the successive minima of πi(L). Then by Lemma 3.2, span(u1, . . . ,uk−i) = span(ṽi+1, . . . , ṽn).
Since span(u1, . . . ,uk−i) is a lattice subspace of πi(L), it holds that L′ = πi(L) ∩ Vk = πi(L) ∩
span(u1, . . . ,uk−i) is a lattice again by Fact 2.15.

We next upper bound the ratio of the maximum and minimum successive minima of L′.
λmax(L′)
λ1(L′)

=
λk−i(πi(L) ∩ span(u1, . . . ,uk−1))

λ1(πi(L) ∩ span(u1, . . . ,uk−1))

=
λk−i(πi(L))

λ1(πi(L))
(Lemma 2.17, Item 1)

≤ λk(L)

λi+1(L)−
√
i

2 · λi(L)
(Lemma 2.17, Item 2)

≤ λk(L)

(1−
√
i

2·g(n)) · λi+1(L)
(i = λi = 0, or i > 0 and

λi+1(L)

λi(L)
> g(n))

≤ 2 · λk(L)

λi+1(L)
(g(n) ≥ 10

√
n)

≤ 2 · (g(n))k−i−1 . (λj+1(L)/λj(L) ≤ g(n) for i < j < k)
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Algorithm 1: BlockEnumOpt(B)

Input: A basis B for a lattice L of rank n. The algorithm is also parameterized by a basis
quality function Q, numbers s,R > 0 and a procedure Lift that will be set in the
analysis.

Output: A basis B′ that satisfies Q(B′) = Q(L) when the conditions for Theorems 3.4 or
Theorem 3.6 are met. A basis B′ that achieves S(B′) ≤ (1 + ε) · S(L) when Q = S
and the algorithm is parameterized as in Section 6.2.

Compute vectors v1, . . . ,vn which achieve the successive minima of L.
Let 1 ≤ k1 < · · · < km−1 < n denote the indices such that λki+1(L)/λki(L) > s.
Let k0 = 0 and let km = n.
foreach sequence B1, . . . , Bm where each Bi is a basis of Li := πki−1

(L) ∩ Vki that satisfies
‖Bi‖ ≤ R · λmax(Li) do
B′ ← Lift(B, (B1, . . . , Bm)).
Compute Q(B′).

end
Output the basis B′ computed above for which Q(B′) is minimum.

The first inequality additionally uses the fact that either i = λi = 0, or that λi+1(L) > g(n)·λi(L) ≥
10
√
n · λi(L) so that the denominator of the right-hand side is positive.

3.1 The main algorithm

We next present the main algorithm and theorem.

Theorem 3.4. Let Q(B) be a polynomial-time computable basis quality function with Q(n) ≤
2poly(n), and suppose that there exist monotone functions g(n) ≥ 10

√
n and rn(t) such that the

following conditions hold for every lattice L of rank n:

1. (Short optimal bases): Given a basis B of L and a number t > 0, if Q(B) ≤ t then ‖B‖ ≤
rn(t) · λmax(L).

2. (Blocks follow the successive minima): Let v1, . . . ,vn be vectors that achieve the succes-
sive minima of L. Then there exists a basis B = (b1, . . . , bn) of L that satisfies Q(B) =
Q(L), and is such that for all k ∈ [n − 1] with λk+1(L)/λk(L) > g(n), span(b1, . . . , bk) =
span(v1, . . . ,vk).

3. (Block lower bound): Let B be a basis of L. Then for all block decompositions B1, . . . , Bm of
B, Q(B) ≥ maxi∈[m]Q(Bi).

4. (Block lifting): There exists an algorithm, LiftQ, which runs in nO(n) time and which, on
input a basis B of L and a block decomposition B1, . . . , Bm of a (possibly different) basis of
L, outputs a basis B′ of L with minimum Q(B′) over all bases of L which have B1, . . . , Bm
as a block decomposition.

Set s = s(n) := g(n), R = R(n) := rn(Q(n)), and Lift to be LiftQ in BlockEnumOpt. Then
on input a basis B of a lattice L of rank n BlockEnumOpt computes a basis B′ of L with
Q(B′) = Q(L), and runs in (rn(Q(n)) · g(n)n−1)O(n2) time and polynomial space.
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Proof. We start by proving correctness. It suffices to show that one of the sequences of blocks
B1, . . . , Bm considered in Algorithm 1 is a block projection of a basis A of L which is optimal with
respect to Q. Indeed, then by Condition 4 LiftQ(B, (B1, . . . , Bm)) outputs a (possibly different)
optimal basis B′ of L.

By Condition 2, there exists a basis A = (a1, . . . ,an) of L which satisfies Q(A) = Q(L) and
span(a1, . . . ,ak) = Vk for all k ∈ [n − 1] with λk+1(L)/λk(L) > g(n). Let k0 < · · · < km be as
defined in Algorithm 1. We will show that Ai := (πk(i−1)

(ak(i−1)+1), . . . , πk(i−1)
(aki)) is a basis of

Li := πk(i−1)
(L) ∩ Vki which satisfies ‖Ai‖ ≤ rn(Q(n)) · λmax(Li).

Using Fact 2.16, it holds that for i ∈ [m], (πk(i−1)
(ak(i−1)+1), . . . , πk(i−1)

(an)) is a basis of
πk(i−1)

(L) since Vk(i−1)
is a lattice subspace of L, and therefore, using Fact 2.16 again, Ai is a

basis of Li since span(πk(i−1)
(L)) ∩ Vki = πk(i−1)

(L) ∩ span(πk(i−1)
(vk(i−1)+1), . . . , πk(i−1)

(vki)) is a
lattice subspace of πk(i−1)

(L). Finally, Q(Ai) ≤ Q(A) ≤ Q(n) for all i ∈ [m] by Condition 3 and
the optimality of A, which implies that ‖Ai‖ ≤ rn(Q(n)) · λmax(Li) by Condition 1, as needed.

We next analyze the time and space complexity of Algorithm 1. Computing the indices 0 =
k0 < · · · < km = n and subspaces Vki amounts to computing the successive minima of L. This
can be done in nO(n) time and polynomial space by reducing the problem of computing successive
minima to CVP ([Mic08] gives an efficient reduction between these problems), and then running
Kannan’s Algorithm [Kan87] for solving CVP.

By Corollary 2.12, enumerating all bases Bi of Li with ‖Bi‖ ≤ rn(Q(n)) · λmax(Li) for i ∈
[m] takes (rn(Q(n)) · n · λmax(Li)/λ1(Li))O((ki−k(i−1))

2) time, and so enumerating all sequences
B1, . . . , Bm of the form in Algorithm 1 can be done in at most

m∏
i=1

(rn(Q(n)) · n · λmax(Li)/λ1(Li))O((ki−k(i−1))
2) ≤

m∏
i=1

(rn(Q(n)) · g(n)n−1)O((ki−k(i−1))
2)

= (rn(Q(n)) · g(n)n−1)
∑m

i=1O((ki−k(i−1))
2)

≤ (rn(Q(n)) · g(n)n−1)O(n2)

(6)

time, where the first inequality follows by Lemma 3.3.
The right-hand side of Equation (6) also upper bounds the number of iterations of the “for

loop” in Algorithm 1. Each loop iteration takes nO(n) time to execute Lift and poly(n) time to
compute Q(B′). The overall time spent on the for loop in Algorithm 1 is then at most

(rn(Q(n)) · g(n)n−1)O(n2) · (nO(n) + poly(n)) = (rn(Q(n)) · g(n)n−1)O(n2),

which dominates the runtime of Algorithm 1. The enumeration algorithm also uses space which is
polynomial in the length of the input, i.e., in the lattice rank n and the length of the input basis
‖B‖.

3.2 Permutation invariance

We next describe another useful notion of equivalence for some basis quality functions. Call a basis
quality function Q permutation invariant if Q(B) = Q(B′) for any bases B = (b1, . . . , bn) and
B′ = (bπ(1), . . . , bπ(n)) where π is a permutation of [n]. The orthogonality defect δ and Seysen
condition number S are permutation invariant.

Call a basis B = (b1, . . . , bn) sorted if ‖b1‖ ≤ · · · ≤ ‖bn‖. For permutation invariant basis
quality functions we can consider sorted bases without loss of generality. This is useful in the next
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proposition which says that, if the quality of a basis suitably depends on how well the lengths of its
basis vectors approximate the successive minima (i.e. on ‖bi‖/λi), then Q satisfies conditions (1)
and (2) in Theorem 3.4.

Proposition 3.5. Let Q be a permutation invariant basis quality function, and suppose that there
exists a function r such that, for every sorted basis B = (b1, . . . , bn) of a lattice L of rank n, it
holds that if Q(B) ≤ t then ‖bi‖ ≤ Q(B) for all i ∈ [n].

1. (Short optimal bases): Given a basis B of L and a number t > 0, if Q(B) ≤ t then ‖B‖ ≤
rn(t) · λmax(L).

2. (Blocks follow the successive minima): Let v1, . . . ,vn be vectors which achieve the successive
minima of L. Then there exists a basis B = (b1, . . . , bn) of L which satisfies Q(B) = Q(L),
and is such that for all k ∈ [n − 1] with λk+1(L)/λk(L) > rn(Q(n)), span(b1, . . . , bk) =
span(v1, . . . ,vk).

Proof. Let B = (b1, . . . , bn) be a basis of a lattice L of rank n, and let B′ = (b′1, . . . , b
′
n) be sorted

and such that there exists a permutation π such that for every i ∈ [n], bi = b′π(i).

Suppose that ‖B‖ ≥ rn(t) · λmax(L) for some t > 0. Then ‖b′n‖ = ‖B‖ ≥ rn(t) · λn(L), which
implies by assumption that Q(B) = Q(B′) ≥ t. Therefore, Q satisfies condition (1).

Suppose now that B is an optimal basis with respect to Q. ThenQ(B′) = Q(B) = Q(L) ≤ Q(n).
Then ‖b′i‖ ≤ rn(Q(n))·λi(L) for all i ∈ [n], and so, if λk+1(L)/λk(L) > rn(Q(n)) for some k ∈ [n−1],
it must hold that span(b1, . . . , bk) = Vk. Therefore, Q satisfies condition (2).

3.3 A variant of the main theorem

We also present a variant of Theorem 3.4 which replaces the condition that “good bases are short”
with the condition that “good bases have short Gram-Schmidt vectors” together with a condition
that Q only depends on the Gram-Schmidt vectors. Note that this second condition is crucial since
we cannot in general enumerate all bases with Gram-Schmidt vectors shorter than some threshold
(there are in general infinitely many bases of a lattice with the same Gram-Schmidt vectors). This
variant will be useful for handling the Gram-Schmidt decay η and Babai basis quality function
QBabai in Section 5.

Theorem 3.6. Theorem 3.4 holds if we instead set t = t(n) :=
√
n · rn(Q(n)) in Algorithm 1 and

replace Condition 1 with Conditions 1’ (a) and (b) below:

1’. a. (Short Gram-Schmidt vectors): Given a basis B of L with Gram-Schmidt vectors b̃1, . . . , b̃n
and a number t > 0, if Q(B) ≤ t then maxi∈[n]‖b̃i‖ ≤ rn(t) · λmax(L).

b. (Dependence only on Gram-Schmidt vectors): If two bases B and B′ are Gram-Schmidt
equivalent (as defined in Definition 2.13) then Q(B) = Q(B′).

Proof. By Condition 1’(b), it suffices to show that B′ = Lift(B, (B1, . . . , Bm)) for one of the
sequences of blocks B1, . . . , Bm considered in Algorithm 1 is Gram-Schmidt equivalent to a basis A
of L with Q(A) = Q(L). To do this, it in turn suffices to show that there exists a block projection
A1, . . . , Am of A such that Ai and Bi are Gram-Schmidt equivalent for all i ∈ [m].
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Let k0 < · · · < km be as defined in Algorithm 1. By the same reasoning as in the proof
of Theorem 3.4, there exists a block projection A1, . . . , Am of A such that Ai is a basis of Li :=
πki−1

(L)∩Vki . Furthermore, we again have that Q(Ai) ≤ Q(A) ≤ Q(n) for all i ∈ [m] by Condition 3
and the optimality of A, which by Condition 1’(a) implies that

max
k(i−1)+1≤j≤ki

‖ãj‖ ≤ rn(Q(n)) · λmax(Li) (7)

where ãk(i−1)+1, . . . , ãki are the Gram-Schmidt vectors of Ai. Finally, by Lemma 2.14 and Equa-
tion (7) it holds that for each i ∈ [m] there is a basis Bi of Li with

‖Bi‖ ≤
√
ki − ki−1 · max

k(i−1)+1≤j≤ki
‖ãj‖ ≤

√
n · rn(Q(n)) · λmax(Li) .

The runtime analysis is the same since the added
√
n factor in t gets absorbed into the O(·) in

the runtime exponent.

Finally, we note that Condition 1’(b) in Theorem 3.6 implies Condition 4 in Theorem 3.4. If
only the Gram-Schmidt vectors are relevant, then any lifting of the vectors in the blocks B1, . . . , Bm
to vectors in the full lattice will result in a basis B′ = (b′1, . . . , b

′
n) of the same quality. I.e., all

that matters for lifting the jth vector of the ith block (Bi)j to a basis vector b′ki+j of B′ is that
πki(b

′
ki+j

) = (Bi)j . Such liftings are easy to compute by writing (Bi)j =
∑n

i=1 aiπki(bi) with
a1, . . . , an ∈ Z, and then setting b′ki+j :=

∑n
i=1 aibi, where B = (b1, . . . , bn) is the input basis.

4 Orthogonality defect minimization

In this section we show how to apply the results in Section 3 to get an algorithm for computing
optimal bases with respect to the orthogonality defect δ. We start by showing a block lower bound
for δ.

Lemma 4.1. Let B1, . . . , Bm be a block projection of a basis B = (b1, . . . , bn). Then δ(B) ≥
maxi∈[m] δ(Bi).

Proof. By the definition of a block projection, there exist 0 = k0 < k1 < · · · < km = n such

that for every i ∈ [m], Bi = (π
(B)
k(i−1)

(bk(i−1)+1), . . . , π
(B)
k(i−1)

(bki)). Then for every i ∈ [m], δ(B) =∏n
j=1‖bj‖/‖b̃j‖ ≥

∏ki
j=k(i−1)+1‖bj‖/‖b̃j‖ ≥

∏ki
j=k(i−1)+1‖π

(B)
k(i−1)

(bj)‖/‖b̃j‖ = δ(Bi), as needed.

Given a lattice L and a lattice subspace S of L, we define the “CVP-lifting” of a vector y ∈
πS⊥(L) to be a shortest vector y′ ∈ L with the same projection onto S⊥ as y. The idea of CVP-
lifting appears in Helfrich’s algorithm for computing Minkowski-reduced bases [Hel85], where she
calls it “correctly ‘deprojecting’ ” a vector.

Definition 4.2 (CVP-lifting). Let L be a lattice and let S be a lattice subspace of L. Given a
vector y ∈ πS⊥(L), define CVP-Lift(L, S,y) := arg min

y′∈L
{‖y′‖ : πS⊥(y′) = y}.

Computing CVP-Lift(L, S,y) amounts to solving an instance of CVP on L ∩ S. More
specifically, computing CVP-Lift(L, S,y) can be done as follows. Let k = dim(S) and let
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B = (b1, . . . , bn) be a basis of L where B1 = (b1, . . . , bk) is a basis of L ∩ S. (Such a ba-
sis B always exists and can be computed efficiently; see [Mic08, Lemma 1].) Then computing
CVP-Lift(L, S,y) amounts to solving the CVP instance (B1,

∑n
i=k+1 aibi), where ak+1, . . . , an

are defined by the relation y =
∑n

i=k+1 ai · πk(bi).
Using CVP-Lifting, we then get an algorithm for lifting block projections to bases with the

lowest possible orthogonality defect.

Lemma 4.3. There exists an algorithm, Liftδ, which runs in nO(n) time and polynomial space
and which, on input a basis B of L and a block projection B1, . . . , Bm of a (possibly different) basis
of L, outputs a basis B′ of L with minimal Q(B′) over all bases of L which have B1, . . . , Bm as a
block projection.

Proof. Let 0 = k0 < k1 < · · · < km = n be the indices such that for i ∈ [m],
Bi = (πki−1

(bki−1+1), . . . , πki−1
(bki)). Let (Bi)j denote the jth basis vector in Bi. Liftδ then

computes B′ = (b′1, . . . , b
′
n) as follows. For 1 ≤ j ≤ k1, it sets b′j := (B1)j , and for i > 1 and

1 ≤ j ≤ ki − ki−1 it sets b′j := CVP-Lift(L, span(B1, . . . , Bi−1) ∩ L, (Bi)j).
It is straightforward to check that B′ is a basis of L and that it satisfies δ(B′) ≤ δ(B′′) for

all bases B′′ of L which have B1, . . . , Bm as a block projection. Furthermore, Liftδ performs
fewer than n CVP-liftings, each of which corresponds to solving an instance of CVP on a lattice
of rank less than n. These operations dominate the time complexity Liftδ, which is then at most
n ·nO(n) = nO(n) by using Kannan’s Algorithm [Kan87] to solve CVP. Similarly, because Kannan’s
Algorithm uses polynomial space, Liftδ also uses at most polynomial space.

We conclude with a proof that the orthogonality defect δ meets the conditions for a basis quality
function specified in Theorem 3.4.

Proof of Theorem 1.3. From its definition as δ(B) := (
∏n
i=1‖bi‖)/det(L), it is clear that δ is a

permutation invariant basis quality function. Let B = (b1, . . . , bn) be a sorted basis of a lattice L.
Then δ(B) = (

∏n
i=1‖bi‖)/det(L) ≥

∏n
i=1‖bi‖/λi(L) ≥ maxi∈[n]‖bi‖/λi(L). Therefore, if ‖bi‖ ≥

t · λi(L) for some i ∈ [n] it holds that δ(B) ≥ t. So, by Proposition 3.5, δ satisfies conditions (1)
and (2) in Theorem 3.4 with rn(t) = t and g(n) = rn(δ(n)) = δ(n).

Furthermore, δ satisfies Theorem 3.4, condition (3) by Lemma 4.1 and Theorem 3.4, condi-
tion (4) by Lemma 4.3.

5 Gram-Schmidt decay minimization

In this section we show that the multiplicative Gram-Schmidt decay η and the closely related Babai
basis quality function QBabai meet the conditions of Theorem 3.6.

5.1 Minimizing η

We first show that since the last Gram-Schmidt vector ‖b̃n‖ of a basis B cannot be too large,
neither can any of the other Gram-Schmidt vectors ‖b̃i‖ unless η(B) is large.

Lemma 5.1. Let B = (b1, . . . , bn) be a basis of a lattice L. Then ‖b̃n‖ ≤ (n− 1)(n−1)/2 · λn(L).
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Proof. Let L′ = L(b1, . . . , bn−1). We then have that

‖b̃n‖ =
det(L)

det(L′)
≤ det(L) · (n− 1)(n−1)/2∏n−1

i=1 λi(L′)
≤ det(L) · (n− 1)(n−1)/2∏n−1

i=1 λi(L)
≤ (n− 1)(n−1)/2 · λn(L) .

The first inequality uses Minkowski’s Second Theorem (Theorem 2.1), the second inequality uses
the fact that λi(L) ≤ λi(L′) for all i ∈ [n− 1], and the third inequality uses the fact that det(L) ≤∏n
i=1 λi(L).

By the definition of η we get the following corollary.

Corollary 5.2. For every basis B of L, if maxi∈[n]‖b̃i‖ ≥ t · (n− 1)(n−1)/2 · λn(L) then η(B) ≥ t.

We next show that bases with low η(B) must have vectors which roughly follow the span of
vectors which achieve successive minima.

Lemma 5.3. Let B = (b1, . . . , bn) be a basis of a lattice L with η(B) <
λk+1(L)
λk(L) −

√
k

2 for some

k ∈ [n − 1]. Let v1, . . . ,vn be vectors that achieve the successive minima of L, and let Vk :=
span(v1, . . . ,vk). Then b1, . . . , bk ∈ Vk.

Proof. Suppose not. Let i1 ∈ [n] be the minimum index such that bi1 /∈ Vk. Then i1 ≤ k
and πk(bi1) = b̃i1 , where πk denotes projection onto V ⊥k . By Theorem 2.2, there exists a vector

y ∈ L ∩ Vk such that ‖πVk(bi1 − y)‖ ≤
√
k

2 · λk(L). Because bi1 − y ∈ L \ Vk, we then have

by the triangle inequality that λk+1(L) ≤ ‖bi1 − y‖ ≤
√
k

2 · λk(L) + ‖b̃i1‖, and therefore that

‖b̃i1‖ ≥ λk+1(L)−
√
k

2 · λk(L).
There must also exist some i2 ≤ k such that vi2 /∈ span(b1, . . . , bk). We can write vi2 = Ba for

some a ∈ Zn. Let i3 be the maximum non-zero coordinate in a. Then λi2(L) = ‖Ba‖ ≥ ‖ai3 b̃i3‖ ≥
‖b̃i3‖. Furthermore, i3 > k since vi2 /∈ span(b1, . . . , bk).

Combining bounds, we get that

η(B) ≥ ‖b̃i1‖
‖b̃i3‖

≥
λk+1(L)−

√
k

2 · λk(L)

λi2(L)
≥ λk+1(L)

λk(L)
−
√
k

2
,

which is a contradiction.

This immediately implies the following corollary.

Corollary 5.4. Let B = (b1, . . . , bn) be a basis which achieves η(B) = η(L), and let g(n) :=
η(n) +

√
n/2. Then for all k ∈ [n− 1] with λk+1(L)/λk(L) > g(n), span(b1, . . . , bk) = Vk.

We also prove a block lower bound condition for η.

Lemma 5.5. Let B = (b1, . . . , bn) be a basis of L of rank n. Then for all block projections
B1, . . . , Bm of B, η(B) ≥ maxi∈[m] η(Bi).

Proof. By definition of a block projection, there exist 0 = k0 < · · · < km = n such that for all
i ∈ [m], Bi = (πk(i−1)

(bk(i−1)+1), . . . , πk(i−1)
(bki)). Then for each i ∈ [m],

η(B) = max
1≤j≤`≤n

‖b̃j‖/‖b̃`‖ ≥ max
k(i−1)+1≤j≤`≤ki

‖b̃j‖/‖b̃`‖ = η(Bi)

as needed.
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We conclude by showing that η meets the conditions of Theorem 3.6.

Proof of Theorem 1.4. Let g(n) = η(n)+
√
n and let rn(t) = t ·nn. The claim follows by combining

Corollary 5.2, Corollary 5.4, and Lemma 5.5 with the fact that for Gram-Schmidt equivalent bases
B and B′, η(B) = η(B′) to meet the conditions of Theorem 3.6.

5.2 Minimizing QBabai

Babai’s nearest-plane algorithm [Bab86] uses a basis B = (b1, . . . , bn) as preprocessing to solve
γ-CVP for

γ ≤
(

1 + max
i∈[n]

∑i
j=1‖b̃j‖

2

‖b̃i‖2
)1/2

. (8)

Motivated by this, we define QBabai(B) to be the expression on the right-hand side of Equation (8).
Often Babai’s algorithm is presented with the assumption that an LLL-reduced basis is used as its
preprocessing. We refer the reader to the lecture notes of Stephens-Davidowitz [Ste] which prove
the more general bound in Equation (8).

We note the relationship between QBabai(B) and the Gram-Schmidt decay η(B):

η(B) ≤ QBabai(B) ≤
√
n+ 1 · η(B) . (9)

As Equation (9) shows, η(B) approximates QBabai(B) up to a factor of O(
√
n). This allows us to

leverage results for η from Section 5.1 to get an algorithm for computing bases which are optimal
with respect to QBabai. We also need to prove a separate block lower bound result for QBabai.

Lemma 5.6. Let B = (b1, . . . , bn) be a basis of L of rank n. Then for all block projections
B1, . . . , Bm of B, QBabai(B) ≥ maxi∈[m]QBabai(Bi).

Proof. By definition of a block projection, there exist 0 = k0 < · · · < km = n such that for all
i ∈ [m], Bi = (πk(i−1)

(bk(i−1)+1), . . . , πk(i−1)
(bki)). Then for each i ∈ [m],

QBabai(B) =
(

1 + max
`∈[n]

∑`
j=1‖b̃j‖

2

‖b̃`‖2
)1/2

≥
(

1 + max
ki−1+1≤`≤ki

∑`
j=ki−1+1‖b̃j‖

2

‖b̃`‖2
)1/2

= QBabai(Bi)

as needed.

Theorem 5.7. There exists an algorithm which, on input a basis B of a lattice L of rank n, outputs
a basis B′ of L which satisfies QBabai(B

′) = QBabai(L), and which runs in (
√
n · η(n))O(n3) ≤

nO(n3 logn) time and polynomial space.

Proof. We show that QBabai meets the conditions of Theorem 3.6 with g(n) := (
√
n+1)·η(n)+

√
n/2

and rn(t) := t · nn.
By Equation (9), η(B) ≤ QBabai(B) for all bases B. Therefore, by Corollary 5.2 it holds that

if QBabai(B) ≤ t then maxi∈[n]‖b̃i‖ ≤ rn(t) · λn(L), so QBabai meets Theorem 3.6 Condition 1’(a).
Condition 1’(b) (and therefore also Theorem 3.4 Condition 4) holds since if B and B′ are Gram-
Schmidt equivalent bases then QBabai(B) = QBabai(B

′).
Moreover, as a consequence of Equation (9), QBabai(n) ≤

√
n+ 1 · η(n). So, a basis B′ =

(b′1, . . . , b
′
n) satisfying QBabai(B

′) = QBabai(L) must satisfy η(B′) ≤
√
n+ 1 · η(n), and so by

Lemma 5.3 if λk+1(L)/λk(L) ≥ g(n) then B′ must satisfy span(b′1, . . . , b
′
k) = Vk. Therefore QBabai

satisfies Theorem 3.4 Condition 2.
Finally, Theorem 3.4 Condition 3 holds by Lemma 5.6.
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6 Seysen condition number minimization

In this section we show how to use our technique to get an approximation scheme for computing
bases which are (1 + ε)-approximately optimal with respect to the Seysen condition number S.

In previous work, Seysen [Sey93] and Bennett, Dadush, and Stephens-Davidowitz [BDS16]
showed that the basis vectors in an optimal basis B with respect to S must follow the successive
minima of L, and that B∗ must follow the successive minima of L∗.

Lemma 6.1 ([Sey93, Theorem 8], [BDS16, Lemma 21]). Let B = (b1, . . . , bn) be a sorted basis of
L. Then for all k ∈ [n],

1. S(B) ≥ ‖bk‖/λk(L).

2. S(B) ≥ ‖b∗k‖/λn−k(L∗).

Lemma 6.1 will allow us to leverage Proposition 3.5. We next show a block lower bound for S.

Lemma 6.2. Let B = (b1, . . . , bn) be a basis with block projection B1, . . . , Bm. Then S(B) ≥
maxi∈[m] S(Bi).

Proof. Let B∗ = (b∗1, . . . , b
∗
n) denote the dual basis of B. If B1, . . . , Bm is a block projection of B

then there exists a basis B′2 such that B1, B
′
2 is a block projection of B, and B2, . . . , Bm is a block

projection of B′2.

Let k ∈ [n−1], and let B1 = (b1, . . . , bk), B
′
2 = (π

(B)
k (bk+1), . . . , π

(B)
k (bn)) be a block projection

of B. We have that

S(B) ≥ max
1≤i≤k

‖bi‖‖b∗i ‖ ≥ max
1≤i≤k

‖bi‖‖πspan(b1,...,bk)(b
∗
i )‖ = S(B1) ,

and similarly

S(B) ≥ max
k+1≤i≤n

‖bi‖‖b∗i ‖ ≥ max
k+1≤i≤n

‖π(B)
k (bi)‖‖b∗i ‖ = S(B2) ,

The claim follows by induction on B′2.

6.1 Seysen lifting

The lemmas in the previous section meet the first three conditions of Theorem 3.4. However, it is
unclear how to satisfy the lifting condition, condition 4. Indeed, the crux of applying our technique
to computing well-conditioned bases with respect to S is determining how to lift a block projection
B1, . . . , Bm.

In this section we show how to lift block projections which meet certain conditions to a nearly
optimal basis B′ with S(B′) ≤ (1+ε) ·S(L(B′)) by using a basis reduction technique introduced by
Seysen [Sey93] which simultaneously reduces a primal basis B and its dual basis B∗. Size-reduction
greedily reduces a primal basis B, but may lead to a dual basis B∗ with very long vectors (see
Proposition 7.6). Seysen’s new simultaneous reduction technique was his key insight.

The proposition below is a generalization of [Sey93, Proposition 5], and its proof closely follows
Seysen’s proof. Let bXe denote the matrix obtained by rounding each entry in a real-valued matrix
X to the nearest integer. Let ‖X‖∞ denote the largest magnitude of an entry in such a matrix X.
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Proposition 6.3 (Seysen reduction). Let B = (b1, . . . , bn) be a basis and let 1 ≤ k ≤ n. Let

C := (c1, . . . , ck) = (b1, . . . , bk) and let D := (d1, . . . ,dn−k) = (π
(B)
k (bk+1), . . . , π

(B)
k (bn)). Then

there exists a unimodular matrix T = T (B, k) such that S(BT ) ≤ max{S(C), S(D)}+ n
2 ‖C‖‖D

∗‖.

Proof. Let B = QB′ be the QR-decomposition of B. Then B′ has the form

B′ =

(
C ′ Z ′

0 D′

)
with C ′ ∈ GLk(R) satisfying ‖C ′‖ = ‖C‖, and D′ ∈ GLn−k(R) satisfying ‖(D′)∗‖ = ‖D∗‖. Let

T = T (B, k) :=

(
Ik −b(C ′)−1Z ′e
0 In−k

)
(10)

It then holds that

B′T =

(
C ′ C ′W
0 D′

)
, (B′T )∗ =

(
(C ′)∗ 0

−(D′)∗W T (D′)∗

)
,

where W := (C ′)−1Z ′ − b(C ′)−1Z ′e. Using the fact that ‖W‖∞ ≤
1
2 we have that

‖C ′W‖ ≤ k/2 · ‖C ′‖ = k/2 · ‖C‖

and
‖−(D′)∗W T ‖ ≤ (n− k)/2 · ‖(D′)∗‖ = (n− k)/2 · ‖D∗‖ .

Therefore,

S(BT ) = S(B′T )

≤ max{max
i∈[k]
‖ci‖ · (‖c∗i ‖+ (n− k)/2 · ‖D∗‖), max

i∈[n−k]
(‖di‖+ (k/2) · ‖C‖) · ‖d∗i ‖}

≤ max{S(C), S(D)}+ (n/2) · ‖C‖‖D∗‖

as claimed.

It follows easily from the definition of S that for any basis B,

‖B‖ ≤ S(B)/λ1(L(B)∗) (11)

We will use this fact in the following lemma, which shows that if C is a basis of L ∩ Vk and D
is a basis of πk(L) for a lattice L where λk+1(L)/λk(L) is large then the “additive error term”
n
2 ‖C‖‖D

∗‖ in the conclusion of Proposition 6.3 is small.

Lemma 6.4. Let B be a basis of a lattice L of rank n. Assume that C = (b1, . . . , bk) is a basis of

L∩Vk, and assume that D = (π
(B)
k (bk+1), . . . , π

(B)
k (bn)) is a basis of πk(L) for some index k ∈ [n−1]

which satisfies λk+1(L)/λk(L) ≥ t with t ≥ 10
√
n. Then ‖C‖‖D∗‖ ≤ 2 ·S(C)S(D) ·λk(L)/λk+1(L).
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Proof. We have that

‖C‖‖D∗‖ ≤ S(C)S(D)

λ1(L(C)∗)λ1(L(D))
≤ S(C)S(D) · λk(L ∩ Vk)

λ1(πk(L))
(12)

where the first inequality holds by applying Equation (11) twice and noting that S(D) = S(D∗),
and the second inequality is by the lower bound in Theorem 2.3.

Furthermore, λk(L∩Vk) = λk(L) by Lemma 2.17 item 1 and λ1(πk(L)) ≥ λk+1(L)−
√
k

2 ·λk(L)
by Lemma 2.17 item 2. Combining these bounds and using the assumption that t ≥ 10

√
n, we get

that ‖C‖‖D∗‖ ≤ 2 · S(C)S(D) · λk(L)/λk+1(L), as claimed.

Following this discussion, we define a lifting algorithm LiftS that combines blocks in a block
projection one at a time to build a larger basis. It works as follows. On input a block projection
B1, . . . , Bm, LiftS computes bases B′i for i = 1, . . . ,m. It sets B′1 := B1. For i = 2, . . . ,m, LiftS
first lifts the vectors in Bi to arbitrary vectors in L with the same projection onto span(B′i−1)⊥ to
form Ai. It then sets B′i := (B′i−1, Ai) · T ((B′i−1, Ai), rank(B′i−1)), where T is the matrix defined in
Equation (10). Finally, LiftS outputs B′ = B′m.

6.2 An approximation scheme for S

We conclude with a proof of Theorem 1.5. Because S meets the first three conditions of Theo-
rem 3.4, the proof is similar to the proof of Theorem 3.4. We focus on analyzing the quality of the
“approximately optimal lifting” involved in LiftS .

Proof of Theorem 1.5. Set s = s(n, ε) := 2n2 · S(n)2/ε, R = R(n) := S(n), and Lift := LiftS in
Algorithm 1.

Because S is a permutation invariant basis quality function, we can use Lemma 6.1, item 1
to invoke Proposition 3.5, and so S meets Theorem 3.4 conditions 1 and 2. Furthermore, by
Lemma 6.2, S meets Theorem 3.4 condition 3.

Therefore by the same reasoning as in the proof of Theorem 3.4, one of the sequences of bases
B1, . . . , Bm enumerated by Algorithm 1 is a block projection of an basis B̂ that satisfies S(B̂) =
S(L). Again using Lemma 6.2, we have that maxi∈[n] S(Bi) ≤ S(B̂) = S(L) ≤ S(n). We prove the
theorem by showing that the basis B′ = B′m output by LiftS(B, (B1, . . . , Bm)) satisfies S(B′) ≤
(1 + ε) · S(L).

To do this we prove by induction that S(B′i) ≤ S(L) + i/n · ε for all i ∈ [m]. We have that
S(B′1) = S(B1) ≤ S(B̂) = S(L). Suppose for i > 1 that S(B′i−1) ≤ S(L) + (i− 1)/n · ε.

By Proposition 6.3, S(B′i) ≤ max{S(B′i−1), S(Bi)} + n
2 ‖B

′
i−1‖‖B∗i ‖, and by Lemma 6.4, the

definition of s(n, ε), and the assumption that ε ∈ (0, 1),

n

2
‖B′i−1‖‖B∗i ‖ ≤ n · S(B′i−1) · S(Bi) · λk(L)/λk+1(L)

≤ n · (S(L) + (i− 1)/n · ε) · S(L) · λk(L)/λk+1(L)

≤ 2n · S(L)2 · λk(L)/λk+1(L)

≤ 2n · S(n)2 · s(n, ε)−1

≤ ε/n

So S(B′i) ≤ S(L) + (i− 1)/n · ε + ε/n ≤ S(L) + i/n · ε, as claimed. It then follows that B′ = B′m
satisfies S(B′) ≤ S(L) +m/n · ε ≤ (1 + ε) · S(L), which proves the theorem.
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7 Motivating discussion and examples

This section discusses the relationship between lattice stability and gaps in the successive minima
(Section 7.1), discusses the (non-)optimality of HKZ-bases for several of the basis quality functions
described in this paper (Section 7.2), and gives some relationships between some of these functions
(Section 7.3). Specifically, we motivate the techniques described in this paper by showing that gaps
in the successive minima are not equivalent to lattice stability, and by showing that HKZ-reduced
bases – which are a greedy way of formalizing what it means to be a “shortest possible lattice basis”
– need not be minimizers of the basis quality functions that we consider.

7.1 Stability versus gaps in the successive minima

Recall that a lattice L is called stable if det(L) = 1 and det(L′) ≥ 1 for all sublattices L′ ⊆ L. In
this section, we compare the notion of stability with gaps in the successive minima.

Our first result gives a connection between stability and multiplicative gaps in the succes-
sive minima. Specifically, it shows that if L is stable then the “average gap” is relatively small:
(
∏n−1
k=1 λk+1(L)/λk(L))1/(n−1) = (λn(L)/λ1(L))1/(n−1) ≤ O(

√
n). However, it only gives a very

loose upper bound on the “maximum gap” maxk∈[n−1] λk+1(L)/λk(L).

Lemma 7.1. Let L be a stable lattice of rank n. Then λn(L)/λ1(L) ≤ nn/2.

Proof. Since L is stable, det(L) = 1 and λ1(L) ≥ 1. So, by Minkowski’s Second Theorem (The-
orem 2.1),

∏n
i=1 λi(L) ≤ nn/2. Since λ1(L) ≥ 1 it follows that λn(L) ≤ nn/2, and hence that

λn(L)/λ1(L) ≤ nn/2.

Our second result gives a family of stable lattices with polynomial gaps in their successive
minima, therefore separating the notions of stability and gaps in the successive minima. We obtain
such a family of examples by taking the direct sum of the integers with a “random lattice” in the
sense of [Sie45]. Such random lattices are almost surely both stable ([SW14]) and nearly tight for
Minkowski’s Theorems ([Sie45]), implying Fact 7.2 below.

Fact 7.2. For every n ≥ 1, there exists a lattice L of rank n such that L is stable and satisfies
λi(L) = Θ(

√
n) for all i ∈ [n].

Using Fact 7.2, we construct examples of lattices which have a gap in their successive minima
but are nonetheless stable. Our examples are related to examples of Regev et al. [RSW17] which
disproved a conjecture about the covering radii of a certain family of lattices. Define the direct
sum of lattices L1,L2 as L1 ⊕ L2 := {(x,y) : x ∈ L1,y ∈ L2}. L1 ⊕ L2 is also a lattice.

Lemma 7.3. For every n ≥ 2 there exists a lattice L of rank n which is stable, and which has
λk+1(L)/λk(L) ≥ Ω(

√
n) for some k ∈ [n− 1].

Proof. Let L1 be a stable lattice of rank n − 1 with λi(L) = Θ(
√
n) for all i ∈ [n − 1], and let

L := Z ⊕ L1. (Fact 7.2 ensures the existence of such a lattice L1.) Then L is also stable, and
satisfies λ1(L) = 1 and λ2(L) ≥ Ω(

√
n).
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7.2 (Non-)optimality of HKZ-reduced bases

HKZ-reduced bases (or simply HKZ-bases) give a greedy way of formalizing what it means to
be a shortest possible lattice basis. As we show in this section, there are HKZ-reduced bases
B that do not minimize either δ or S, so this greedy formalization is not always optimal. As
important motivation for this paper, it follows that minimizing these basis quality functions is not
as straightforward as computing an HKZ basis.

7.2.1 HKZ-reduced bases

We define HKZ-reduced bases as follows.

Definition 7.4. A basis B = (b1, . . . , bn) is HKZ-reduced if it satisfies the following conditions:

1. b1 is a shortest non-zero vector of L(B),

2. B is size-reduced,

3. If n > 1 then (π
(B)
1 (b2), . . . , π

(B)
1 (bn)) is an HKZ-reduced basis of π1(L).

7.2.2 Exponential δ and S gaps for HKZ-reduced bases

In this section we give an example of a family of bases {A(n)}∞n=1 (defined in Equation (13) below)
that are poorly conditioned in the sense of Seysen (this essentially appeared already in [BDS16,
Section 5.2]), and which have poor orthogonality defect compared to other bases of L(A(n)). In fact,
we show an exponential gap between δ(A(n)) (resp. S(A(n))) and δ(L(A(n))) (resp. S(L(A(n)))).

Fix n ≥ 1 and define the matrix A = A(n) with entries as follows for i, j ∈ [n]:

Ai,j =


0 if j < i,
1 if j = i,
−1

2 if j > i.
(13)

I.e., A is the n × n upper-triangular matrix with diagonal entries equal to 1 and off-diagonal
upper triangular entries equal to −1

2 . It is straightforward to check that A is an HKZ-reduced
basis of L(A). The matrix A previously appeared in [LT08, BDS16] as an example of a poorly
conditioned HKZ-reduced basis. Here we show that A is poorly conditioned in the sense of Seysen
(this essentially appeared already in [BDS16, Section 5.2]), and also that it has poor orthogonality
defect compared to other bases of A.

Proposition 7.5 (Non-optimality of HKZ-reduced bases for orthogonality defect δ). For every
n ≥ 1, there exists an HKZ-reduced basis A with δ(A) ≥ 2−n ·

√
n! ≥ nΩ(n) and another basis A′ of

L(A) with δ(A′) = (
√

13/2)n−1 ≤ 2O(n).

Proof. Define A′ with entries as follows for i, j ∈ [n]:

A′i,j =


1 if j = i,
−3

2 if j = i+ 1,
0 otherwise.

(14)
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I.e., A′ is the n×n bi-diagonal basis with entries equal to 1 on the main diagonal, and entries equal
to −3

2 on the diagonal above.
It is straightforward to check that L(A′) = L(A), where A is the n × n basis defined in Equa-

tion (13). Moreover, δ(A) ≥ 2−n ·
√
n! ≥ nΩ(n) and δ(A′) = (

√
13/2)n−1 = 2O(n), as needed.

We next show that S(A) is exponentially larger than S(L(A)). This relies on the main theorem
in Seysen’s paper [Sey93], which says that S(n) ≤ nO(logn).

Proposition 7.6 (Non-optimality of HKZ-reduced bases for Seysen condition number S). For
every n ≥ 1, there exists an HKZ-reduced basis A with S(A) ≥ Ω(1.5n) and another basis A′′ of
L(A) with S(A′′) ≤ nO(logn).

Proof. S(A) ≥ Ω(1.5n) follows by noting that ‖ai‖ ≥ 1 for all i ∈ [n], and from a computation
which shows that the largest entry in A−1 is of magnitude Ω(1.5n). The existence of such an A′′

follows from [Sey93].

In fact, because A is upper-triangular and unipotent (has all diagonal entries equal to 1), the
basis A′′ in Proposition 7.6 can even be computed efficiently using the algorithm described in [Sey93,
Proposition 5].

We note that both A′ and A′′ are Gram-Schmidt equivalent to A. Determining whether there
exists a basis A′′′ that is not Gram-Schmidt equivalent to any HKZ basis, and that satisfies δ(A′′′) <
δ(A) or S(A′′′) < S(A) for all HKZ bases A of L(A′′′) is another interesting question.

7.2.3 Gram-Schmidt decay in HKZ-reduced Bases

In this section we briefly summarize previous work on Gram-Schmidt decay in HKZ-bases. Unlike
for the orthogonality defect δ and the Seysen condition number S, to the best of our knowledge
there is no family of HKZ bases with asymptotically non-optimal multiplicative Gram-Schmidt
decay η. In fact, we are not even aware of a single HKZ basis B where η(B) 6= η(L(B)).

Lagarias et al. [LLS90] showed that for every lattice L there exists an HKZ-reduced basis B of
L such η(B) ≤ nO(logn). Moreover, Ajtai [Ajt08] showed that this analysis is essentially optimal –
there exists a family of HKZ bases {B(n)}∞i=1 such that η(B) ≥ nΩ(logn) for B = B(n). In fact, Ajtai
showed an even stronger lower bound. He shows that αn := sup‖b1‖2/‖b̃n‖2 is at least nc logn for
some absolute constant c > 0 (where the supremum in the definition of αn is taken over all HKZ-
reduced bases of rank n). Note that the Gram-Schmidt decay parameter η(B) is the maximum
ratio ‖b̃i‖/‖b̃j‖ taken over all pairs of Gram-Schmidt vectors b̃i, b̃j with 1 ≤ i ≤ j ≤ n, whereas
αn only considers the case where i = 1, j = n.

These results are summarized in the following theorem.

Theorem 7.7 ([LLS90, Ajt08]). There exist absolute constants c1, c2 > 0 such that the following
statement holds. For every HKZ-reduced basis B of rank n ≥ 1, η(B) ≤ nc1·logn, and for every
n ≥ 1 there exists an HKZ-reduced basis B′ of rank n such that η(B′) ≥ nc2·logn.

As previously mentioned it is an important open question whether whether HKZ bases have
optimal Gram-Schmidt decay or whether each lattice has a basis with Gram-Schmidt decay poly(n).
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7.3 Relationships between basis quality measures

We conclude by presenting some relationships between the basis quality measures that we consider.
As noted in Equation (9), QBabai and η are closely related. Here we compare S with η and δ. We
also refer the reader to [MG02, Theorem 7.10] which presents a number of relationships between
basis reduction problems.

Proposition 7.8. Let B = (b1, . . . , bn) be a sorted basis. Then S(B) ≥ η(B).

Proof. We use the fact that for any basis B ∈ Rn×n,

‖b∗i ‖ ≥ ‖b̃i‖
−1 . (15)

Indeed, bi = b̃i + x for some x ∈ span(b1, . . . , bi−1). Equation (15) then follows from the fact that

‖b̃i‖‖b∗i ‖ ≥ 〈b̃i, b∗i 〉 = 〈b̃i + x, b∗i 〉 = 〈bi, b∗i 〉 = 1 .

where the inequality holds by the Cauchy-Schwarz inequality, and the equalities hold because
〈bi, b∗j 〉 is equal to 1 if i = j and is equal to 0 otherwise.

Therefore,

S(B) = max
j
‖bj‖‖b∗j‖ ≥ max

i≤j
‖bi‖‖b∗j‖ ≥ max

i≤j
‖b̃i‖‖b∗j‖ ≥ max

i≤j

‖b̃i‖
‖b̃j‖

= η(B),

where the first inequality holds because B is sorted, and the third inequality holds by Equation (15).

Because S is permutation invariant, there is always a sorted basis B of L which achieves S(B) =
S(L), and we get the following corollary.

Corollary 7.9. For every lattice L, S(L) ≥ η(L) and for every n ≥ 1, S(n) ≥ η(n).

We finish with a simple relationship between S(B) and the normalized orthogonality defect
δ(B)1/n.

Lemma 7.10. For every basis B = (b1, . . . , bn), S(B) ≥ δ(B)1/n.

Proof. We have that S(B) ≥
(∏n

i=1‖bi‖‖b
∗
i ‖
)
≥
(∏n

i=1‖bi‖/‖b̃i‖
)

= δ(B)1/n, where the second
inequality follows by Equation (15).
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