Verifying NO instances of 3-SUM in time roughly n®/?

Huck Bennett*

January 22, 2026

In this note, we present the beautiful algorithm from work of Carmosino, Gao, Impagliazzo, Mihajlin,
Paturi, and Schneider [CGI*16] for showing that 3-SUM is contained in coNTIME[n3/2 - poly(log(n))]. We
will use the version of 3-SUM in which the input is an array A = [aq,...,a,] of polynomially bounded
integers, and the goal is to decide whether there exist 4,j,k € [n] such that a; + a; + ar, = 0. So, the
algorithm’s goal is to certify that a given 3-SUM instance is a NO instance, i.e., that there are no triples
i,j, k € [n] such that a; + aj + ar = 0.

The algorithm (given in Theorem 1) uses two key observations about 3-SUM modulo a prime p: (1) that
there is a relatively small prime p such that the set R, of triples (4,7, k) with a; + a; + ar = 0 (mod p)
is relatively small, and (2) that it is possible to efficiently count the number of 3-SUM solutions modulo a
small prime p (i.e., to compute |R,|) using the fast Fourier transform. So, the algorithm takes in a certificate
(p, Rp), verifies that the certificate is valid (i.e., that p is in fact a small prime, that R, is a small set, and
that R, contains all 3-SUM solutions modulo p), and then checks that R, consists entirely of false positives
modulo p (i.e., triples that are solutions modulo p, but not solutions over the integers).

Motivation for studying this algorithm comes from the Nondeterministic Strong Exponential Time Hy-
pothesis (NSETH), also introduced in [CGIT16]. Informally, NSETH states that there are no nontrivial
nondeterministic algorithms for certifying that instances of k-SAT are unsatisfiable when k is large. That
is, NSETH asserts that any such algorithm must take roughly 2" time, which is how long k-SAT takes to
solve deterministically by brute force. On the other hand, the algorithm in Theorem 1 does give a nontrivial
nondeterministic algorithm for certifying that instances of 3-SUM are NO instances. The fastest known de-
terministic algorithms for 3-SUM run in roughly n? time (up to sub-polynomial factors), and the algorithm
in Theorem 1 runs in roughly n®/? time. [CGIT16] notes that this algorithm therefore rules out fine-grained
reductions from k-SAT to 3-SUM, assuming NSETH.

Formally, we prove the following theorem.

Theorem 1 ([CGIT16]). There is an O(n/2)-time algorithm that takes as input an array A = [as,. .., ay]
of n numbers with a; € [—n°,n°] for some constant ¢ > 0 and a certificate of length at most O(n3/?) with
the following property.t If there is no triple of indices (i, j, k) € [n]® such that a; + aj + ar, = 0 then there
erists a certificate such that the algorithm accepts, and otherwise the algorithm rejects on all certificates.

Proof. For an integer p > 2, let
R, :={(i,j,k) € [n)® : a; + aj + a =0 (mod p)} .

A valid certificate consists of a pair (p, R,) for a prime number p such that p < 5(n3/2) and |R,| < 5(n3/2).
We first prove that such a certificate exists. Define

R:= U{(p7 (imjv k)) : (Zv.]vk) € RP} ’

where the union is over all prime numbers p. We claim that |R| = O(n3logn). Indeed, each sum a; +a; +ay,
for a;,a;,ar € A has magnitude at most 3n°, and therefore |a; + a; + ai| has at most log,(3n°) < O(logn)

*University of Colorado Boulder. huck.bennett@colorado.edu.
IThe notation O(-) suppresses polylogarithmic factors in the argument. That is, O(f(n)) := f(n) - poly(log(f(n))).


mailto:huck.bennett@colorado.edu

many prime factors. So, each triple (i, j, k) is contained in at most O(logn) sets R,. The claim then follows
since there are n? triples (i, j, k).

By an averaging argument, there must exist a prime number p among the first [n3/2] prime numbers
such that |R,| < |R|/n%/? < O(n3/?). Furthermore, by the prime number theorem, there are [n3/2] prime
numbers of magnitude at most O(n*?logn), and so p < O(n*/?logn).

We next show how to use the certificate (p, R,) to certify that no triple of indices (4,7, k) is such that
a;+aj+ap = 0. The verification algorithm performs three checks, and accepts if and only if they all succeed.
First, it checks that p is prime. Second, it checks that a; + a; + ar = 0 (mod p) and a; + a; + a; # 0 for all
(i,7,k) € Rp. Third, the algorithm defines the polynomial g(z) := Y, ., 2* ™°4 P, and uses the fast Fourier

3(p—1)
§=0

acA
transform to compute ¢(z)3, which is equal to > bjxj for some integer coefficients b; > 0. It then
checks that by + b, + ba, = |Rp|.

Correctness of the algorithm follows by noting that the checks ensure that all 3-SUM solutions modulo
p are included in R, and that none of these are solutions over the integers. Indeed, by + b, + ba), is exactly
the number of 3-SUM solutions modulo p, and all 3-SUM solutions over the integers are solutions modulo p.

Finally, we analyze the algorithm’s running time. Verifying that p is prime using (say) trial division
takes 5(\/]3) < O(n3/*) time, checking that each triple (i, ], k) is a solution modulo p but not over the
integers takes |R,| - poly(logn) < O(n3/2) time, and computing ¢(z)® using the fast Fourier transform takes

plogp - poly(logn) < O(n?/?) time. The theorem follows. O
References
[CGIT16] Marco L. Carmosino, Jiawei Gao, Russell Impagliazzo, Ivan Mihajlin, Ramamohan Paturi, and

Stefan Schneider. Nondeterministic Extensions of the Strong Exponential Time Hypothesis and
Consequences for Non-reducibility. In ITCS, 2016. 1



