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INTRODUCTION

A search of a graph i1s a methodical exploration of all the vertices and edges. It
must run in “linear time”, i.e., in one pass (or a small number of passes) over the graph.
Even with this restriction, a surprisingly large number of fundamental graph properties
can be tested and identified.

This section examines the two most important search methods. Breadth-first search
gives an efficient way to compute distances. Depth-first search is useful for checking
many basic connectivity properties, for checking planarity, and also for data flow analysis
for compilers. A treatment of at least some aspects of both these methods can be found
in almost any algorithms text (some recent ones are [BrBr96, CLRS01, GoTa02, HSR9S8,
Se02, We99]).

All the algorithms of this section (except for §10.1.7) run in linear time or very close
to it. Since it takes linear time just to read the graph, the algorithms are essentially as
efficient as possible (they are “asymptotically optimal”).

NOTATION: Throughout this chapter, the number of vertices and edges of a graph G =
(V, E) are denoted n and m, respectively. Time bounds for algorithms are given using
asymptotic notation, e.g., O(n) denotes a quantity that, for sufficiently large values of
n, is at most ¢n, for some constant ¢ that is independent of n.

CONVENTION: In all algorithms, we assume that the graph G is given as an adjacency
list representation. If (G is undirected, this means that each vertex has a list of all its
neighbors. The list can be sequentially allocated or linked. If (G is directed, then each
vertex has a list of all its out-neighbors.

10.1.1 Breadth-First Search

The breadth-first search method (abbr. bfs) finds shortest paths from a given
vertex of a graph to other vertices. It generalizes to Dijkstra’s algorithm, which allows
numerical (nonnegative) edge-lengths. Throughout this section, the given graph G can
be directed or undirected.
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DEFINITIONS

D1: A length function on a graph specifies the numerical length of each edge. Each
edge is assumed to have length one, unless there is an explicitly declared length function.

D2: The distance from vertex u to vertex v in a graph, denoted d(u, v), is the length
of a shortest path from u to v.

D3: The diameter of a graph is the maximum value of d(u,v) for u # v.
D4: A shortest-path tree 1 from a vertex s is a tree, rooted at s, that contains

all the vertices that are reachable from s. The path in T from s to any vertex z is a
shortest path in G| i.e., it has length d(s, z).

EXAMPLES

E1l: Figure 10.1.1 gives a shortest path tree from vertex s.
a

Figure 10.1.1 Undirected graph and shortest path tree.

E2: The small-world phenomenon [Mi67, KI00] occurs when relatively sparse graphs
have low diameter. Studies have shown that the graphs of movie actors, neural connec-
tions in the c.~elegans worm, and the electric power grid of the western United States
all exhibit the small-world phenomenon. The world-wide web 1s believed to have this
structure too.

E3: For several decades, mathematicians have computed their Erdos number as their
distance from the prolific mathematician Paul Erdos, in the graph where an edge joins
two mathematicians who have coauthored a paper.

E4: The premise of the 6 Degrees of Kevin Bacon game is that the graph whose
vertices are movie actors and whose edges join two actors appearing in the same movie
has diameter at most 6.

E5: In computer and communications networks, a message is typically broadcast from
one site s to all others by passing it down a shortest path tree from s.

E6: To solve a puzzle like Sam Lloyd’s “15 puzzle”, we can represent each position
by a vertex. A directed edge (¢, j) exists if we can legally move from ¢ to j. We seek a
shortest path from the initial position to a winning position.
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Ordered Trees

DEFINITIONS

D5: In arooted tree, a vertex x is an ancestor of a vertex y, and y is a descendant
of &, if there is a path from « to y whose edges all go from parent to child. By convention
z is an ancestor and descendant of itself (e.g., in the tree of Figure 10.1.1 vertex e has
3 descendants).

D6: Vertex z is a proper ancestor {descendant) of vertex y if it is an ancestor
(descendant) and z # y.

D7: An ordered treeis a rooted tree in which the children of each vertex are linearly
ordered. In a plane drawing of such a tree, left-to-right order gives the order of the

children. (The leftmost child is first.)

D8: Vertex z 18 to the left of vertex y if some vertex has children ¢ and d, with ¢ to
the left of d, ¢ an ancestor of x and d an ancestor of y.

D9: In a graph (G, a breadth-first tree T from a vertex s contains the vertices that
are reachable from s. It is an ordered tree, rooted at s. If x is a vertex at depth § in
the tree T, then the children of z in T are the vertices of (G that are adjacent in G to
z, but not adjacent (in G) to any vertex in 7" at depth less than J, or to any vertex at
depth 0 in T that is at the left of x.

FACTS

F1: Any breadth-first tree is a shortest-path tree.

F2: A high level bfs algorithm is given below as Algorithm 10.1.1. It constructs a
breadth-first tree. It starts from s, finds the vertices at distance 1 from s, then the
vertices at distance 2, etc.

Algorithm 10.1.1: Breadth-first Search

Input: directed or undirected graph G = (V| F), vertex s
QOutput: breadth-first tree 7T from s
V; = {all vertices at distance ¢ from s}

Vo = {8}
make s the root of T'
1=20
while V; # @ do /* construct Vi */
Vigi =0
for each vertex v € V; do
/x “scan” v x/
for each edge (v,w) do
if wg J; V; then
make w the next child of v in T’
add w to Vi1

t=1+1
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F3: The high-level algorithm can be implemented to run in total time O(n + m). The
main data structure is a queue of vertices that have been added to T, but whose children
in T have not been computed.

F4: In general we verify that an algorithm takes time O(n + m) by checking that it
spends constant time (i.e., O(1) time) on each vertex and edge of G.

F5: Not every shortest path tree is a breadth-first tree (e.g., the tree of Figure 10.1.1).
This does not cause any problems in applications.

F6: The diameter can be found by doing a breadth-first search from each vertex.

F7: Dijkstra’s algorithm computes a shortest path tree from s in a graph with a
nonnegative length function. It generalizes breadth-first search. Like bfs it finds the set
Vy of all vertices at distance d from s, for increasing values of d. An appropriate data
structure implements the algorithm in time O(m + nlogn) [FrTa87, CLRSO01].

10.1.2 Depth-First Search

Depth-first search (abbr. dfs) was investigated in the 19" century as a strategy
for exploring a maze [Lu82, Tarr95]. The fundamental properties of the depth-first
search tree were discovered by Hopcroft and Tarjan [HoTa73a, Ta72]. Tarjan also
developed many other elegant and efficient dfs algorithms (see §10.1.6). The idea of
depth-first search is to scan repeatedly an edge incident to the most recently discovered
vertex that still has unscanned edges.

DEFINITIONS
D10: Two vertices in a tree are related if one 1s an ancestor of the other.

D11: 1In an undirected graph G = (V| F), a depth-first tree (abbr. dfs tree) from
a vertex s is a tree subgraph 7', rooted at s, that contains all the vertices of (G that are
reachable from s.

e Edges of F(T) and E(G) — E(T) are called tree edges and nontree edges,
respectively.

e Each nontree edge is also called a back edge.

The crucial property is that the two endpoints of each back edge are related.

D12: In an undirected graph G, a depth-first spanning forest is a collection of
depth-first trees, one for each connected component of G. Each vertex of G belongs to
exactly one tree of the forest.

D13: Let G = (V, E) be a directed graph where every vertex is reachable from a
designated vertex s. A depth-first tree from s is an ordered tree in G, rooted at s
that contains all vertices V. Each edge of T"is called a tree edge. Each nontree edge
(z,y) € E —T can be classified into one of three types:

e A back edge has y an ancestor of z.
e A forward edge has y a descendant of z.
e A cross edge joins two unrelated vertices.

The crucial property is that each cross edge (z,y) has # to the right of .
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D14: Let GG be a directed graph, in which we no longer assume that some vertex can
reach all others. A depth-first forest is an ordered collection of trees in G so that
each vertex of GG belongs to exactly one tree. The edges of GG are classified into the 4
types of edges in Definition 13 with one additional possibility:

e A cross edge can join 2 vertices in different trees as long as it goes from right to
left (i.e., from a higher numbered tree to a lower numbered tree).

EXAMPLES

E7: Figure 10.1.2 illustrates a depth-first search of an undirected graph. In drawings
of depth-first spanning trees, tree edges are solid and nontree edges are dashed. There
can be many depth-first trees with the same root. For instance the tree edge (5, 6) could

be replaced by (5,7).

Figure 10.1.2 Undirected graph and depth-first spanning tree.

E8: Figure 10.1.3 illustrates a depth-first search of a directed graph. There is 1 forward
edge, 2 back edges and 2 cross edges.

1

Figure 10.1.3 Directed graph and depth-first spanning tree.

FACTS

F8: Any vertex s of an undirected graph has a depth-first tree from s. Any vertex s of
a directed graph has a depth-first tree of the subgraph induced by the vertices reachable
from s. A high level algorithm to find such a tree is the following.
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Algorithm 10.1.2: Depth-First Search

Input: directed or undirected graph G = (V| F), vertex s
QOutput: depth-first tree T from s

make s the root of T'
DFS(s)

procedure DFS(v)
/x vertex v is discovered at this point */
for each edge (v,w) do
/x edge (v,w) is scanned (from v) at this point */
if w has not been discovered then
make w the next child of v
DFS(w)
/x vertex v is finished at this point */

F9: The procedure DFS is recursive, 1.e., it calls itself. The overhead for a recursive
call is O(1). Algorithm 10.1.2 uses linear time, O(n + m).

F10: If scanning edge (v, w) from the vertex v results in the discovery of the vertex
w, then (v, w) is a tree edge.

F11: Suppose that the graph G is undirected. For the tree 7" produced by Algorithm
10.1.2 to be a valid depth-first tree, any edge (v, w) € E —T must have v and w related
vertices. Why does T have this property? By symmetry suppose v gets discovered
before w. Then w will either be made a child of v (like edge (3,5) in Figure 10.1.2) or
a nonchild descendant of v (like edge (3,4) in Figure 10.1.2).

F12: Suppose that the graph G is directed. For T to be a valid depth-first tree, any
edge (v, w) must be one of the 4 possible types. Why does T" have this property? First
suppose v gets discovered before w. In that case w will be a descendant of v and (v, w)
will be a tree or forward edge (as in Fact 11). Next suppose v is discovered after w.
Then either v descends from w or v is to the right of w. In the former case (v, w) is a
back edge and in the latter case (v, w) is a cross edge.

F13: Algorithm 10.1.2 can be extended to a procedure that constructs a depth-first
forest F': The procedure starts with 7' = §). Tt repeatedly chooses a vertex s ¢ F, uses
DFS(s) to grow a depth-first tree T from s, and adds T to F.

F14: Algorithm 10.1.2 uses linear time. (For directed graphs a point to note is that
a vertex w gets added to only 1 tree of F. This is because once discovered, vertex w
remains “discovered” throughout the whole procedure.)

REMARKS

R1: We can test whether an undirected graph is connected in linear time, by using a
depth-first search. The trees of a depth-first search spanning forest give the connected
components.

R2: We can test whether all vertices of a directed graph are reachable from a vertex
s 1n linear time, by a depth-first search.
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Discovery Order

DEFINITIONS

D15: Discovery order is a numbering of the vertices from 1 to n in the order they
are discovered. This is also called the preorder of the dfs tree.

D16: In finish time order the vertices are numbered from 1 to n by increasing finish
time. This 1s the postorder of the dfs tree.

FACTS

F15: Most algorithms based on the depth-first search tree use discovery order. These
algorithms identify each vertex v with its discovery number, also called v. This is how
the vertices are named in Figure 10.1.3.

F16: In discovery order, the descendants of a vertex v are numbered consecutively,
with v first, followed by all its proper descendants. This gives a quick way to test if a
given vertex w descends from another given vertex v: Let v have d descendants. w 1s a
descendant of v exactly when v < w < v + d. This method can be implemented to run
in O(1) (i.e., constant) time.

REMARKS

R3: The power of depth-first search comes from its simplification of the edge structure
— the absence of cross edges in undirected graphs, and the absence of left-to-right edges
in directed graphs. Depth-first search algorithms work by propagating information up
or down the dfs tree(s).

R4: Many simple properties of graphs can be analyzed without using the full power
of depth-first search. The algorithm always works with a path in the dfs tree, rather
than with the entire dfs tree. The algorithm propagates information along the path.

R5: As a simple example of Remark 4 we give a procedure that shows an undirected
graph with minimum degree ¢§ has a path of length > J: execute DFS(s) (for any s),
stopping at the first vertex ¢ that becomes finished. The portion of tree T constructed
by this procedure is a path from s to ¢t of length > 4. The reason is that all of ¢’s
neighbors must be in the path for ¢ to be finished.

R6: Sections 10.1.3-5 deal with simpler graph properties that can be handled by
the path view of depth-first search. §10.1.6 covers deeper properties whose algorithms
require the full power of the depth-first search tree. §10.1.7 deals with both views of
depth-first search.

10.1.3 Topological Order

Topological order is the fundamental property of directed acyclic graphs. In con-
junction with dynamic programming, topological order leads to efficient algorithms for
many fundamental properites of directed acyclic graphs — even properties that are NP-
complete in general graphs.
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DEFINITIONS

D17: A dag is a directed acyclic graph, i.e., it has no cycles.
D18: A source (sink) of a dag is a vertex with indegree (outdegree) 0.

D19: A topological numbering (topological order, topological sort) of a di-
rected graph assigns an integer to each vertex so that each edge is directed from lower
number to higher number.

EXAMPLES

E9: The dag of Figure 10.1.4 has source a and sink f. Alphabetic order is a valid
topological ordering. In general a dag has many topological numberings. In this figure
12 are possible.

a

f
Figure 10.1.4 Dag and topological order.

E10: A dagcan always be drawn so that all edges are directed downwards, as in Figure
10.1.4. Topological numbers guide the vertical placement of the vertices. This principle
is useful in algorithms for drawing graphs (see Section 10.3).

E11: Prerequisite graphs in a university department are dags: if course X is a prereq-
uisite to course Y, then an arrow is drawn from X to Y. There cannot be a cycle, else no
one could graduate! The course numbering is a topological numbering: a prerequisite
to a course always has a lower number.

E12: A combinational circuit is a collection of logic gates and interconnecting wires,
with no feedback. The no-feedback property makes it a dag.

E13: A graph of program dependencies is a dag (assuming no recursion is allowed).
For instance the dependencies specified by a makefile is a dag. The make utility always
ensures that a file’s timestamp is no later than the timestamp of any dependent file.
Thus the timestamps form a topological numbering.

E14: The formulas in a spreadsheet depend on one another, and this dependence
relation is a dag. When the value of a cell is changed, the values of dependent cells are
recalculated in topological order.

E15: In ecology, a food web is a graph whose vertices are the species of an ecosystem.
An arrow 1s drawn from one species to all the other species it preys upon. This model
is commonly assumed to be a dag, to disallow cycles in the food chain.
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FACTS

F17: Every dag has one or more sources and one or more sinks. This can be seen by
examining a path of maximal length. The first (last) vertex must be a source (sink),
since otherwise the path could be extended at the beginning (end).

F18: A graph with a topological numbering is a dag. To see this observe that topo-
logical numbers increase along a path, so a path cannot return to its starting vertex.
Thus no cycle exists.

F19: Any dag has a topological numbering. To construct such a numbering with
lowest number 1, assign the lowest number to a source s. Then proceed recursively on
the dag G — s, using lowest number 2.

F20: One can similarly construct a topological numbering by repeatedly numbering a
sink s with the highest number, and proceeding recusively on dag G — s.

F21: The strategy of Fact 20 can be implemented efficiently by depth-first search. The
reason 1s that as we grow a depth-first path in a dag, the first vertex to become finished
is a sink. More succinctly, we can grow a depth-first path until a sink is reached. This
gives the following high-level algorithm.

Algorithm 10.1.3: Topological Numbering (High Level)
Input: dag G = (V, E)

Output: topological numbering of G: vertex v has number I[v]
repeat until G has no vertices:

grow a dfs path P until a sink s is reached
set I[s] = n, decrease n by 1 and delete s from P & G

To make this algorithm efficient, each iteration grows the dfs-path P by starting with
the previous P and extending it, if possible.

F22: A lower level implementation of Algorithm 10.1.3 runs in linear time. The idea
is to use array I[1..n] for 2 purposes:

[] = { 0 if v has never been in P

t if v has been deleted and assigned topological number ¢

I

Algorithm 10.1.4: Topological Numbering (Lower Level)
Input: dag G = (V, E)

Output: topological numbering of G: vertex v has number I[v]

num = n;
for each vertex v do I[v] =0
for each vertex v do if I[v] = 0 then DFS(v)

procedure DFS(v)
for each edge (v,w) do
if T[w] = 0 then DFS(w)
/* v is now a sink in the high level algorithm */
I[v] = num; decrease num by 1
/* v is now deleted in the high level algorithm */
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F23: Algorithm 10.1.4 runs in linear time. It spends O(1) time on each vertex and
edge.

EXAMPLE
E16: Figure 10.1.5 illustrates how the algorithm numbers the dag of Figure 10.1.4.

a a a a a ®a
I[a]=1
b b b b e
I[b]=3 I[e]=2
c c d
I[c]=5 1[d]=4
f
1[f]=6

Figure 10.1.5 Execution of topological numbering algorithm.

FACTS

F24: Listing the vertices in order of decreasing finish time (Definition 16) is a valid
topological order.

F25: Tarjan’s algorithm for topological order [Ta74b, CLRS01] is based on Fact 24.
Algorithm 10.1.4 is a reinterpretation of Tarjan’s algorithm.

To illustrate this, Figure 10.1.6 shows a dfs tree for Figure 10.1.4. Each vertex is
labelled by its name and finish number. Subtracting each finish number from 7 gives
the topological number of Figure 10.1.5.

f,1

Figure 10.1.6 Topologically numbering by finish times.

F26: Another linear-time topological numbering algorithm [Kn73] works by repeatedly
deleting a source. The algorithm maintains a queue of sources, as well as the in-degree
of each vertex. If the in-degrees are not initially available this algorithm can do more
work than Algorithm 10.1.4, since it makes two passes over the graph.

F27: Dag algorithms often propagate information from higher topological numbers
to lower, either after scanning each edge (v, w) or at the end of DFS(v). Propagating
information in the opposite direction is also possible.
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F28: As an example suppose each edge ¢ of a dag GG has a real-valued length £[e]. We
can find the longest path in G in linear time. The idea is to set d[v] to the length of
a longest path starting at v. These values d[v] can be computed in reverse topological
order, using the recurrence

d[v] = max{0, £[v, w] + d[w] : (v,w) € E}
It is easy to modify DFS to calculate these values.

The algorithm can recover the longest path from the d[ ] values in a second pass. The
second pass can be faster if the first pass stores a pointer for each vertex indicating
its successor on its longest path. Longest paths are useful in critical path scheduling.
Finding the longest path in a general graph is NP-complete.

F29: Similar algorithms can be used to calculate the longest path from s to ¢, shortest
paths from a vertex s, etc.

F30: More generally Fact 28 illustrates how the technique of dynamic programming
can be used to solve problems on dags. Dynamic programming is based on similar

recurrences [CLRSO01].

EXAMPLE

E17: Figure 10.1.7 illustrates how the algorithm finds a longest path in a dag. Edges
are labelled with their length, and vertices are labelled with their d[ ] values. The longest
path corresponds to the largest d[ ] value, which is 5; it is the upper path from source
to sink.

Figure 10.1.7 Longest path algorithm.

10.1.4 Connectivity Properties

Depth-first search is the method of choice to calculate low order connectivity in-
formation. This section surveys notions of 1- and 2- connectivity. It starts with 1-
connectivity of directed graphs, and then examines 2-connectivity of undirected graphs.
These connectivity algorithms are originally due to Tarjan [Ta72]. This section follows
the path-based development of [Ga00], which simplifies the algorithms to eliminate the
depth-first spanning tree.

Strong Components of a Directed Graph
In this section, G = (V, E) is a directed graph.

DEFINITIONS

D20: For two vertices u and v, a uv-path is a path starting at v and ending at v.
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D21: A directed graph G = (V, E) is strongly connected if for every two distinct
vertices u and v, there 1s a uv-path and a vu-path.

D22: In general, a directed graph will not be strongly connected. But the vertices can
be partitioned into blocks that are strongly connected, according to this definition: two
vertices u & v are in the same strong component (SC) if and only if they can reach
each other, 1.e., there 1s a uv-path and a vu-path. This defines a partition of V since it
1s an equivalence relation.

D23: For any directed graph, contracting each SC to a vertex gives the strong com-
ponent graph (SC graph).

D24: A tournamentis a directed graph G such that each pair of vertices is joined by
exactly one edge. This models a round robin tournament, where edge (#, y) represents
the fact that player x beat player y.

FACTS

F31: Let C' be acyclein a graph G. All vertices of C' are in the same SC. Contracting
the vertices of cycle C' to a single vertex yields a graph with the same SC graph as G.

F32: The SC graph is always a dag. This follows from Fact 31.

F33: A topological numbering of the SC graph of a tournament gives a ranking of the
players. To see why, note that if player x is in an SC with lower topological number
than y, then the tournament contains the edge (z,y) (not (y,«)). Thus SC number
1 contains the players that are unequivocally in the top tier — they all beat all other
players. SC number 2 contains the 2nd tier players — they all beat all other players
except those in tier 1, etc.

F34: All the vertices on a cycle belong to the same SC. In fact the SC graph is formed
by repeatedly contracting cycles, until no cycle remains.

F35: A sink s is a vertex of the SC graph. In fact the SC’s are {s} and the SC’s of
G —s.

F36: Facts 34-35 justify the following high-level algorithm for finding the SC graph.
It repeatedly contracts a cycle or deletes a sink.

F37: Next we present a linear-time depth-first search algorithm for finding the strong
components and the SC graph of a given directed graph.

Algorithm 10.1.5: Strong Components

Input: directed graph G = (V, E)
Qutput: strong components of &G

repeat until G has no vertices:
grow a dfs path P until a sink or a cycle is found
sink s: mark {s} as an SC & delete s from P & G

cycle C': contract the vertices of C

Like Algorithm 10.1.3, for efficiency each iteration grows P by starting with the previous
P and extending it, if possible.

F38: The algorithm has a low-level implementation that finds the SC graph in linear
time [Ga00]. Sinks are deleted similar to Algorithm 10.1.3. Cycles are contracted using
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a stack to represent P and another stack to give the boundaries of contracted vertices
in P.

F39: The algorithm discovers each SC as a sink of the SC graph. So the SC’s can be
numbered in topological order by the method of Algorithm 10.1.3.

F40: The first linear-time algorithm for strong components is due to Tarjan [Ta72].
It computes a value called lowpoint(v) for each vertex v. lowpoint(v) is the lowest-
numbered vertex (in preorder) in v’s SC that is reachable from v by a path of (0 or
more) tree edges followed by a back or cross edge (lowpoint(v) equals v if no smaller
numbered vertex can be reached). The vertices with lowpoint(v) = v are the “roots” of
the strong components.

F41: A third linear-time strong component algorithm is due to Sharir [Sh81] and
Kosaraju (unpublished; see also [CLRSO01]). Tt does a depth-first search, followed by a
second depth-first search on the reverse graph. This makes good sense — the first search
discovers which vertices can reach which others, and the second search discovers which
vertices can be reached by which others.

EXAMPLES

E18: Figure 10.1.8 shows a directed graph, its three strong components, and its SC
graph. Each strong component is strongly connected.

1 1

\VAN/

Figure 10.1.8 Strong components of a directed graph.

{2,4,5,6}

An elementary misperception i1s that a strongly connected graph has a Hamiltonian
cycle. The component {2,4,5,6} illustrates that this is not always true.

E19: Tigure 10.1.9 gives a dfs tree of Figure 10.1.8. (To better illustrate the algorithm
a different dfs from Figure 10.1.8is used.) Each vertex is labelled by its preorder number
followed by its lowpoint value.

1(1,1)

2(3,3)

14(4,3)

6(6,4)

Figure 10.1.9 Execution of strong component algorithm.
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E20: Suppose we number the vertices of an arbitrary directed graph by topologically
numbering the SC graph, and then listing first the vertices in SC number 1, then
the vertices in SC number 2, etc. The adjacency matrix of the graph with new vertex
numbers is upper block triangular. This is because no edge goes from a higher numbered
SC to a lower numbered SC. For instance Figure 10.1.9 gives the adjacency matrix below.
It is upper triangular except for the block corresponding to SC {b,d, e}.

abdec

OO QT
[cNeoNoNoNe]
OOPFrOoOr
OPrOOor
QOO RrEF
OrPFrPF

Figure 10.1.10 Upper block triangular adjacency matrix.

E21: Example 20 shows how the SC graph is used to speed up operations on sparse
matrices like Gaussian elimination, matrix inversion, finding eigenvalues, etc. The given
matrix M is interpreted as a directed graph, with m;; corresponding to edge (¢, j). The
adjacency matrix of Example 20 is constructed, and the 1 for each edge (¢, ) is replaced
by the value m;;. The resulting block upper triangular matrix has less fill-in for Gaussian
elimination and nice properties for other matrix operations [Ha69].

E22: Figure 10.1.11 below illustrates the execution of the algorithm on the graph of
Figure 10.1.8.

1 1 1 1 1 ol
{1}an sC

2 (2.4,5) (2.4.5) (2.4,5) {2,4,5,6}
{2,456} an SC

i 4 6 6
5 3
{3}an SC

Figure 10.1.11 Execution of strong component algorithm.

E23: Figure 10.1.12 below shows a tournament and its SC graph. Player a is first,
players b, d, e are in the 2nd tier, and player c is last.

E24: A Markov chain is irreducible if the graph of its (nonzero) transition probabilities
is strongly connected.
REMARK

R7: The algorithm of Fact 41 is very simple to code and is covered in many textbooks.
It can be appreciably slower than the other two algorithms, because it makes two passes
over the graph and has larger memory requirement.
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b : N

fat {bd.e} {c}

d e

Figure 10.1.12 Tournament and its SC graph.

Bridges and Cutpoints of an Undirected Graph
In this section G = (V, E) is a connected undirected graph.

DEFINITIONS

D25: A vertex v is an cutpoint (articulation point) if G — v is not connected. A
graph is biconnected if it has no cutpoint.

D26: A biconnected component is a maximal subgraph that has no cutpoint.

D27: An edge e is a bridge if G — e is not connected. An edge is a bridge if and only
if it’s not in any cycle. A graph is bridgeless if it has no bridges.

D28: Let B be the set of all bridges of (. The bridge components (BCs) of G are
the connected components of G — B. Equivalently a BC is the induced subgraph on a
maximal set of vertices, any of which can reach any other without crossing a bridge.

D29: Contracting each BC to a vertex gives a tree, the bridge tree.

D30: An orientation of an undirected graph assigns a unique direction to each edge.
D31: A perfect matching of an undirected graph G is a spanning subgraph in which
every vertex has degree exactly 1.

TWO EXAMPLES

E25: Figure 10.1.13 shows a graph with 3 bridges, 6 cutpoints, and 7 biconnected
components. It illustrates that an end of a bridge 1s a cutpoint unless it has degree one.
However, a cutpoint need not be the end of a bridge.

Figure 10.1.13 Undirected graph with bridges and cutpoints.
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E26: If a communications network (e.g., Internet) has a bridge, that link’s failure
disables communication, i.e., there are sites that cannot send messages to each other. If
the network has an articulation point, that site’s failure also disables communication.

FACTS

F42: All vertices on a cycle are in the same BC. In fact the bridge tree is formed by
repeatedly contracting cycles.

F43: A vertex x of degree < 1 is a vertex of the bridge tree. In fact the BC’s are {z}
and the BC’s of G — z.

F44: Facts 42 and 43 justify the following high level algorithm for finding the bridges
and bridge tree. It has a linear-time implementation almost identical to Algorithm
10.1.5, the strong component algorithm. We call the last vertex z of a dfs path a dead
end if x has degree < 1.

Algorithm 10.1.6: Bridges

Input: connected undirected graph G = (V, E)
Output: bridge components and bridges of G

repeat until G has no vertices:
grow a dfs path P until a cycle is found or a dead end is reached
cycle C': contract the vertices of C
dead end z: mark {z} as a BC
if  has degree 1, then mark its edge as a bridge (of &)

F45: A similar linear-time algorithm finds the cutpoints and biconnected components
of an undirected graph [Ga00].

F46: The original linear-time dfs algorithm of Hopcroft and Tarjan for cutpoints and
biconnected components [Ta72] is based on the idea of lowpoints (recall Fact 40).

Start with a dfs tree T'. Assume that the vertices are numbered in discovery order and
that each vertex is identified with its discovery number. Define

lowpoint(v) = min{v} U {w : some back edge goes from a descendant of v to w}
Hopcroft and Tarjan proved that G is biconnected if and only if

(1) vertex 1 has exactly one child (which must be vertex 2);

(i1) lowpoint(2) = 1;

(iii) each vertex w > 2 has lowpoint(w) < v, where v is the parent of w.
The cutpoints have a similar characterization.
Lowpoint is easy to compute in a bottom-up pass over 7', since

lowpoint(v) = min{v} U {lowpoint(w) : w a child of v} U {w : (v, w) a back edge}

MORE EXAMPLES

E27: Figure 10.1.14 below illustrates the execution of the bridge algorithm on the
graph of Figure 10.1.13.
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1 1 {1,..,10} {1,..,10} {1,..,10} o {1...,10}
{1,..,10}aBC
2 2 {11,12,13} {11,12,13} {11,12,13}
{11,12,13} a BC,
(11,2) a bridge
3 3 14 15
{14yaBC, {15}a BC,
(14,12) a bridge (15,13) a bridge
4 4
{5.,6,7} "o {5..-.,10}

Figure 10.1.14 Execution of bridge algorithm.

E28: Figure 10.1.15 below illustrates Robbins’s Theorem that a connected undi-
rected graph has a strongly connected orientation if and only if it is bridgeless [Ro39].
If one of the horizontal edges is deleted, making the other a bridge, then the graph has
no strongly connected orientation.

] <

Figure 10.1.15 Undirected graph and strongly connected orientation.

E29: Kotzig’s Theorem [KoT79] states that a unique perfect matching must contain
a bridge of GG. Figure 10.1.16 shows a graph with a unique perfect matching — matched
edges are drawn heavy. Note that deleting the bridge of the matching gives another
graph with a unique perfect matching. This idea can be used to efficiently find a unique
perfect matching or show it does not exist [GaKaTa01].

Figure 10.1.16 Graph with a unique perfect matching.

E30: Whitney’s Flipping Theorem asserts that a graph is planar if and only if
each biconnected component is planar [Wh32a].

10.1.5 DFS as a Proof Technique

In addition to being a powerful algorithmic tool, depth-first search can be used
to easily prove many theorems of graph theory. (It’s a handy way to remember the
theorems too!) This subsection gives several examples.
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DEFINITIONS
D32: A mixed graph G can have both directed and undirected edges.

D33: A mixed graph G is traversable if every ordered pair of vertices u,v has a
uv-path with all its directed edges pointing in the forward direction. (Traversability
is equivalent to connectedness if G is undirected and to strong connectedness if G is

directed.)

D34: A bridge in a mixed graph is an undirected edge that is a bridge of G when
edge directions are ignored.

D35: An orientation of a mixed graph assigns a unique direction to each undirected

edge.

EXAMPLES

E31: Robbins’s Theorem can be proved using the high-level bridge algorithm (Algo-
rithm 10.1.6) and the strong components algorithm (Algorithm 10.1.5). When the BC
algorithm is executed on a bridgeless graph G, it ends with G contracted to a single
vertex. But if the SC algorithm ends with the entire graph contracted to a single ver-
tex, then the initial graph is strongly connected. So orient the given undirected graph
G to make the execution of the SC algorithm on the orientation mimic the execution
of the BC algorithm on G. To do this orient edges that extend the dfs path or cause
contractions (in the BC algorithm) so they do the same in the SC algorithm.

This is illustrated in Figure 10.1.17, which shows how a depth-first search executed
on the undirected graph of Figure 10.1.15 gives the orientation shown in that figure.
Enlarged hollow vertices are contractions of original vertices.

Figure 10.1.17 Dfs proof of Robbins’s Theorem.

E32: The same approach proves a generalization of Robbins’s theorem by Boesch and
Tindell [BoTi80] that a traversable graph has a strongly-connected orientation if and
only if it has no bridge. It can be proved using Algorithm 10.1.5, with the sink rule
replaced by a rule for a “l-sink”, i.e., a vertex with no leaving directed edge and only
one incident undirected edge.

E33: Kotzig’s Theorem can be proved by dfs [GaT9]. We illustrate by proving a simple
special case: a bipartite graph with a unique perfect matching has a vertex of degree one.
The idea is to grow a dfs path P two edges at a time, repeatedly adding an unmatched
edge (z,y) and the matched edge containing y. When the path cannot be extended the
last vertex y has degree 1. If not a back edge from y creates an even length cycle, whose
edges yield another perfect matching as shown in Figure 10.1.18 below.

A linear-time dfs algorithm for testing if a perfect matching is unique 1s given in

[GaKaTa01].

E34: Rédei’s Theorem [Re34] states that any tournament has a Hamiltonian path,
i.e., a simple path through all its vertices. This is easy to see by dfs: listing the vertices
in order of decreasing finish time gives a Hamiltonian path.
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Figure 10.1.18 Dfs proof of Kotzig’s Theorem.

10.1.6 More Graph Properties

The basic properties of depth-first search were developed by Hopcroft and Tarjan as
stepping-stones to their goal of an efficient planarity algorithm. This subsection starts
by surveying the high-level principles of the planarity algorithm. It then surveys other
important properties that can be decided by efficient dfs algorithms. The depth-first
tree plays a central role in all these algorithms.

Planarity Testing

The first complete linear-time algorithm to decide whether or not a graph 1s planar is
due to Hopcroft and Tarjan. This property has obvious applications to graph drawing,
circuit layout, etc. This section gives the high-level depth-first approach.

DEFINITIONS
D36: Let G be a biconnected graph with a cycle C'. The edge set £ — E(C') can be

partitioned into a family of subgraphs called segments as follows:

(1) An edge not in C that joins 2 vertices of C' is a segment.

(ii) The remaining segments each consist of a connected component of G — V(C),
plus all edges joining that component to C'.

D37: Two segments S, T of a cycle C' in a graph interlace either if |[V(S) N V(T) N
V(C)| > 3, or if there are 4 distinct vertices u,v,w,z that occur along cycle C' (not
necessarily consecutively) in that order such that u,w € S and v,z € T.

EXAMPLE

E35: Tigure 10.1.19 below shows a cycle C' (dotted) with 5 segments. Segments Sy
and S, interlace, and Sy interlaces with both S3 and Ss.

FACTS

F47: By Whitney’s Flipping Theorem (Example 30), one can test planarity by treating
each biconnected component separately.

F48: The graph theoretic approach used by Hopcroft and Tarjan is the following
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Figure 10.1.19 Planar graph with interlacing segments.

theorem of Auslander and Parter [AuPa61]: a biconnected graph G is planar if and
only if
(a) C'U S is planar for every segment S

(b) the segments can be partitioned into two families such that no two segments in
the same family interlace.

The necessity of both (a) and (b) is clear. An outline of a complete proof of this theorem
is given in [Ev79].

F49: Here is the overall structure of the algorithm of Hopcroft and Tarjan [HoTa74]
which decides in linear time whether or not a graph is planar. Each biconnected com-
ponent is processed separately.

A depth-first spanning tree of the component is found.
A cycle C 1s chosen, consisting of a path in the dfs tree plus one back edge.
Then segments are found:

(1) each back edges that joins two vertices of C' is a segment;

(ii) each remaining segment S is determined by a vertex w ¢ C' whose parent
isin C'. The edges of S are those edges with at least one endpoint descending
from w. (Specifically, this amounts to the tree edge joining w to its parent,
plus all edges of the subtree rooted at w, plus all back edges that join two
descendants of w or join a descendant of w with a vertex of C.)

The algorithm processes each segment S recursively, checking that ¢'U.S is planar
and S can be added to an imbedding of all subgraphs processed so far. (The latter
uses the interlacing criterion.)

F50: A number of additional ideas are used to achieve linear time. The lowpoint
values (Fact 46) are used to guide the construction of cycles C'. In fact the “second
lowpoint” is also used. A second depth-first search is done for cycle generation. The
planarity algorithm is intricate, but is very fast in practice.
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Triconnectivity

Hopcroft and Tarjan show how to find the triconnected components in linear time
[HoTa73b]. Like their planarity algorithm the approach is based on segments.

DEFINITIONS

D38: An undirected graph is triconnected if it is connected and remains so whenever
any two or fewer vertices are deleted.

D39: Two vertices in a biconnected graph form a separation pair if deleting them
leaves a disconnected graph.

There is a natural definition of the triconnected components of a graph.

EXAMPLE

E36: In Figure 10.1.19 above there are 5 separation pairs: a,b; a,c; d,e; e, f; and
g, h.

FACTS

F51: The following characterization of the separation pairs is easy to prove. Let GG be
a biconnected graph with a cycle C'. Let a,b be a separation pair. Then a and b either
both belong to C' or both belong to a common segment. Moreover, suppose a and b
both belong to C'. Then either

(a) some segment S has V(S) NV (C) = {a,b} C V(S); or

(b) C — {a, b} consists of two nonempty paths, and no segment contains a vertex
of both paths.

(The symbol “C” denotes proper set containment.)

F52: The triconnectivity algorithm applies the characterization of Fact 51 recursively.
Hopcroft and Tarjan’s triconnectivity algorithm shares algorithmic ideas with their pla-
narity algorithm.

F53: Another useful fact is that the two vertices of a separation pair are related
(Definition 10).

Ear Decomposition and st-numbering

DEFINITIONS

D40: An open ear decomposition of an undirected graph is a partition of the edges
into a simple cycle Py and simple paths Py, ..., P such that for each ¢ > 0, P; is joined
to previous paths only at its (2 distinct) ends, i.e., V(F;) NV (U;j<;P;) consists of the 2
ends of P;. (The concept, but not the name, is due to Whitney.)

D41: Let (s,t) be any edge of a biconnected graph. An st-numbering numbers the
vertices from 1 to n so that s 1s numbered 1, ¢ 18 numbered n, and every other vertex
has both a higher-numbered neighbor and a lower-numbered neighbor.
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EXAMPLE

E37: Figure 10.1.20 shows an ear decomposition consisting of cycle Py and simple
paths Py, ..., Ps. The 15 vertices are numbered in an st-numbering (corresponding to
the ear decomposition).

Figure 10.1.20 Ear decomposition and st-numbering of a biconnected graph.

FACTS

F54: Whitney [Wh32b] proved that an undirected graph is biconnected if and only if
it has an open ear decomposition.

F55: An algorithm based on lowpoint values can be used to find an open ear decom-
position of a biconnected graph in linear time (pathfinder in [EvTa76], although the
term “ear decomposition” is not used).

F56: An open ear decomposition with (s,¢) € Py can be used to give an st-numbering
in linear time [EvTa76].

REMARK

R8: st-numbering is the basis of the linear-time planarity algorithm of Lempel, Even
and Cederbaum [LeEvCe67]. Tt constructs a planar imbedding by repeatedly adding a
vertex. More precisely it starts with an imbedding of one vertex and its incident edges.
Then it repeatedly adds all edges incident to the next vertex, updating the imbedding.
The vertices are added in st-order.

R9: Ear decomposition is closely related to depth-first search. An open ear decompo-
sition can be found efficiently on parallel computers with large numbers of processors;
the same cannot be said for doing a depth-first search. Efficient parallel algorithms for
bi- and triconnectivity and planarity are based on ear decomposition [Ra93].

Reducibility

DEFINITIONS

D42: A (program) flow graph is a directed graph with a distinguished vertex 7,
the start vertex, that can reach every vertex.
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D43: A flow graph is reducibleif it can be transformed into the single vertex » by a
sequence of operations of the following type:
if (v,w) is the only edge entering w and if w # r, then contract edge (v, w) to
vertex v.

(The contraction operation discards parallel edges and self-loops.)
D44: We define a problem in data structures that arises in many dfs algorithms (and

other contexts). A universe of n elements is given. The problem is to maintain a
partition P of this universe into sets.

Initially each element forms a singleton set of P.

Partition P is updated by the operation union(A, B), which replaces two sets A
and B of P by their union A U B.

A second operation find(x) computes the name of the set currently containing
element .

The set-merging problem is to process a sequence of m intermixed union and find
operations.

EXAMPLE

E38: Figure 10.1.21 shows an irreducible flow graph. In fact, this flow graph gives a
forbidden subgraph characterization of reduciblity: a flow graph is reducible if and only
if it does not contain a subgraph consisting of 4 vertices r, a,b, ¢ (where r and a may
coincide but otherwise the vertices are distinct) joined by vertex disjoint paths from r
to a, atob, atoec, btocandctobd.

Figure 10.1.21 Irreducible flow graph.

REMARK

R10: Flow graphs model the stucture of computer programs. Any program without
goto’s has a reducible flow graph. Many methods for code optimization (e.g., eliminating
common subexpressions, identifying active variables, finding useless definitions, etc.)

depend on the graph being reducible [AhSeUl86].

FACTS

The starting point of a linear-time reducibility algorithm of Tarjan [Ta74a] for flow
graphs is a reformulation of reducibility. It produces the sequence of contractions that
reduce it to the start vertex. For each vertex w in a dfs tree of a flow graph, we define

I(w) = {v : there is a simple vw-path ending with a back edge (to w)}
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F57: [Ta74a] A flow graph is reducible if and only if every set I(w) consists only of
descendants of w.

F58: [Ta74a] Assume that the vertices of the flow graph are indexed by preorder
number. Let w be the largest vertex (in preorder) with an entering back edge. Suppose
that I(w) consists only of descendants of w. If we contract the vertices of I(w) into
vertex w, then the new graph is reducible if and only if the original was.

F59: Fact 58 specifies a sequence of contractions that substantiate the reducibility of
a graph. The sets T(w) can be computed simply by scanning edges in the backwards
direction, starting at w. If a nondescendant of w is ever reached, then the graph is not
reducible. The efficient descendance test of Fact 16 is used.

F60: The contractions performed by the algorithm change the vertex set of the graph.
At all times the vertices of the current graph form a partition of the original vertex set.
This partition is manipulated by the union and find operations (Definition 44).

F61: The best known algorithm for set-merging is based on the so-called weighted
union and path compression rules. Tarjan showed that this algorithm solves the set-
merging problem in time O(ma(m,n)). Here « is an inverse of Ackermann’s function
and is very slowly growing [Ta75, CLRS01].

F62: Gabow and Tarjan [GaTa85] showed that a special case of the set-merging prob-
lem can be solved in linear time. Using this special case algorithm makes the reducibility
algorithm run in linear time.

F63: Suppose the vertices are numbered in discovery order. If v < w then any vw-path
contains a common ancestor of v and w [Ta72]. This property holds in both directed
and undirected graphs.

EXAMPLE

E39: Figure 10.1.22 shows a depth-first spanning tree of a flow graph with the vertices
labelled by discovery number. Any path from vertex 5 to vertex 8 passes through one
or both of the common ancestors of 5 and 8§, 1.e., vertices 1 and 2.

Figure 10.1.22 Depth-first search with preorder numbers.

Two Directed Spanning Trees

DEFINITIONS

D45: In a flow graph, an r-tree is a directed spanning tree rooted at start vertex r.
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D46: Consider a dfs tree with root r. Edge (v, w) is a (directed) bridge in a flow
graph if every rw-path includes (v, w).

EXAMPLE

E40: In Figure 10.1.21 edge (r,a) is a bridge. Duplicating it gives a graph with 2
edge-disjoint r-trees (the directed paths r, a,b,c and 7, a, ¢, b).

FACTS

Consider a dfs tree with root r. For any vertex w define

I(w) = {v : there is a simple vw-path containing only descendants of w}

Clearly the path of this definition ends in a back edge to w (unless v = w). Note the
similarity with Fact 57.

F64: A flow graph has two edge-disjoint r-trees if and only if each vertex v # r has two
edge-disjoint paths rv-paths (recall Definition 20). This is a special case of Edmonds’s
Branching Theorem which is the same statement generalized from 2 to any k > 2

[EA72].
F65: A flow graph has 2 edge-disjoint r-trees if and only if there are no bridges.

F66: Tarjan presents a linear-time algorithm to find 2 edge-disjoint r-trees if they
exist [Ta74a]. More generally in an arbitrary flow graph the algorithm finds 2 7-trees
that contain the fewest possible number of common edges. The more general problem
is solved by identifying the bridges and duplicating each of them. This gives a graph
with 2 edge-disjoint r-trees (Fact 65).

F67: In terms of dfs, an edge (v, w) is a bridge if and only if (v, w) is a tree edge and is
the only edge entering I(w). Tarjan’s algorithm identifies the bridges using techniques
similar to the reducibility algorithm. Computing the trees is more involved.

F68: The algorithm performs set-merging to keep track of the contracted vertices, as
in the reducibility algorithm. As in that algorithm the data structure of [GaTa85] is
used to achieve linear time.

Dominators

DEFINITIONS

D47: In a flow graph with start vertex r, vertex v dominates vertex w # v if every
rw-path contains v.

D48: The immediate dominator of w, denoted idom(w), is a vertex v that domi-
nates w such that every other dominator of w dominates v.

D49: The dominator tree is a tree T whose nodes are the vertices of G. The root
of T is the start vertex r. The parent of a vertex v # r is idom(v).

D50: The internal vertices of a path are all its vertices except the endpoints.

D51: Consider a dfs tree with root . For every vertex w # r, the semidominator
of w, sdom(w), is defined by

sdom(w) = min{v : some vw-path has all its internal vertices > w}
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EXAMPLE

E41: Figure 10.1.23 shows the dominator tree for the graph of Figure 10.1.22. Note
that vertex 2 does not dominate 3 because of path 1,6,7,8,5,3. The start vertex 1 is
the semidominator of every vertex except two: sdom(7) = 2, sdom(8) = 7. Although
vertex 1 is the immediate dominator of 7 it is not the semidominator of 7.

Figure 10.1.23 Dominator tree for Figure 10.1.22.

FACTS

F69: The basic properties of dominance are due to Lowry and Medlock [LoMe69]:
Every vertex except r has a unique immediate dominator. This justifies the notion of
dominator tree. A vertex v dominates w if and only if v is a proper ancestor of w in
the dominator tree.

F70: Lengauer and Tarjan [LeTa79] give an efficient algorithm to find the dominator
tree T. Tt is a refinement of an earlier dfs algorithm of Tarjan [Ta74b].

F71: TFor any vertex w, sdom(w) is a proper ancestor of w. This follows from Fact 63.
Semidominators are useful because of the next two facts proved by Lengauer and Tarjan:

F72: Take any vertex w # r. Let u be a vertex with minimum value sdom(u) among
all vertices in the tree path from sdom(w) to w, excluding sdom(w). Then

idom(w) = {

sdom(w) if sdom(w) = sdom(u)
idom(u)  otherwise

F73: Semidominators can be computed by a recursive definition:

sdom(w) =min{v : (v, w) an edge} U
{sdom(u) : v > w and some edge goes from a descendant of u to w}
(Note the similarity with lowpoint in Fact 46.)
F74: The algorithm of Lengauer and Tarjan [LeTa79] computes semidominators us-

ing Fact 73 in a backwards pass (i.e., w is decreasing). Then it computes immediate
dominators using Fact 72 in a forwards pass.

F75: The time for the algorithm is O(ma(m, n)). An implementation of this algorithm
in linear time is presented in [AlHaLaTh99].

10.1.7 Approximation Algorithms

Finding small spanning subgraphs with prespecified connectivity properties is usu-
ally a difficult (NP-hard) problem. For example, finding a bridgeless spanning subgraph
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with the fewest possible number of edges is NP-hard. (The reason is that this subgraph
contains n edges if and only if there is a Hamiltonian cycle.)

Depth-first search has been used to design good approximation algorithms for such
difficult problems. Here the goal is to find a subgraph that has all the desired properties
except that instead of having the fewest possible number of edges, 1t is within a small
constant factor of this goal. This section surveys the use of depth-first search in approx-
imation algorithms for connectivity properties. Other dfs approximation algorithms are
surveyed in [Kh97].

DEFINITIONS

D52: Consider an optimization problem that seeks to find a smallest feasible solution
OPT. An a-approximation algorithm is a polynomial-time algorithm that is guar-
anteed to find a solution of size at most «|OPT| [CLRS01]. For the graph problems of
this section, the size of the solution is the number of edges.

D53: The smallest bridgeless spanning subgraph of a connected bridgeless undi-
rected graph is a bridgeless spanning subgraph with the minimum possible number of
edges.

D54: An undirected graph is k-edge connected if it is connected and remains so
when any set of fewer than k edges is deleted. This concept makes good sense for a
multigraph. A k-ECSS is a k-edge connected spanning subgraph; the graph is assumed
to be k-edge connected. So a bridgeless spanning subgraph is a 2-ECSS. A smallest
k-ECSS has the fewest possible number of edges. From now on instead of “smallest
bridgeless spanning subgraph”, we use the shorter equivalent phrasing, “smallest 2-

ECSS”.

ALGORITHM

Approximation algorithms for the smallest 2-ECSS are our first concern. A 2-approxi-
mation can be designed from Algorithm 10.1.6 in a straightforward way. Khuller and
Vishkin [KhVi94] were the first to go beyond this. They presented an elegant dfs
algorithm based on a “tree carving” using the dfs tree. The following modification of
Algorithm 10.1.6 is a path-based reinterpretation of their algorithm.

Algorithm 10.1.7: Smallest 2-ECSS Approximation

Input: bridgeless undirected graph G = (V, E)
Output: edge set F' C E, a 3/2-approximation to the smallest 2-ECSS

F=40
repeat until G has 1 vertex:
grow a dfs path P until its endpoint & has all neighbors belonging to P
let y be the neighbor of # closest to the start of P
let C be the cycle formed by edge (#,y) & edges of P
add all edges of C' to F

contract the vertices of C

EXAMPLE

E42: Figure 10.1.24 below gives a sample execution of the algorithm. The given graph
on top has a Hamiltonian cycle, so the smallest 2-ECSS has n edges.
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The algorithm grows the depth-first path of solid edges shown in the middle, start-
ing from 7. It then adds the dashed edges.

A typical edge addition is illustrated in the bottom graph, where the enlarged
hollow vertex is the contraction of the last vertices on the path.

As n approaches oo, the algorithm’s solution approaches 3n/2 edges: n solid edges and
n/2 dashed edges. So the approxmation ratio approaches 3/2.

Figure 10.1.24 Smallest 2-ECSS approximation algorithm.

FACTS

Good approximation algorithms require good lower bounds on the size of the optimum
solution. We analyze this algorithm using 2 lower bounds.

F76: The Degree Lower Bound says that any 2-ECSS has at least n edges. This
results from the fact that every vertex must have degree at least 2.

F77: The Carving Lower Bound says that if Algorithm 10.1.7 contracts ¢ cycles,
then any 2-ECSS has at least 2¢ edges [KhVi94]. To see this let # be an endpoint of P
giving a contraction in the algorithm. Any 2-ECSS contains > 2 edges leaving z. These
edges disappear in the contraction operation. So we can repeat this argument for every
contraction, getting a lower bound of 2¢ edges.

F78: Algorithm 10.1.7 is a 3/2 approximation. This follows because the edge set F
consists of n — 1 edges from paths P and ¢ edges that cause contractions. If OPT is
the edge set of a 2-ECSS, then |OPT| > n (Degree Lower Bound) and |OPT|/2 > ¢
(Carving Lower Bound). Thus |F| < 3|OPT|/2.

F79: Vempala and Vetta [VeVe0Q0] present a 4/3-approximation algorithm for the
smallest 2-ECSS. Their algorithm is based on the idea of doing a depth-first search of ob-
jects of the graph, specifically cycles and paths. It uses the Matching Lower Bound:
Any 2-ECSS has at least as many edges as a smallest spanning subgraph where every
vertex has degree > 2. Vempala and Vetta give a similar 4/3-approximation algorithm
for the smallest biconnected subgraph of a biconnected graph.

F80: Jothi, Raghavachari & Varadrajan [JoRaVa03] use a stronger version of the
Matching Lower Bound in a dfs algorithm that achieves performance ratio 5/4 for the
smallest 2-ECSS. Vetta [Ve01] uses a version of the Matching Lower Bound in a dfs
algorithm that approximates the smallest strongly connected subgraph of a strongly
connected graph to within a factor 3/2.
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F81: The Carving Lower Bound extends to k-ECSS: If Algorithm 10.1.7 contracts ¢
cycles then any k-ECSS has at least k¢ edges [KhVi94]. This can be proved by simply
changing the “2”’s to k’s in Fact 77.

F82: Gabow [Ga02] gives a dfs algorithm that is a 3/2-approximation for the smallest
3-ECSS of a multigraph. It uses the above dfs approach of [KhVi94] for 2-ECSS, the

Carving Lower Bound, and ear decomposition.

F83: Khuller and Raghavachari [KhRa96] present the first approximation algorithm
that achieves ratio < 2 for the smallest k-ECSS of a multigraph. It boosts the edge-
connectivity of the solution graph in steps of 2. Each of these steps is a slight variant of
the above algorithm of [KhVi94]. The analysis is based on a refinement of the Carving
Lower Bound. Gabow [Ga03] improves the analysis to show it is a 1.61-approximation.
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GLOSSARY

a-approximation algorithm: for minimization problems, a polynomial-time algo-
rithm that is guaranteed to find a solution of size at most a times the minimum.

ancestor: z is an ancestor of y in a tree if there 1s an zy-path whose edges all go from
parent to child.

articulation point: a vertex whose removal disconnects an undirected graph.

back edge: (i) in an undirected dfs a back edge is a nontree edge; (ii) in a directed dfs
a back edge is directed from descendant to ancestor.

biconnected component: in an undirected graph, a maximal set of edges that has
no cutpoint.

biconnected graph: an undirected graph with no cutpoint.
breadth-first search (bfs): a graph search method that finds shortest paths.

breadth-first tree: an ordered tree where the children of z are the vertices discovered
from x in a breadth-first search.

bridge: (i) an edge whose removal disconnects an undirected graph; (ii) an undirected
edge in a mixed graph that is a bridge when directions of edges are ignored; (iii) an
edge (v,w) in a flow graph that belongs to every rw-path.

bridgeless graph: an undirected graph with no bridges.

bridge component (BC): a connected component of a connected graph when all
bridges are deleted.

bridge tree: the tree formed by contracting every bridge component of a connected
graph.

cross edge: in a directed dfs; a nontree edge joining two unrelated vertices.

cutpoint: see articulation point.

dag: directed acyclic graph, i.e., directed graph with no cycle.

depth-first search (dfs): a graph search method that repeatedly scans an edge inci-
dent to the most recently discovered vertex that still has unscanned edges.

depth-first spanning forest: (i) in an undirected dfs, a collection of depth-first trees,
one for each connected component of G (ii) in a directed dfs, a collection of depth-
first trees containing every vertex once, with all edges joining 2 trees directed from
right to left.
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depth-first tree (dfs tree): an ordered tree where the children of # are the vertices
discovered from « in a depth-first search.

descendant: z is a descendant of y in a tree if there is an zy-path whose edges all go
from child to parent.

diameter: the maximum distance between 2 vertices.

discovery (of a vertex): when a depth-first search reaches a given vertex for the first
time.

discovery order: a numbering of the vertices from 1 to n in the order they are discov-
ered in a depth-first search.

distance (from vertex u to vertex v): length of a shortest uv-path.

dominates: in a flow graph vertex v dominates vertex w # v if every rw-path contains
.

dominator tree: a tree representing all dominance relations in a flow graph.

k-edge connected: An undirected graph is k-edge connected if it is connected and
remains so when any set of < k edges is deleted.

k-ECSS: a k-edge connected spanning subgraph of a k-edge connected graph.
finished: when a depth-first search leaves a given vertex for the last time.

finish time order: a numbering of the vertices from 1 to n in the order they are
discovered in a depth-first search.

flow graph: a directed graph with a distinguished vertex r that can reach every vertex.
forward edge: in a directed dfs, a nontree edge going from ancestor to descendant.

immediate dominator (idom): in a flow graph, the immediate dominator of vertex
w 1s a vertex v that dominates w and every other dominator of w dominates v.

interlace: two segments S, T of a cycle C' interlace when either |V (S)NV(T)NV(C)| > 3
or there are 4 distinct vertices w, v, w, z that occur in C' (not necessarily consecu-
tively) in that order such that u,w € S and v,x € T.

internal vertex: a vertex of a path that is not one of the endpoints.

irreducible: a Markov chain is irreducible if the graph of its (nonzero) transition
probabilities is strongly connected.

left of: in an ordered tree, vertex x is to the left of vertex y if some vertex has children
¢ and d, with ¢ preceding d, ¢ an ancestor of  and d an ancestor of y.

length function: an assignment of a numerical length to each edge, often nonnegatively
valued.

mixed graph: a graph with both directed and undirected edges.

open ear decomposition: a partition of the edges of an undirected graph into a
simple cycle Py and simple paths P, ..., Py such that for each ¢ > 0, P; is joined to
previous paths only at its (2 distinct) ends.

orientation: assignment of a unique direction to each undirected edge.
ordered tree: a tree where the children of each vertex are linearly ordered.
uv-path: a path starting at « and ending at v.

perfect matching: a spanning subgraph of an undirected graph where every vertex
has degree exactly 1.
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postorder: see finish time order.

preorder: see discovery order.

proper ancestor: x is a proper ancestor of y if it is an ancestor and z # y
proper descendant: z is a proper descendant of y if it is a descendant and = # y

reducible: A flow graph is reducible if it can be transformed into the single vertex r
by a sequence of operations of the following type: If (v, w) is the only edge entering
w and w # r then contract w and v into a new vertex called v.

related: two vertices in a tree are related if one is an ancestor of the other.

scan (an edge): the work done by a graph searching algorithm when it traverses an

edge.

search: a methodical exploration of all vertices and edges of a graph that runs in linear
time.

segment: in a biconnected graph, a segment of a cycle C'is either (i) an edge not in C'
that joins 2 vertices of C; or (ii) a connected component formed when the vertices
of C' are deleted, plus all edges joining that component to C'.

semidominator: a useful intermediate concept in computing dominators, defined in
terms of a depth-first search tree.

separation pair: two vertices in a biconnected graph whose removal disconnects the
graph.

set-merging problem: the problem of maintaining a partition of a given universe
subject to a sequence of union and find operations.

shortest-path tree: a tree where the path from the root r to any vertex v is a shortest
rov-path.

sink: a vertex with outdegree 0.

smallest bridgeless spanning subgraph: a bridgeless spanning subgraph of a con-
nected bridgeless undirected graph that has the minimum possible number of edges.

smallest k-ECSS: a k-ECSS that has the minimum possible number of edges.
source: a vertex with indegree 0.
start vertex: the distinguished vertex of a flow graph.

strongly connected: a digraph is strongly connected if every vertex can reach every
other vertex by a directed path.

strong component (SC): two vertices of a directed graph are in the same strong
component if they can reach each other.

strong component graph (SC graph): a directed graph with every strong compo-
nent contracted to a vertex.

topological numbering (topological order, topological sort): assignment of an
integer to each vertex so that each edge is directed from lower number to higher
number.

tournament: a directed graph where each pair of vertices is joined by exactly one edge.

traversable: a mixed graph is traversable if every vertex can reach every other, by a
path with all its directed edges pointing in the forward direction.

tree edge: edge of a dfs tree.

r-tree: a directed spanning tree rooted at r.
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triconnected: an undirected graph is triconnected if it is connected and remains so
whenever any two or fewer vertices are deleted.



