CLRS B4 Graph Theory Definitions Unit

1: DFS

informally, a graph consists of “vertices” joined together by “edges,” e.g.,:

example graph Gj:
1

formally a graph is a pair (V, E) where
V' is a finite set of elements, called vertices
F is a finite set of pairs of vertices, called edges
if H is a graph, we can denote its vertex & edge sets as V(H) & E(H) respectively

if the pairs of F are unordered, the graph is undirected
if the pairs of E are ordered the graph is directed, or a digraph

two vertices joined by an edge are adjacent, also neighbors
Size of a Graph
n always denotes the number of vertices of the graph, i.e., n = |V]|
m always denotes the number of edges, m = |E|
Gy hasn=6,m =10
a graph is complete if it has every possible edge, so m = n(n — 1)/2 if it’s undirected
an isolated verter is not on any edge
we usually assume there are no isolated vertices
since in most applications isolated vertices are trivial

in this case m > n/2

thus in general, m = O(n?), and in most applications, m = Q(n)

these bounds hold for digraphs too
sometime’s we're sloppy and assume m = Q(n), eg, we write O(m) rather than O(m + n)

these bounds can also be seen from the
Handshaking Lemma. In an undirected graph the degrees sum to 2m.

CSCI 5454 H. Gabow Spring 2008

#2,p. 1

graphs with ©(n) edges are called sparse, those with ©(n?) edges are dense

the grid graph is sparse:

Connectivity

G' = (V',E') is a subgraph of G = (V,E)if V' CV & E' C FE

a path is a sequence of vertices vy, vy, ...,ve, £ > 0, with (v;,v;41) € E fori=0,...

it’s simple if all vertices are distinct
a path can have length 0

a cycle is a path with ¢ > 3, vg = vy and all other vertices & edges distinct

see CLRS B.4 for other basic terms like degree
note the above definitions differ slightly from CLRS

an undirected graph is connected if it has a path joining any 2 vertices
a tree is a connected undirected graph with no cycles

a connected undirected graph G has a spanning tree, i.e.,
a subgraph that is a tree containing every vertex of G

spanning tree T" of Gy:
1

-1

CSCI 5454 H. Gabow Spring 2008

#2, p. 2

Digraphs

CLRS allows loops (x,x) in digraphs but not in undirected graphs

an edge (u,v) goes from u to v
v is the head & w is the tail

vertex v is reachable from vertex u if there is a path from u to v
vertex 1 can reach all others, but vertex 4 can reach only itself

CSCI 5454 H. Gabow Spring 2008 #2, p. 3

Graph Operations

deleting edge e from graph G means forming the graph G —e
having all edges of G except e

GO - {(27 4)7 (37 5)}:
1

6

deleting vertex v from G means forming the graph G — v
having all vertices of G except v and all edges of G except those incident to v

Gy — 6 is the “bowtie graph”:
2 3

4 5

contracting a set of vertices S means forming the graph G/S

where the vertices S are replaced by a new vertex >, adjacent to every neighbor of S

Go/{4,5,6}:
1

{4,5,6}

CSCI 5454 H. Gabow Spring 2008

#2,p. 4

CLRS 22.1 Graph Data Structures Unit 1: DFS

the first step of any graph algorithm is to read the graph into a graph data structure
the input graph is usually presented as a list of edges, with the vertices numbered from 1 to n

1

N
w

Example digraph Gg

1. Adjacency lists

| i
s [2 e i

Adjacency list representation of Gy

the adjacency list of a vertex v is a list of all vertices w with (v,w) € E

the adjacency list representation for a graph (directed or undirected)
consists of an adjacency list for every vertex
plus an array of list heads

the adjacency list representation uses space O(m + n)
Variations
adjacency lists are sometimes doubly-linked, to facilitate deletions

in undirected graphs the 2 nodes for an edge may be linked to each other

An implementation of adjacency lists for static graphs
2 parallel arrays LINK & VERTEX give pointer and vertex information, respectively

CSCI 5454 H. Gabow Spring 2008 #3,p. 1

LINK

1l 0

2| 4

3| 5 VERTEX
4] 0 1

) 6 2

6 0 1

Parallel arrays representing G.

in general:

for 1 < i <mn, LINK[¢] is the head of i’s adjacency list,

for n +1 < ¢, LINK[i] & VERTEX[¢] form a node on an adjacency list —
LINK[i| points to next node, VERTEX[i] gives the vertex
LINK[i] = O if the node at 7 is the last on its adjacency list

for digraphs i < m + n; for undirected graphs i < 2m +n

Remark. For some applications we can use sequentially allocated adjacency lists.

Problem. Calculate the out-degree of each vertex in a digraph.
The digraph is given by an adjacency list representation.

Solution 1: Low-level algorithm
/* this code sets d[v] to the out-degree of v, for each vertex v */
for v < 1 to n do {
d[v] < 0;
i <« LINK[v];
while i # 0 do {
increase d[v] by 1;
i« LINK[Z]; } }

this code calculates all out-degrees in time O(m + n)
the for loop iterates n times
the body of the while loop is executed once for each edge

Solution 2: High-level algorithm
we omit the details of pointer manipulation in walking down adjacency lists

for v € V do {
d[v] < 0;
for each edge (v,w) do
increase d[v] by 1; }

the inner for loop walks down v’s adjacency list, as in Solution 1

the time for this algorithm is ©(m + n)

CSCI 5454 H. Gabow Spring 2008

#3,p. 2

Timing Principle: A graph algorithm uses time O(m + n)
if it does O(1) work on each vertex or edge.

Important Special Case:
an algorithm that walks down every adjacency list uses linear time
if the remaining work can be “charged” to work by the walk

Ezercises.
1. Criticize this reasoning: In Solution 2 the loop
for each edge (v,w) do
iterates O(n) times for a given vertex v. There are n vertices. Hence the total time is O(n?).

2. Criticize this pseudocode to calculate the in-degree of each vertex.
for v € V do {
d[v] < 0;
for each edge (w,v) do
increase d[v] by 1; }

2. Adjacency matrices

1 0 0 0

2 1 0 0

3 1 1 0

Adjacency matrix representation of Gg

an adjacency matrix is an n X n matrix with
Alz,y] = 1if (z,y) is an edge, else A[z,y] =0

an adjacency matrix has size ©(n?)

to calculate all out-degrees for a digraph represented as an adjacency matrix:
for v < 1 to n do {
d[v] < 0;
for w — 1 to n do d[v] « d[v] + Ajv,w]; }

this algorithm takes time ©(n?)

Conclusion.

for sparse graphs, adjacency list representations are preferable to adjacency matrices:
they use less space, & (consequently) lead to faster algorithms
e.g., the bound ©(m + n) is superior to ©(n?), since it improves on sparser graphs

Remark. Ex.22.1-6 gives what’s essentially the only nontrivial problem that can be solved in o(n?)
time using adjacency matrices.

CSCI 5454 H. Gabow Spring 2008 #3,p. 3

CLRS pp.540-543 Depth-First Search Unit 1: DFS

many basic algorithms for graphs use dfs
e.g., time O(m + n) algorithms for
connected & biconnected .components of an undirected graph Tarjan, SICOMP 72
strong components of a digraph
planarity testing (Hopcroft & Tarjan, J. ACM ’74)
triconnected components of an undirected graph (Hopcroft & Tarjan, SICOMP ’73)

approximating smallest well-connected subgraphs (Khuller & Vishkin, J. ACM '94,...)

throughout this handout G = (V| E) is a graph,
either undirected or directed

a search of a graph “scans” all the edges (e.g., breadth-first search, CLRS 22.2)

idea of dfs:
repeatedly scan an edge from
the most recently discovered vertex with unscanned edges

recursive implementation of dfs:

procedure DFS(v) {D:

for each edge (v,w) do
{S:
if w has not been discovered then DFS(w);

S’:}
F:}
v is discovered at point D
v is finished at point F
(v,w) is scanned at point S (& perhaps S')

the main routine starts the search by calling DFS(s) for an arbitrary vertex s

we illustrate, showing 2 ways to conceptualize dfs

a b C

e f g

Example graph Gg

CSCI 5454 H. Gabow Spring 2008 #4, p. 1

1. Path view of dfs
a dfs path is the path of edges the search traverses to discover a vertex v

“dfs grows a sequence of dfs paths”

b ob ob oh ob ob
//
/
/
/7
/
/
!
a a a a a a
° K} ° roe °
// "
, 1
i I
1 1
I \
I \
e e e e e
() e ° e ()
w\ \\
\ \
\ \
\ \
\ \
\
\‘ d \.f

The first 6 paths in DFS(b).
Path edges are drawn solid.

at any point in time, the sequence of vertices in the dfs path corresponds to
the vertices in the recursion stack of DFS

2. Tree view of dfs
all the dfs paths together can be represented by a tree
the dfs tree consists of every edge that leads to the discovery of a vertex

the children of a node are discovered in left-to-right order
“dfs constructs a dfs tree”

Dfs tree for DFS(b).
Tree edges are drawn solid.

the dfs tree is the recursion tree of DFS
i.e., v is the parent of w if DFS(w) is called from DFS(v)

Note (a,d) can be scanned from both a and d; (a,e) can be scanned from both a and e.
in many applications, this 2nd scan — from ancestor to descendant — is a NOOP

CSCI 5454 H. Gabow Spring 2008

#4, p. 2

Remarks

1. in general to ensure the search explores the entire graph, the main routine of a dfs is:

for each vertex v do
if v has not been discovered then DFS(v)

Ezample.

(a) (b)

Fig. 1. 2 dfs’s of digraph Gy of Handout#3.
(a) DFS(3) explores the whole graph.

(b) G explored by DFS(1); DFS(2); DFS(3). We get a dfs forest consisting of 3 dfs trees.
2. dfs can be implemented in time O(m + n)

highlights:

use a boolean array discovered|v]

each recursive call DFS(v) uses O(1) time to manage the recursion stack
walking through the adjacency structure takes O(m + n) time

3. we can test if an undirected graph is connected in O(m + n) time by dfs
if not connected, we find the connected components
use an array component|v]
each tree of the dfs is a connected component

a collection of trees is called a forest

we can test if all vertices of a digraph are reachable from s in O(m + n) time by dfs
just check if all vertices are discovered in DFS(s)

CSCI 5454 H. Gabow Spring 2008 #4, p. 3

CLRS B.4, pp.549-550 Dags Unit 1: DFS

a dag is a directed acyclic graph
a dag can always be drawn so all edges are directed down:

a

f

Example dag Gy

dags model combinational circuits, prerequisite graphs, makefile & program dependencies,
arithmetic expressions, spreadsheet evaluation, Bayesian networks, neural networks, ...

Basic dag concepts

a source (sink) of a dag is a vertex with in-degree (out-degree) 0
every dag has one or more sources and one or more sinks
since a maximal length path starts at a source & ends at a sink

Ezample. Gg has sink f; Gg — f has sinks ¢,d, e
Topological sort

a topological numbering of a digraph assigns an integer to each vertex so that
each edge is directed from lower number to higher number
usually we use the numbers 1..n, but this isn’t required

Ezxample. dag G has topological order a, b, ¢, d, e, f
we’ll use an array I to record a topological numbering,
so this order would be I[a] =1, ..., I[f] =6

Topological Order Theorem. A digraph has a topological numbering <= it’s a dag.
Proof.
—> : topological numbers increase along any path, so we can’t have a cycle

<= : assign the highest number n to some sink s
then delete s and recursively number all remaining vertices O

CSCI 5454 H. Gabow Spring 2008 #5, p. 1

the proof suggests the following high level algorithm:

repeat until G has no vertices:
grow the dfs path P until a sink s is reached
set I[s] = n, decrease n by 1 and delete s from P & G

Remarks.

1. each iteration grows P by starting with the previous P and extending it, if possible
as in Handout#4

2. s is a sink in the current graph G

Implementation
data structure: it’s convenient to use array I[1..n] for 2 purposes:
o] = { t if v has been deleted and assigned topological number ¢
0 if visstill in G (a special case is v undiscovered — see Ex. 1)

Topological Numbering Pseudocode
procedure TOP(G) {
num = n;
for each vertex v do I[v] = 0;
for each vertex v do if I[v] = 0 then DFS(v) }

procedure DFS(v) {
for each edge (v,w) do
if I[w] = 0 then DFS(w);
/* v is now a sink in the high level algorithm =/
I[v] = num; decrease num by 1; /* v is now deleted */ }

Remark. deletion of v is accomplished using the I array — we don’t modify the adjacency structure

Ezample. Gy could give topological order a,e,b,d, c, f, as in this execution:

a a a a a @®a
I[a]=1
b b b b e
I[b]=3 I[e]=2
c c d
I[c]=5 I[d]=4
f
I[f]=6

Question. Explain how the pseudocode processes edge (b, f).

Timing
TOP uses time O(m + n)

CSCI 5454 H. Gabow Spring 2008 #5, p. 2

FEzercises.

1. The algorithm uses the test I[v] = 0 to check if v has been discovered. But we can have I[v] =0
when v is currently in P. Explain why this is irrelevant — whenever the algorithm examines I[v],
we have

I[v] = 0 if and only if v has not been discovered.

2. (a) Explain why we’ve shown that numbering the vertices in order of decreasing finish times in
a dfs gives a topological numbering. (b) Would numbering in order of increasing discovery times
give a valid topological numbering?

3. Give an algorithm for topological numbering that works by repeatedly deleting a source. The
algorithm maintains a queue of sources, as well as the in-degree of each vertex. Your algorithm
runs in time O(n 4+ m), although it makes two passes over the graph.

Remark. Dag algorithms often propagate information from higher topological numbers to lower,
after scanning each edge (v, w) or at the end of DFS(v). Propagating in the opposite direction is
also possible.

Algorithms on dags

suppose each edge e of a dag G has a real-valued length ¢[e]
we can find the longest path in G, in time O(m + n)

longest path length 5

Idea

we'll set d[v] to the length of a longest path starting at v

we’ll compute d[v] values for v in reverse topological order, using the formula
(%) d[v] = max{0, ¢[v,w] + d[w] : (v,w) € E}

we calculate the values specified by (*) by modifying our dfs code:

CSCI 5454 H. Gabow Spring 2008 #5, p. 3

procedure LONGEST(G) {

/* we maintain the invariant, d[v] = —1 iff v is undiscovered */
for each vertex v do d[v] = —1;

for each vertex v do if d[v] = —1 then DFS(v) }

procedure DFS(v) {

d[v] = 0;

for each edge (v,w) do {
if djw] = —1 then DFS(w);
/* at this point d[w] equals its correct final value */
dfv] = max{d(v], {[v, w] + d[w]} } }

Correctness
Prove by induction that d[v] has the correct value at the end of DFS(v).

FEzercise. Give a small digraph where the recurrence () fails. Notes:
e for general digraphs “longest path” means longest simple path.
e Don’t use negative edges.
e (x) does not refer to topological numbers.

Remarks
1. the longest paths in a dag are known as the “critical paths”
when we're doing critical path scheduling (CLRS p.594)

2. finding the longest path in a general graph is NP-complete!
3. a similar algorithm finds a path whose lengths have the greatest possible product
e.g., find a maximum probability path
this is the basis of Viterbi’s algorithm for speech recognition (CLRS Pr.15-5, pp.367-68)

4. similar algorithms can be used to calculate the longest path from s to ¢
or shortest paths from a vertex s, etc.

CSCI 5454 H. Gabow Spring 2008 #5,p. 4

CLRS B4 Strong Components of a Digraph

Unit 1: DFS

the analog of connectivity in digraphs is strong connectivity,
the fundamental concept on the structure of directed graphs

a digraph G = (V, E) is strongly connected if every vertex can “reach” every other vertex

ie., (Vu,v € V) (3 a uv-path)

a quicker test: G is strongly connected if Ir € V' 3
r can reach every vertex, & every vertex can reach r

Strongly connected components (SCs) of a digraph G:
we partition the vertices into SC’s according to this definition:

u & v are in the same SC <= they can reach each other, i.e., 3 a uv-path & 3 a vu-path

(this is an equivalence relation — see CLRS p.1076, Theorem B.1)

a b a b
f f
c h ¢ h
{a,b,c,d,e} {f.g.n}
g g
d e d e

Example digraph Gg Strong components:
{CL, b7 C, d7 6}7 {f7 9, h}

for any digraph, contracting each SC to a vertex gives the strong component graph (“SC graph”)

Basic Fuacts

Lemma 1. Let C be a cycle.
(i) All vertices of C are in the same SC.
(ii) G and G/C have the same SC graph.

Proof Idea, part (ii):
show a path in G gives a path in G/C, & vice versa O

Lemma 2. (i) Any dag is its own SC graph.
(ii) Any SC graph is a dag.

Proof Idea, part (ii):
repeatedly contract cycles, until a dag is formed
apply Lemma 1(i7), and part (7) 0

CSCI 5454 H. Gabow Spring 2008

#6, p. 1

Applications

1. a Markov chain is irreducible <=
the graph of its (nonzero) transition probabilities is strongly connected

2. in a tournament (i.e., a digraph where each pair of vertices is joined by exactly 1 edge)
the strong component graph is a “complete dag”, and so ranks the players

a

: : N

{a} {0} {c.d.e}

tournament SC graph

3. a block diagonal matriz is a sparse matrix
whose entries below the diagonal are partitioned into blocks — Fig.(a):

(@) (b)

Gaussian elimination is efficient on block diagonal matrices —
there is limited fill-in

a common heuristic in sparse matrix packages uses strong components
to rearrange a given matrix to block diagonal
it is based on this principle:

CSCI 5454 H. Gabow Spring 2008 #6, p. 2

let G be a digraph, with strong components Si, ..., S, in topological order

(i.e., no edge goes from S; to S;, j < 1)
number the vertices by strong component: first come the vertices of S, then S5, etc.
the adjacency matrix for this numbering is block diagonal — see Fig.(b)

(Special Case: a dag has an upper triangular adjacency matrix)

Ezercise. Explain why this is the “best” way to make a matrix block diagonal: In any permutation
of an adjacency matrix, any block S; is a union of SC’s.

4. in a Buchi automaton, an infinite execution sequence is accepting
if it visits some accepting state infinitely often
i.e., some accepting state is in a nontrivial SC

CSCI 5454 H. Gabow Spring 2008 #6, p. 3

Unit 1: DFS

G Sec.2 Strong Components Algorithm

it’s easy to compute the strong components of a digraph in time O(n(m + n))
for each vertex v, find all the vertices it can reach
this is called the “transitive closure” (CLRS p.632)
using dfs we’ll find the SCs in time O(m + n)
1 1
3 A. 3

2
{2,4,5,6}

\VAN/

Example graph Gg & its SC graph

SC Graph

Basic ideas
all vertices on a cycle are in the same SC
in fact, the SC graph is formed by repeatedly contracting cycles

a sink s is a vertex of the SC graph
in fact, the SC’s are {s} and the SC’s of G — s

High level algorithm

repeat until G has no vertices:
grow the dfs path P until a sink or a cycle is found

sink s: mark {s} as an SC & delete s from P & G

cycle C: contract the vertices of C
1 1 1 1 1 ol
{1}an SC

2 {2,4,5} {2,4,5} {2,4,5} {2,4,5,6}

/ {2,456} an SC

! 4 6 6
5 3
{3}an SC

Execution of the high-level algorithm on G

Spring 2008

#7,p. 1

CSCI 5454 H. Gabow

Implementing the high-level algorithm

we use stacks S with these operations (CLRS, p.201):
TOP(S): returns value of top of stack pointer (e.g., S[TOP(S)] is the entry at top of stack)
PUSH(v, S): pushes element v onto stack S
POP(S): pops stack S; returns the value popped

S[1] is the lowest entry in the stack, not S[0]
3 data structures represent the dfs path P:

stack S contains the sequence of vertices in P
stack B contains the boundaries between contracted vertices

more precisely, S & B correspond to the dfs path P = (v1,...,v;) where k = TOP(B)
and fori =1,...,k, v, = {S[j| : Bli] <j < B[i + 1]}
(when i = k, interpret B[k + 1] to be c0)

at all times both S & B have < n entries

s B S
1] 1]
18| |8
14| 14|
16| 16|
19| 9]
3] 3]
(@) (b) ()
Stacks S & B.

(a) The search path in the high level algorithm has 3 vertices —
1 and contracted vertices {8,4,6}, {3,9}.
(b) 2 arrays represent the search path. TOP(B) =3, TOP(S) = 6.
(¢) Our pictorial notation for the arrays: B contains the arrows to the left of S.

array I[1..n] stores stack indices, for vertices in P
& it stores the strong component number of a vertex when that number is known

more precisely for a given vertex v at any point in time,

0 if v has never been in P (i.e., v undiscovered)
Ilv] =< j if vis currently in P and S[j] =v
¢ if the SC containing v has been deleted and numbered as ¢

we number the SC’s starting at n + 1
so the 3 cases correspond to I[v] =0, 0 < I[v] < n, n < I[v] respectively

Remark. using I for multiple purposes gave a 20% speed gain

Ezample. in Fig.1(c) below, I[3] changes from its stack index 6 to its component number 7

CSCI 5454 H. Gabow Spring 2008 #7,p. 2

Pseudocode for Strong Components Algorithm

procedure STRONG(G) {

empty stacks S and B;

for v € V do I[v] = 0;

c=mn;

for v € V do if I[v] = 0 then DFS(v) }

procedure DFS(v) {
PUSH(v, S); I[v] = TOP(S); PUSH(I[v], B); /* add v to the end of P %/
for edges (v,w) € E do
if I[w] = 0 then DFS(w)
else /x the following loop does contractions, when necessary */
/* it handles deleted vertices too */
while B[TOP(B)| > I[w]| do POP(B);
if B[TOP(B)| = I[v] then { /% number vertices of the next SC x/
POP(B); increase ¢ by 1;
while TOP(S) > I[v] do I[POP(S)] =c }; }

Timing

O(m + n), since we spend O(1) time on each vertex & edge
note every vertex gets pushed & popped exactly once from both S & B

Questions.

1. We could number the SC’s starting at n 4+ 1 and descending (perhaps as low as 2). Explain why
this works.

2. The middle line in the definition of I says when v € P, I[v] points to v’s entry in S. Explain
why this is crucial to achieving the linear time.

3. Explain why the SC graph has vertex set n + 1,...,c¢ and edge set {({[v], I[w]) : (v,w) €
I[v] # I[w]}. How should STRONG be changed so the vertices are topologically numbered?

CSCI 5454 H. Gabow Spring 2008 #7,p. 3

Fig. 1. Execution of strong components algorithm on Gy

Key: B & I are indicated by the arrows into .S. The entries of I examined by the algorithm are to
the right of S. E.g., in Fig.1(d), TOP(B) = 3, B[TOP(B)| = 5, I[4] = 3.

B S |
1 1 1 —
i
2]
2 {2,4,5} {2,4,5} i
15
// 91
?l 4 6 —=|3|=
5 3
{3} an SC:
3]=7
@ (b) (©
Since I[2] =2, (5,2) Cycle gets contracted. Before DFS(3) exits,
completes a cycle. TOP(B) =4 & B[4] = I[3]
indicate 3 starts an SC.
1 — 1 — ol
—1 —|1 96
97 976 {1} an SC:
—__ - [1]=9
eas M {2,4,5,6}) 14|
15| {2,456}ansC: |2
i —|6 | I[2,4,5,6] = 8 16|
o6
(d) (e) 0]
Since I[4] = 3, (6,4) Before DFS(2) exits, Before DFS(1) exits,
completes a cycle. TOP(B) =2 & B[2| = I[2] TOP(B) =1 & B[1] = I]1]
indicate 2 starts an SC. indicate 1 starts an SC.

Ezxercise. Make sure you understand the pseudocode by describing how edges (2,6) (if it existed)
and (2, 3) get processed in Fig.1(e).

CSCI 5454 H. Gabow Spring 2008 #7,p. 4

CLRS pp.558-559 Pr.22-2 Bridges & Articulation Points Unit 1: DFS

in this handout G = (V, E) is a connected undirected graph

11

14

Example graph G with 3 bridges & 6 cutpoints

edge e is a bridge of G if G — e is not connected
vertex v is an articulation point (cutpoint) of G if G — v is not connected

a graph is bridgeless if it has no bridges
a graph is biconnected if it has no cutpoint

Lemma. e is a bridge <= it’s not in any cycle.
Proof. (v,w) is not a bridge <= some vw-path avoids (v, w) <= (v,w) is on a cycle O

CSCI 5454 H. Gabow Spring 2008 #8, p. 1

Applications

1. if a communications network (e.g., Internet) has a bridge,
that link’s failure disables communication
similarly if it has an articulation point, that site’s failure disables communication

2. Robbins’ Theorem ’39. A connected undirected graph has a strongly connected orientation
<> 1t 1s bridgeless.

Connected graph Bridgeless graph Strongly-connected
orientation

3. Kotzig’s Theorem '59. A unique perfect matching contains a bridge of the graph.

Graph & unique perfect matching.

Kotzig’s Theorem can be used to find a unique perfect matching in time O(m log *n)
(Gabow et.al., ’01); see Handout#36

4. Theorem. (Whitney, ’32). A graph is planar <= each biconnected component is planar.

next handout shows how to find all the bridges in linear time
a similar algorithm (Handouts#41-42) finds all the cutpoints in linear time

CSCI 5454 H. Gabow Spring 2008 #8, p. 2

Bridge Algorithm Unit 1: DFS

as before assume G is a connected undirected graph
also continue to use Gy of Handout#8 as our example graph

Bridge components

let B be the set of all bridges of G

the bridge components (BCs) of G are the connected components of G — B
i.e., a BC is a maximal set of vertices,
any of which can reach any other without crossing a bridge

contracting each BC to a vertex gives the bridge tree
Question. Explain why it’s a tree, i.e., it has no cycle.

{1,2,...,10}

{11,12,13}

14 15

Bridge tree of graph Gy.

in this handout a contraction operation retains parallel edges
e.g. in Go/{5,6, 7}, 2 parallel edges join 8 & {5,6,7}

note Gy & Go/{5,6,7} have the same bridges
Lemma. If C is a cycle, G & G/C have the same bridges & the same bridge tree.

FExercises.

1. Correct a small error in this proof of the Lemma: A nonbridge of G/C gives a nonbridge of G,
and a nonbridge of G gives a nonbridge of G/C.

2. Explain why the proof of the lemma dictates that contraction must retain parallel edges.

we’ll compute the bridges & bridge tree of a connected undirected graph in time O(m + n)
the algorithm is almost identical to STRONG

note that two parallel edges form a cycle
Basic ideas

all vertices on a cycle are in the same BC
in fact, the bridge tree is formed by repeatedly contracting cycles

a vertex x of degree <1 is a vertex of the bridge tree
in fact, the BC’s are {z} and the BC’s of G — x

CSCI 5454 H. Gabow Spring 2008 #9, p. 1

High level algorithm
say the last vertex = of a dfs path is a dead end if x has degree <1

repeat until G has no vertices:
grow the dfs path P until a cycle is found or a dead end is reached
cycle C': contract the vertices of C
dead end z: mark {z} as a BC & delete z from P & G
if has degree 1, mark its edge as a bridge (of the original graph)

0! ol 0! °
'Y 0?2 'Y 'Y
03 03 ®3 93
04 04 o4 I T
] 5 o567} ¢ {5.6,7,8} "o {5....,10}
:I [6 \\. 8
\. 7
e {l....10} e {l...10} {1,..,10} e {l...10}
{1,..,10}a BC
@ {11,12,13} @ {11,12,13} {11,12,13}

{11,12,13} a BC,
(11,2) a bridge

® 14 ® 15

{14} a BC, {15} a BC,
(14,12) a bridge (15,13) a bridge

Execution of the high-level algorithm on Gj.
Not all paths are shown. In the 2nd panel, parallel
edges from 8 prevent a false bridge being marked.

CSCI 5454 H. Gabow Spring 2008

#9, p. 2

Implementing the high-level algorithm

as in STRONG,
we represent the dfs path P using stacks S & B, & array [
we number the BC’s starting at n + 1

to conveniently identify the bridges, DFS will have two arguments DFS(v, u):
u is the vertex that calls DFS(v,u)
i.e., the search is exploring edge (u,v)

Pseudocode for Bridge Algorithm
the new code is underlined
for simplicity we assume the given graph does not have parallel edges

procedure BRIDGE(G) {

empty stacks S and B;

for v € V do I[v] =0;

c=mn;

for v € V do if I[v] = 0 then DFS(v,0);

/* no need for a loop if G is known to be connected */ }

procedure DFS(v,u) {
PUSH(v, S); I[v] = TOP(S); PUSH(I[v], B); /* add v to the end of P %/
for edges (v,w) € E do
if I[w] = 0 then DFS(w,v)
else if w # u then /* possible contract */ while B[TOP(B)| > I[w] do POP(B);
if B[TOP(B)] = I[v] then { /* number vertices of the next BC %/
POP(B); increase ¢ by 1;
while TOP(S) > I[v] do I[POP(S)] = ¢;
if u # 0 then mark (u,v) as a bridge; } }

CSCI 5454 H. Gabow Spring 2008 #9, p. 3

FEzercises.

1. The test w # u before contracting is crucial. Explain why omitting the test causes BRIDGE to
always return with just 1 BC & no bridges.

2. Modify the code so it works for a multigraph, still in time O(m + n).

3. Use the high level bridge algorithm to prove Robbins’ Theorem. Hint. Run the BC algorithm.
It shrinks the graph to 1 vertex. Orient the path edges down and the cycle edges up. Now the SC
algorithm shrinks the oriented graph to 1 vertex. A bonus of this proof is that it gives a linear-time
algorithm to strongly orient a bridgeless graph (see Exercise #5).

4. Here’s a generalization of Robbin’s Theorem. A mized graph G is one that can have both directed
and undirected edges. G is traversable if for every ordered pair of vertices w, v, there is a path from
u to v that has all its directed edges pointing in the forward direction. (So if G is undirected, G
is traversable <= it’s connected; if G is directed, G is traversable <= it’s strongly-connected.) A
bridge of G is an undirected edge that is a bridge of the undirected graph formed by ignoring edge
directions in GG. An orientation of G assigns a unique direction to each undirected edge.

Theorem [Boesch & Tindell]. A traversable mized graph has a strongly-connected orientation
<= it has no bridge.

Prove Boesch & Tindell’s Theorem by giving a high-level dfs algorithm to orient the graph.
5. Implement the algorithm of #3 efficiently. The time should be O(m + n) plus the time to
maintain a data structure for set merging (Handout#35). This is O(m + n) if the data structure

of Gabow & Tarjan (CLRS p.522) is used.

6. As illustrated in Exercises 3—4, dfs is a powerful tool for proving theorems about graphs. Use
dfs to prove this fact: A bipartite graph with a unique perfect matching has a vertex of degree 1.

CSCI 5454 H. Gabow Spring 2008 #9,p. 4

Proof of the Lemma (page 1)
Lemma. If C is a cycle, G & G/C have the same bridges & the same bridge tree.

we’ll use this fact:

Fact. Contracting an edge of a cycle gives a cycle in the contracted graph.

This depends on contractions retaining parallel edges — if they didn’t, the Fact would fail when we
contracted an edge of a triangle.

we’ll prove Lemmas 1 & 2:
Lemma 1. All vertices of a cycle belong to the same BC.
Lemma 2. If vertices x and y are in the same BC of G, then G and G/{x,y} have the same
bridges and bridge components.
the Lemma follows easily from these 2 —
repeatedly contract 2 vertices that are consecutive in the cycle
[we're using the Fact here]

Proof of Lemma 1
Let C be the cycle. No edge of C' is a bridge. So any 2 vertices of C' can reach each other without
crossing a bridge, ie, they’re in the same BC. a

Proof of Lemma 2
We prove G and G/{z,y} have the same bridges, in two steps, (i) & (i7):

(7) A bridge e of G is a bridge of G/{z,y}.

Proof. x & y are in the same connected component of G — B. So they’re in the same connected
component of G—e. So contracting x,y doesn’t combine any connected components of G—e. Thus
G/{z,y} — e is not connected, ie, e is a bridge of G/{z,y}. o

(74) A nonbridge of G is a nonbridge of G/{x,y}.

We need to show that if e is on a cycle C of G, then e is on a cycle of G/{x,y}.

If the contraction actually changes the cycle C, it’s because both x & y are in C. So the contraction
simply shortcuts the cycle into another cycle containing e. o

[We've used the Fact here.]

CSCI 5454 H. Gabow Spring 2008 #9,p. 5

DFS Approximation Algorithms Unit 1: DFS

let G = (V, E) be a connected bridgeless graph
we want to find a bridgeless subgraph H = (V, F*) of G
with as few edges as possible, i.e., |F*| is minimum

we usually write OPT instead of F™*

(@) (b)
Fig.1. In both graphs OPT is a Hamiltonian cycle.

the problem is NP-hard

we'll give a “2-approximation algorithm” (i.e., it finds a bridgeless subgraph with < 2|OPT| edges)
& also a %—approximation algorithm

Factor 2 Approximation Algorithm

use the (high level) bridge algorithm
the solution graph contains all dfs path edges, and all edges causing a contraction

Proof of the Approximation Ratio

our solution graph has n — 1 dfs path edges, and < n — 1 cycle edges
since every contraction decreases the number of vertices by > 1

so it has < 2n edges

we’'ll use the degree lower bound: |OPT| > n
obviously the degree lower bound implies we have a 2-approximation

Proof of the Degree Lower Bound

any vertex in a bridgeless graph (with n > 2) has degree > 2
so the Handshaking Lemma implies 2m > 2 xn, m > n O

Ezercise. Show our bound is tight: On the graph of Fig.1(a) it’s possible that our algorithm returns
a solution graph with 2n — 3 edges. As n — oo, the approximation ratio Q”n—_?’ approaches 2.

CSCI 5454 H. Gabow Spring 2008 #10, p. 1

The Carving Algorithm (Khuller & Vishkin, J. ACM "94)

an obvious improvement is to use cycle edges that contract as many vertices as possible
this improves the performance bound to 3/2

Algorithm

F denotes the edges of the algorithm’s solution
initially F = ()

repeat until G has 1 vertex:
grow the dfs path P until its endpoint = has all neighbors belonging to P
let y be the neighbor of = closest to the start of P
let C' be the cycle formed by edge (x,y) & edges of P
add all edges of C to F'
contract the vertices of C'

Example:
a
b e
Ce d
Execution 1: P = a,b,¢,d,e; contract for edge (e, a).
This gives |F| =5 = |OPT).
Execution 2: P = a,b,c,d,e; contract for edge (e, b).
Invalid: b doesn’t satisfy the condition for y.
Execution 3: P = a,b,d, c; contract for edge (c,b);
P = a,{b,c,d},e; contract for edge (e, a).
This gives |F| = |OPT| + 1.
Execution 4: P = a,b, ¢, d; contract for edge (b, d).
Invalid: d doesn’t satisfy the condition for x.
CSCI 5454 H. Gabow Spring 2008 #10, p. 2

Proof of the Approximation Ratio

let ¢ be the number of cycles contracted by the algorithm
the key fact is the Carving Lower Bound:
|OPT| > 2¢

first note the carving lower bound implies a 3/2 approximation ratio:
as before, |[F|=(n—1)+c¢

using the Degree & Carving Bounds we get
|F|=(n—1)+c¢<|OPT|+|OPT|/2 = (3/2)|OPT)]

Proof of the Carving Lower Bound

Basic Principle: In a bridgeless graph, any set of vertices S, S # 0,V
has > 2 edges leaving it.

let « be an endpoint of P giving a contraction, as in the algorithm
OPT contains > 2 edges leaving each x

all the edges leaving x disappear after the graph is contracted
so no edge of the original graph G leaves two x’s

.. OPT contains > 2c¢ edges O

Remark. The main issue in this proof is being sure we don’t “double-count”, i.e., count an edge of
OPT twice. The contraction ensures we don’t double count.

Ezample: (cont’d)
Execution 1: ¢ = 1. The proof says OPT contains > 2 edges incident to e.

Execution 3: ¢ = 2. The proof says OPT contains > 2 edges incident to ¢, plus > 2 edges incident
to e; no edge is incident to both ¢ & e.

Ezercise. Show our bound is tight:

(a) On the graph of Fig.1(b) it’s possible that our algorithm returns a solution graph with 3n — 1
edges.

(b) Give a more devastating example: Delete 1 vertex from Fig.1(b), and show the algorithm can
give a solution with 3”7_1 edges that’s minimal, i.e., no edge can be deleted

Jothi, Raghavachari & Varadrajan (SODA ’03)
use a more involved DFS to achieve performance ratio 5/4
they also use a better lower bound: Do, the smallest subgraph with minimum degree 2

Remark. These algorithms illustrate the importance of good lower bounds in designing approxima-
tion algorithms.

CSCI 5454 H. Gabow Spring 2008 #10, p. 3

CLRS pp.546-547 Depth-First Spanning Trees Unit 1: DFS

advanced dfs algorithms (e.g., planarity) use the depth-first spanning tree

1

Graph Gy & its dfs tree

General remarks
1. Tree-Drawing Convention
when drawing a dfs-tree,

the children of a vertex are drawn left-to-right in the order they are discovered

2. discovery of v is often called the preorder visit of v
finish of v is the postorder visit of v

these correspond to preorder and postorder traversals of the df forest
Undirected graphs
2 vertices in a tree are related if one is an ancestor of the other
in a dfs of an undirected graph the nontree edges are called back edges
the key fact:
any back edge joins 2 vertices that are related in the dfs tree

i.e., there are no “cross edges”

intuitively, dfs makes a graph look like a tree

CSCI 5454 H. Gabow Spring 2008 #11, p. 1

Digraphs

Graph Gy of Handout#7 & its dfs tree

a nontree edges is either
forward (directed from ancestor to descendant),
back (directed from descendant to ancestor), or
cross (joins 2 unrelated vertices)

key fact:
any cross edge is directed from right to left

CSCI 5454 H. Gabow Spring 2008 #11, p. 2

G Sec.3 Blocks & Hypergraphs Unit 9.A: DFS

assume G is a connected undirected graph

Biconnected components/Blocks

the biconnected components (blocks) are the maximal biconnected subgraphs of G
i.e., a block is a maximal set of edges,

any 2 of which are in a common cycle

Ezercise. Prove the 2 definitions are equivalent. (Note, we’ll only use the 2nd definition.)

1
11 2
° ° 3
12 13 4 5 6

14 15 7 8 9 10

The 7 blocks of graph G of Handout#38

we’ld like a succinct representation of the blocks
Question. Explain why there’s no obvious representation based on contracting each block. In this
respect blocks don’t behave like BCs or SCs.

Hypergraphs
a hypergraph H = (V, E) consists of a finite set V' of vertices

& a finite set E of edges, where each edge is a subset of V
we sometimes call an element of F a hyperedge

CSCI 5454 H. Gabow Spring 2008 #41, p. 1

a path in H is a sequence vy, €1,...,Vk, €, k > 1,
of distinct vertices v; and distinct edges e;, 1 < i <k,
where v1 € e; and v; € e;_1 Ne; forevery 1 <i <k
by convention a sequence of one vertex vy is also a path

the set of vertices in P is denoted V(P) = Uf_je;
a cycle is a path with the additional properties that k > 1 and v, € e
a hypergraph is acyclic if it contains no cycle
to merge edges e;, 1 =1,...,k,
add a new edge UY_,e; and delete every edge properly contained in it (e.g., €;)
a merging of hypergraph H is a hypergraph formed by doing zero or more merges on H

Block Hypergraph

the block hypergraph H of G is the hypergraph formed by merging the edges of each block of GG
H is an acyclic hypergraph

Question. Explain why (a) H is acyclic; (b) any 2 hyperedges of H share at most 1 common vertex.

The block hypergraph of Gy of Handout#8

CSCI 5454 H. Gabow Spring 2008 #41, p. 2

a convenient way to represent the blocks is to number the hyperedges of H bottom-up
i.e., choose a hyperedge of H as the root
this implicitly defines the “child” hyperedges of each hyperedge of H
assign a unique number to each hyperedge, that is larger than the number of any child

for each v € V' let I[v] be the largest number of a hyperedge containing v
any edge (v, w) € E belongs to the block numbered min{I[v], I{w]}

CSCI 5454 H. Gabow Spring 2008 #41, p. 3

G Sec.3 Block Algorithm Unit 9.A: DFS

we compute the blocks and articulation points of a connected undirected graph in time O(m + n)

1

Example graph Gg & its block hypergraph

Basic ideas
all edges on a cycle are in the same block
in fact, the block hypergraph is formed by repeatedly merging cycles

a pendant edge has < 1 vertex in another edge
a pendant edge e is an edge of the block hypergraph
in fact, the blocks are e and the blocks of H — e

a dfs path in a hypergraph is defined just like in a graph —
we keep on adding an edge to the end of the path

High level algorithm
repeat until G has no edges:
grow the dfs path P until a pendant edge or a cycle is found
pendant edge e: mark e as a block;
delete e & its preceding vertex from P; delete e from G
cycle C': merge the edges of C

1 1 1 1 1
4 2
) 2 2 2 5 3
K 4 3 4 3 4 3 {1,...,5} a block
/
! ® 3 5 5
" 5 /)
] !
] 1
\
\\ ® 5 : [] 6 6 7
\
\ \ {5,6,7} a block
\ \\
\.4 ® 7

Execution of the high-level algorithm on G

CSCI 5454 H. Gabow Spring 2008 #42, p. 1

Implementing the high-level algorithm

we represent the dfs path P using stacks S & B, & array [
we number the blocks starting at n 4 1

stack S gives the sequence of vertices in P, as before

stack B gives the boundaries between hyperedges of P, 2 vertices per boundary

more precisely, S & B correspond to the dfs path P = (v, eq,..., vk, €x), k > 1, where TOP(B) = 2k
and fori=1,...,k,
v; = S[B[2i — 1]]
e; =v; U{S[j] : B[2i] <j < B[2i + 2]}

when ¢ = k, interpret B[2k + 2] to be co
when k > 1 we have B[i] =1 for i = 1,2
at certain points P is a path (v), in which case S[1] = v, TOP(S) = 1 and TOP(B) =0

array I is similar to STRONG:
0 if v has never been in P
Iv] = {j if v is currently in P and S[j] =v
¢ if the last block containing v has been output & numbered as ¢

Pseudocode for Block Algorithm

procedure BLOCKS(G) {

empty stacks S and B;

for v € V do I[v] = 0;

c=n;

for v € V do if I[v] = 0 and v is not isolated then DFS(v) }

procedure DFS(v) {
PUSH(v, S); I[v] = TOP(S); if I[v] > 1 then PUSH(I[v], B); /v is the second boundary vertexx/
for edges (v,w) € E do {

if I[w] = 0 then { PUSH(I[v], B); DFS(w) /* v is the first boundary vertex */ }

else /x possible merge x/ while I[v] > 1 and I[w| < B[TOP(B)—1] do {POP(B); POP(B)}
if I[v] =1 then I[POP(S)] =¢
else if I[v] = B[TOP(B)] then {

POP(B); POP(B); increase ¢ by 1;

while TOP(S) > I[v] do I[POP(S)] =c } }

Ezercise. Modify the pseudocode so it marks the articulation points. Do the same for the bridges.

CSCI 5454 H. Gabow Spring 2008 #42, p. 2

Execution of block algorithm on G

1

// 4
/ -
1
I
I
]
\
\
\
- 4
5
7
CSCI 5454 H. Gabow Spring 2008 #42, p. 3

