
HelloWorld code discussion

What are the variables in this code?

Remember the formula for the area of a circle: A = πr2? In this formula, r represents the
radius of the circle, whatever that is. Variables in computer programming work in a
similar way to the symbols in a mathematical formula, like r here.

In Java, you need to include at least two things in a variable declaration:
1) First, Java needs to know the type of the variable (primitive types include integer
type, like 0, 19, or -78, Boolean type, like true or false, character type, like ‘K’ or the
backspace character, and float and double types, for lower and higher-precision decimal
numbers). Knowing what type the variable is lets Java allocate (reserve) enough memory
to hold any value of that type and tells it how to expect that variable to behave in the
program. (In the area calculation, the r in the area formula is implicitly understood to be
a number, rather than a Boolean value like true, or a letter like ‘N’.)
2) Second, you need to give the variable a name, so you can refer back to it later.
Java has a few rules for naming variables. You can’t start names with a number, you
can’t put spaces in the name (use underscores _ for this instead), and you can’t use
certain weird punctuation marks.

Here are the two integer-type variables you declared in HelloWorld:
int birthyear, age;

Here is the String variable you declared. String variables can hold text, as an array of
characters.

String name;

Why do I have to type more stuff to read in the birthyear than I do to read in the name?

Input from the keyboard comes in the form of a text String, so that Java can easily match
types with String name. But integer numbers are limited to digits, not characters, so Java
has to use a parser to do the conversion between Strings of the characters ‘0’, ‘1’, ‘2’, …,
‘9’ and actual integers. Parsing has to do with taking some kind of input and extracting
information or meaning from it. You parse English into ideas when you read about
something new and understand it. In this code example, parsing from a String (“81”) to
a number (81) is an important step in getting the user input to work.

In the homework, you’re asked to get rid of the variables declared above and instead
declare a decimal number r, for example like this.

double r;
Declare an auxiliary variable as well; we’ll use this to streamline the user input:

Float r1;
Prompt the user to enter a number, like 5.1 or 2.2.

System.out.println("Enter a distance: ");
Convert the user’s input (like “5.1”) to a Float object (like 5.1). This conversion is useful
because Float objects have a parser. Parsing a decimal number requires taking the

decimal point into account. We could write code to do this, but it’s easier to use Java’s
own methods.

r1=Float.valueOf(stdin.readLine());
Now convert the Float value you just parsed to a double precision floating-point number.

r = r1.doubleValue();

What can go wrong in this code, when you try to compile (Build)? Compiling is the
process of translating your Java code, which you can understand (we hope) into a
language the computer can easily understand. The errors that turn up at this point are
usually syntax errors. When you think about it, the compiler is one big parser, which
may help you figure out your errors. Here are a few common errors:

Typos

For example, your variable name is misspelled at some place in your program.

Or you can mistype the name of a Java-defined object.

Missing semicolons

Most simple Java statements end with a ; (like a period ends a sentence in English).
Notice that the error only shows up on the next line!

Unterminated comments

Comments need to start with /* and end with */. Otherwise, you can define one-line
comments with // if you like. Comments are colored green if Java understands them
correctly. Notice that Java marks the start of the unterminated comment.

Missing brackets

Brackets like these{}define blocks of code. Mixing up these brackets makes Java
confused about where these blocks of code begin and/or end. Notice that the error
message appears at the end of the code, not where the missing bracket should be. Nesting
is ok, but the counts for{ and } must add up to the same number! The whole project
(public class HelloWorld) is defined as one block of code (the stuff inside the two outer
brackets). The main routine (the code that runs) is defined as another block, nested inside
the first project code.

To find problems with the brackets, format your code with indentation—it makes
catching these sneaky bugs a lot easier! Come up with a consistent, readable scheme and
use it every time you write code.

