
Journal of the Indian Institute of Science

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

© Indian Institute of Science

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in

R
ev

ie
w

s

Department of Computer 
Science and Engineering
Indian Institute of 
Technology Bombay
Mumbai, India 400076

krishnas@cse.iitb.ac.in

trivedi@cse.iitb.ac.in

Hybrid Automata for Formal Modeling  
and Verification of Cyber-Physical Systems

Shankara Narayanan Krishna and Ashutosh Trivedi

Abstract | The presence of a tight integration between the discrete control 
(the “cyber”) and the analog environment (the “physical”)—via sensors and 
actuators over wired or wireless communication networks—is the defining 
feature of cyber-physical systems. Hence, the functional correctness of a 
cyber-physical system is crucially dependent not only on the dynamics of 
the analog physical environment, but also on the decisions taken by the 
discrete control that alter the dynamics of the environment. The framework 
of Hybrid automata—introduced by Alur, Courcoubetis, Henzinger, and 
Ho—provides a formal modeling and specification environment to analyze 
the interaction between the discrete and the continuous parts of cyber-
physical systems. Hybrid automata can be considered as generalizations 
of finite state automata augmented with a finite set of real-valued variables 
whose dynamics in each state is governed by a system of ordinary dif-
ferential equations. Moreover, the discrete transitions of hybrid automata 
are guarded by constraints over the values of these real-valued variables, 
and enable discontinuous jumps in the evolution of these variables. Con-
sidering the richness of the dynamics in a hybrid automaton, it is perhaps 
not surprising that the fundamental verification questions, like reachabil-
ity and schedulability, for the general model are undecidable. In this arti-
cle we present a review of hybrid automata as modeling and verification 
framework for cyber-physical systems, and survey some of the key results 
related to practical verification questions related to hybrid automata.
Keywords: Cyber-Physical Systems, Dynamical Systems, Formal Modeling, Formal Verification, LTL 
Model-Checking, Timed Automata, Hybrid Automata.

1 Introduction
The term “cyber-physical systems” refers to any 
network of digital and analog systems whose per-
formance crucially depends on both the continu-
ous dynamics of the analog parts and the real-time 
switching decisions made by the digital system. A 
typical cyber-physical system may consist of several 
processors connected with a set of physical systems 
via sensors and actuators over wired or wireless com-
munication networks. Such systems are increasingly 
playing safety-critical role in modern life, where a 
fault in their design can be catastrophic.

Modern cars are an important paradigmatic 
example of such safety-critical cyber-physical 

systems. A modern premium car typically has 70 to 
100 interconnected electronic control units (ECUs) 
with dozens of sensors39 performing various func-
tions44 like air-bag control, cruise control, electronic 
stability control, antilock brakes, engine ignition, 
windshield-wiper control, engine control, and 
collision-avoidance system. Many of these ECUs 
are connected with analog environment via sensors 
and actuators, and are expected to perform their 
operations within hard time limits. For instance, the 
air-bag ECU needs to respond within 20–30 mil-
lisecond after the impact sensor connected to it 
detects a severe impact. As the number of ECUs 
in a typical car is increasing and performing more 
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autonomously, it is becoming increasingly difficult 
to ensure their correctness. The severity of the prob-
lem can perhaps be best realized by looking into the 
growing list of recalls44 by leading car companies 
due to software-related problems. Some promi-
nent examples include Toyota’s recall of 160,000 
of its 2004/05 Prius models because of a software 
problem causing the car to suddenly stall, Jaguar’s 
2011 recall of nearly 18,000 X-type cars due to a 
software bug resulting in driver’s inability in turn-
ing off the cruise control, and Volkswagen’s 2011 
recall of about 4000 of its 2008 Passats models for 
engine-control module software problem. The list 
is long and underscores the challenges in designing 
and verifying safety-critical cyber-physical systems. 
Similar examples can also be cited for the cyber-
physical system from other domains such as avion-
ics, implantable medical devices, transportation 
networks, and energy sector.

Formal modeling and verification of systems is 
the set of techniques that employ rigorous math-
ematical reasoning to analyze properties of a system. 
In this article we concentrate on a celebrated3,4 formal 
verification framework known as model checking.50 
Model Checking—pioneered by Clarke, Sifakis and 
Emerson2—is a widely used automated technique 
that, given a formal description of a system and a 
property, systematically checks whether this prop-
erty holds for a given state of the system model. The 
three key steps of this framework are the following:

1. formal modeling: modeling a system under 
consideration using mathematically precise 
syntax that approximate a given system to a 
desired level of abstraction;

2. formal specification: specify the properties of the 
system using some mathematically precise speci-
fication language (typically in formal logic); and

3. formal analysis: analyze the formal model with 
respect to the formal specification and report 
counter-example in case the system model vio-
lates the specification.

The success of the model checking framework in 
formal verification of systems is largely due to it being 
highly automatic—a push-button technology47—in 
comparison to other competing approaches like 
theorem proving. The counterexamples generated in 
the model-checking process often are used to auto-
matically refine—known as counterexample-guided 
abstraction refinement (CEGAR)48,49 framework—
the model and/or the property and the entire proce-
dure can be repeated and thus removing the need of 
a very accurate initial model or specification.

Early research on formal modeling and verifica-
tion of systems concentrated on simplified models 

of the systems as finite state-transition graphs. Since 
these models are finite in nature, it is—in theory—
possible to exhaustively explore the state space of 
the system to verify the properties of interest. How-
ever, the biggest challenge in model-checking of 
finite state-transition graphs is so-called state-space 
explosion problem50 characterizing the exponential 
blowup in the number of states in the explicit rep-
resentation of the system where the system is natu-
rally represented succinctly using state variables, or 
as a composition of a network of interacting finite 
state-transition graphs. In general, the state-space 
explosion problem renders the explicit exhaustive 
exploration of the system intractable. However, a 
number of techniques have been proposed to over-
come the state-space explosion problem—including 
symmetry reduction,46 partial-order reduction,85 
symbolic model checking80 and bounded model 
checking29,30—that has culminated into efficient 
and mature tool support including SPIN92 and 
NuSMV82 for finite state model-checking. Examples 
of the use of finite-state model-checking in indus-
try include the verification of hardware circuits,67 
communication15 and security24,78 protocols, and 
software device drivers.23

These finite state-transition graphs, however, 
often do not satisfactorily model cyber-physical 
systems as they disregard the continuous dynamics 
of the physical environment. Alur and Dill10 were 
the first one to propose a formal model, known as 
timed automata, combining finite state-transition 
graphs with a finite set of real-valued variables 
that evolve as time progresses while the system 
occupies a state. In a timed automaton the real-
valued variables—called clocks—simulate per-
fect clocks as they evolve with a uniform constant 
speed (rate) and hence can model asynchronous 
real-time systems interacting with a continuous 
physical environment. The clock variables can 
be used to constrain the evolution of the system 
by guarding the transitions of the graph, and can 
also be reset at the time of taking a transition to 
remember the time since that transition. These 
capabilities make timed automata quite expressive 
formalism to define real-time systems. Moreover, 
the decidabilitya of key verification problems like 

a The concept of decidability is a central one in computer sci-

ence and it characterizes the set of problems for which one can 

write computer programs that always terminate with a correct 

answer. The problems for which it is not possible to write such 

a program are known as undecidable problems. A most famous 

undecidable problem is the halting problem (similar to reach-

ability problem) for the configurations of Turing machines (an 

abstract model of computation capturing the notion of algo-

rithmic computation).
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reachability and schedulability10 and availability 
of mature verification tools—like UPPAAL,27,96 
Kronos,66 and RED89—make timed automata an 
appealing tool for real-time system verification.

Alur, Courcoubetis, Henzinger, and Ho gen-
eralized the timed automata to hybrid automata9 
to include real-valued variables with arbitrary 
dynamics specified using ordinary differential 
equations. Considering the richness of dynamics 
of a hybrid automata, it is perhaps not surprising 
that the fundamental verification questions like 
reachability are undecidable for hybrid autom-
ata. A number of subclasses of hybrid automata 
has been proposed with decidable verification 
problems and some of the algorithms have been 
implemented as part of tools like HyTech60 and 
PHAVer.86

Timed and hybrid automata provide an intui-
tive and semantically unambiguous way to model 
cyber-physical systems, and a number of case-
studies41,55,61,74,84,93,95 demonstrate their application 
for the analysis of cyber-physical systems. In this 
article we aim to provide a general introduction to 
verification using hybrid automata as we focus on 
model-checking classical LTL logic77 over hybrid 
automata. To keep the discussion simple we do 
not cover other logics, for instance, computation 
tree logic (CTL, CTL*),50,77 modal µ-calculus,53 and 
real-time and hybrid extensions of these logics14 
including metric temporal logics (MTL)65,83 and 
duration calculus (DC).43

The goal of this article is to introduce key con-
cepts for cyber-physical system modeling and 
verification using hybrid automata with a focus 
on LTL model-checking. In order to better focus 
our attention, we will not cover several useful 
extensions of hybrid automata that capture cer-
tain natural aspects of modeling hybrid systems, 
including

– game-theoretic extensions7,17,20,32,45,52 that allow 
the model to distinguish between controllable 
and uncontrollable non-determinism;

– probabilistic extensions6,25,36,68,71,75 that permit 
modeling of stochastic behavior arising due to, 
e.g., faulty or unreliable sensors or actuators, 
uncertainty in timing delays, and performance 
characteristics of (third-party) components; 
and

– priced extensions28,31,33,73,88 that permit mod-
eling of resource consumption and payoffs 
associated with decisions.

We also restrict our attention to theoreti-
cal results regarding decidability of LTL model-
 checking problems, and do not cover data 

structures and algorithms27,54,57 for efficient imple-
mentation of these results.

We begin (Section 2) this survey by intro-
ducing two formalisms to model discrete and 
continuous dynamical systems, and then we 
present hybrid automata model that combines 
features from these two models. Section 3 intro-
duces syntax and semantics of linear temporal 
logic (LTL) followed by a formal definition of 
corresponding model-checking problem over a 
hybrid automata, and using two-counter Minsky 
machines81 we prove the in general LTL model-
checking over hybrid automata is undecidable. 
In this section, we also introduce the idea of 
state-space reduction using a well-established 
technique called  quotienting which we later 
exploit to show decidability of model checking 
problem for some variants of hybrid automata. 
We conclude the survey by discussing (Section 4) 
three key subclasses of hybrid automata—timed 
automata, (initialized) rectangular hybrid 
automata, and (two dimensional) piecewise-
constant derivative systems—with decidable 
model checking problem.

2 Hybrid Automata
A dynamical system is simply a system whose 
“state” evolves with “time” governed by a fixed 
set of rules or “dynamics”. The state of a dynami-
cal system is specified as valuations of the vari-
ables of interest in the system. Depending upon 
the nature of variables (discrete or continuous) 
and the notion of time (discrete or continu-
ous) the dynamics of variables can be specified 
by differential equations or discrete assign-
ments. For the purpose of this paper, we clas-
sify the dynamical systems into the following 
three broad classes: i) discrete systems where 
both the notion of time and the variables are 
discrete, ii) continuous systems where the notion 
of time is continuous, while the variables are 
continuous, and iii) hybrid systems where some 
variables are continuous and some are discrete, 
and although the notion of time is continuous, 
special dynamic-changing events can happen at 
discrete instants. Notice that both discrete and 
continuous systems can be considered as sub-
classes of hybrid systems.

On an abstract level any dynamical system 
can simply be represented as a graph whose 
nodes represent the states and edges represent 
transition between the states. Formally, a state 
transition graph can be defined in the following 
manner.

Definition 1 (State Transition Graphs): A state 
transition graph is a tuple T = (S, S

0
, ∑, ∆) where:
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begin this section by introducing concepts and 
notation used throughout this article, followed 
by discussing such syntactical models to represent 
purely discrete and purely continuous dynamical 
system. After introducing these models we present 
hybrid automata capable of modeling hybrid 
dynamical systems.

Variables and predicates
Let R be the set of real numbers, R≥0

 be the set 
of non-negative real numbers, and Z be the set of 
integers.

Let X be a set of real-valued variables. A valua-
tion on X is a function v : X→R and we write V(X) 
for the set of valuations on X. Abusing notation, 
we also treat a valuation v as a point in Rn that 
is equipped with the standard Euclidean norm ||⋅|| 
where n is the cardinality of X.

We define a predicate over a set X as a subset 
of R|X|. For efficient computer-readable represen-
tation of predicates we often define them using 
non-linear algebraic equations involving X. We 
write pred(X) for the set of predicates over X. For 
a predicate π ∈ pred(X) we write π for the set 
of valuations in R|X| satisfying the equation π. We 
write  for the predicate that is true for all valu-
ations, while  for the predicate which is false for 
all the valuations.

Example 2: An example of a predicate over the 
variables θ  and θ is

m mg θ θ= − ,sin( )

characterizing the motion of an idealized pendu-
lum (Figure 3) where θ is the angle the pendulum 
forms with its rest position, θ  is second deriva-
tive of θ, m is the mass of the pendulum, g is the 
gravitational constant, and  is the length of the 
pendulum.

We say that a predicate P is polyhedral if it is 
defined as a conjunction of a finite set of linear 
constraints of the form a

1
x

1
 + … + a

n
x

n
  k, where 

k ∈ Z, for all 1 ≤ i ≤ n we have that a
i
 ∈ R, x

i
 ∈X, 

and  ∈{<, ≤, =, >, ≥}. An example of a polyhedral 
predicate over the set {x, y, z} is 2x + 3y – 9z ≤ 5. 
We define an octagonal predicate as the conjunc-
tion of a finite set of linear constraints over X of 
the form ±x ±y  k or x  k, where k ∈ R, x, y ∈ 
X. Similarly a rectangular predicate is defined as 
the conjunction of a finite set of linear constraints 
over X of the form x  k, where k ∈ R, and x ∈ X.

2.1 Discrete dynamical systems
Discrete dynamical systems can be conveniently 
modeled as extended finite state machines having 
finitely many modes and transitions between these 

Figure 1: State transition graph for a mod-4 
counter.

– S is a (potentially infinite) set of states;
– S

0
 ⊆ S is the set of initial states;

– ∑ is a (potentially infinite) set of actions; and
– ∆ ⊆ S × ∑ × S is the transition relation.

We say that a state transition graph T is 
finite (countable), if the sets S and ∑ are finite 
(countable). 

Given an action a ∈ ∑ and a state s we write 
Post (s, a) for the set of states that are reachable 
from s on a and Post (s) for the states reachable in 
one step from s, i.e.

                  

= ′ : , , ′ ∈∆
= , .

∈

{ ( ) }
( )

s s a s
s a

a Σ
∪

A run—an execution or a trajectory—of a dynam-
ical system modeled as a state transition graph 
T is a (finite or infinite) alternating sequence of 
states and actions that begins with an initial state 
and all consecutive states are connected with their 
predecessor via the transition relation. Formally, 
a finite run is a sequence 〈s

0
, a

1
, s

1
, a

2
, s

2
, …, s

n
〉 

such that s
0
 ∈ S

0
 and for all 0 ≤ i < n we have that 

s
i+1

 ∈ Post (s
i
, a

i+1
). An infinite run is defined 

analogously.
Example 1: A graphical description of a state 

transition graph depicting a mod-4 counter with 
pause is shown in Figure 1. We represent a state 
using a rounded rectangle and a transition using a 
labeled edge between participating states. An ini-
tial state is marked using an incoming arrow to 
that state labeled “start”. An example of a run is 
the finite sequence:

( ) ( ) ( )
( )

count tick count pause pause tick,
pause on

, , , , , , , ,
, ,

0 1 1
1 ,, , , , , .( ) ( )count tick count1 2

A state transition graph is a feasible way to 
represent and computationally analyze dynami-
cal systems with finitely many states. However, to 
enable computational analysis of a general infinite 
state dynamical system we need a finitary way to 
represent a potentially infinite space of states. We 

 Post(s, a)
   Post(s) Post
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modes. The values of variables remain unchanged 
while the system is in some mode, and changes 
only when a transition takes place where they 
can “jump” to new values assigned by the transi-
tion. These jumps are specified using predicates 
over the set X ∪ X′ that relates the current values 
of variables of system, given as the set X, to the 
values in the next time-step, given as the set X′ of 
primed-versions of variables in X. Transitions are 
often guarded by predicates over variables speci-
fying the enabledness condition of the transition. 
Starting from some initial valuation to the vari-
ables, a system modeled using an extended finite 
state machine evolves in discrete time-steps. At 
each discrete step the system can take any enabled 
transition, i.e. satisfied by the current variable 
valuation, and after executing the transition the 
valuation of the variables is changed according to 
the jump condition. The system continues evolv-
ing in this fashion forever. An extended finite state 
machine is formally defined as the following.

Definition 2 (Extended Finite State Machines: 
Syntax): An extended finite state machine is a tuple 
M = (M, M

0
, ∑, X, ∆, I, V

0
) such that:

– M is a finite set of control modes including 
a distinguished initial set of control modes 
M

0
 ⊆ M,

– ∑ is a finite set of actions,
– X is a finite set of real-valued variable,
– ∆ ⊆ M × pred(X) × ∑ × pred(X ∪ X′) × M is 

the transition relation,
– I : M → pred(X) is the mode-invariant func-

tion, and
– V

0
 ∈ pred(X) is the set of initial valuations.

For a transition δ = (m, g, a, j, m′) ∈ ∆ we refer 
to m ∈ M as its source mode, g ∈ pred(X) as its 
guard, a ∈ A as its action, j ∈ pred(X ∪ X′) as its 
jump constraint, and m′ ∈ M as the target mode.

A configuration of an extended finite state 
machine is a tuple (m, v) where m is a control 
mode and v is a valuation of variables in X. The 
execution of an extended finite state machine 
begins in a configuration (m

0
, v

0
) such that the 

control mode m
0
 ∈ M

0
 is in the set of initial con-

trol modes and the valuation v
0
 ∈ V

0
 satisfies the 

invariant of mode m
0
, i.e. v

0
 ∈ I(m

0
). At each 

discrete time-step the system executes a transition 
(m, g, a, j, m′) that is enabled in the current con-
figuration (m, v), i.e., v ∈ g, and the configura-
tion of the system jumps to a new configuration 
(m′, v′) while respecting the jump constraints, i.e. 
(v, v′) ∈ j as well as the invariant condition of the 
resulting mode v′ ∈ I(m′). The system contin-
ues its execution from the resulting configuration 

in the similar fashion. Hence, we can define the 
semantics of an extended finite state machine as a 
state transition graph in the following manner.

Definition 3 (Extended Finite State Machine: 
Semantics): The semantics of an extended finite 
state machine M = (M, M

0
, ∑, X, ∆, I, V

0
) is given as 

a state transition graph T S SM M M M M= ∆( , , , )0 Σ  
where:

– SM ⊆ (M × R|X|) is the set of configurations of 
M such that for all (m, v) ∈SM we have that 
v ∈ I(m);

– S S0
M M⊆  such that (m, v) ∈ SM if m ∈ M

0
 

and v ∈ V
0
;

– ∑M = ∑ is the set of labels;
– ∆M ⊆ SM × ∑M × SM is the set of transitions 

such that ((m, v), a, (m′, v′)) ∈ ∆M if there 
exists a transition δ = (m, g, a, j, m′) ∈ ∆ such 
that the current valuation v satisfies the guard 
of δ, i.e. v ∈ g; the pair of current and next 
valuations (v, v′) satisfies the jump constraint 
of δ, i.e. (v, v′) ∈ j; and the next valuation 
satisfies the invariant of the target mode of δ, 
i.e. v′ ∈ I(m′).

Let us consider an example of the syntax and 
semantics of an extended finite state machine.

Example 3 (Modulo-4 counter): Let us consider 
a modulo-4 counter with reset and pause function-
ality shown in Figure 2. This extended finite state 
machine M = (M, M

0
, ∑, X, ∆, I, V

0
) has two con-

trol modes M = {count, pause} with count being 
the initial mode. The variable x is the only variable, 
while the set of action is ∑ = {tick, on, pause} where 
tick, on, and pause stand for clock-tick, start-
counting, and pause-counting actions, respectively. 
While drawing an extended finite state machine, 
we depict modes by rounded rectangles and transi-
tions by arrows connecting the modes labeled by a 
triplet (g, a, j) showing the guard, the action, and 
the jump predicate of the transition. For example 
the transition (count, x = 3, tick, x′ = 0, count) is 
shown in the Figure 2 as a self-loop labeled with 
(x = 3, tick, x′ = 0) on the mode labeled count. It is 
straightforward to see that the extended finite state 
machine in Figure 2 models a modulo-4 counter 

Figure 2: An EFSM description of a mod-4 
 counter with reset and pause.
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with reset and pause. The corresponding state tran-
sition graph is shown in the Figure 1.

In the rest of the article, to minimize clutter, 
we will omit the guard if it is the predicate , and 
we omit the jump predicates specifying that the 
value of a variable remains unchanged, i.e. predi-
cates of the form x′ = x.

2.2 Continuous dynamical systems
For the purpose of this article, a continuous 
dynamical system is a finite set of continuous 
variables along with a set of ordinary differential 
equations characterizing the dynamics or the flow 
of these variables as a function of time. We rep-
resent the flow of a continuous dynamical system 
using a flow function F : R|X| → R|X| characterizing 
the system of ordinary differential equations:

X F X= ( )  (1)

where, following Newton’s dot notation for dif-
ferentiation, X  represents the set of first-order 
derivatives of the variables in the set X. Informa-
tion about the higher-order derivatives can be 
represented using only first-order derivatives intro-
ducing auxiliary variables. For example the second-
order differential equation  θ θ+ / =( ) sin( )g 0  
can be written as a system of first-order differen-
tial equations   θ θ= , = − /y y g( ) sin( ) . Formally, 
a continuous dynamical system is defined in the 
following manner.

Definition 4 (Continuous Dynamical System): 
A continuous dynamical system is a tuple M = (X, 
F, v

0
) such that

– X is a finite set of real-valued variable,
– F : R|X| → R|X| is the flow function characteriz-

ing the the set of ordinary differential equation 
X F X= ( ), and

– v
0
 ∈ R|X| is the initial valuation.

A run of a continuous dynamical system M = 
(X, F, v

0
) is given as a solution to the system of dif-

ferential equations (1) with initial valuation v
0
. Let 

a differentiable function f : R≥0
 →R|X| be a solution 

to (1), that provides the valuations of the variables 
as a function of time, such that:

f v

f t F f t t

( )

( ) ( ( )) ,

0

forevery

0=

= ∈  ≥0

where f : R≥0
 → R|X| is the time derivative of the 

function f. We call such a function f a run of the 
continuous dynamical system M. Since, in gen-
eral, a solution of (1) may not exist or may not 
be unique, a run of a continuous dynamical sys-
tem may not exist or may not be unique.74 To 

ensure the existence and the uniqueness of the 
run we enforce Lipschitz-continuityb assumption 
on F. The following result states the existence and 
uniqueness of the set of ordinary differential equa-
tions (1) under Lipschitz-continuity assumption.

Theorem 1 (Picard-Lindelöf Theorem):90 If a 
function F: R|X| → R|X| is Lipschitz-continuous 
then the differential equation X F X= ( )  with ini-
tial valuation v

0
 ∈ R|X| has a unique solution f : R≥0

 
→ R|X| for all v

0
 ∈ R|X|.

In addition, Lipschitz-continuity offers the 
following advantage while numerically simulat-
ing an approximate solution to the differential 
equations (1).

Theorem 2 (Stability wrt initial valuation):74 
Let F be a Lipschitz-continuous function with 
constant K > 0 and let f : R≥0

 → R|X| and f ′: R≥0
 

→ R|X| be solutions to the differential equation 
X F X= ( )  with initial valuation v

0
 ∈ R|X| and ν

0
′ 

∈R | |X , respectively. Then, for all t ∈ R≥0
 we have 

that ||f(t) – f ′(t)||≤||v–v
0
||eKt.

This theorem implies that, under Lipschitz-
continuous assumption on the flow function F, 
any two runs whose initial valuations are close to 
one-another remain close as the time progresses. 
Since it is not always possible to analytically solve 
differential equations, this property permits us to 
numerically simulate the behaviour of continuous 
dynamical system using approximation methods, 
e.g. Euler’s method or Runge-Kutta method, that 
are readily available in tools such as Matlab79 and 
Mathematica.98

Example 4 (Simple Pendulum): Consider a 
simple pendulum shown in Figure 3 and its the 
motion equations:


 
θ

θ
= ,
= − / ,

y
y g( ) sin( )

with initial valuations (θ, y) = (θ
0
, 0). To analyti-

cally solve these equations let us assume small 
enough angular displacement θ and sin(θ) ≈ θ. 
Now the equations simplify to

  θ θ= = − / .y y gand ( )

Hence our continuous dynamical system is M 
= (X, F, v

0
) where X = {θ, y}, F is such that F y( )θ =  

and F y g( ) ( ) = − / θ  and v
0
 = (θ

0
, 0). The solution 

for these differential equations is

θ( ) cos( ) sin( )
( ) sin( ) cos( )
t A Kt B Kt

y t AK Kt BK Kt
= +
= − + ,

b We say that a function F : Rn → Rn is Lipschitz-continuous if 

there exists a constant K > 0, called the Lipschitz constant, such 

that for all x, y ∈ Rn we have that ||F(x) – F(y)|| < K ||x–y||.
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where K g= /. Substituting θ(0) = θ
0
 and y(0) = 

0 from the initial valuation, we get that A = θ
0
 and 

B = 0. Hence the unique run of the pendulum sys-
tem can be given as the function f : R≥0

 → {θ, y} as 
t Kt K Kt ( cos( ) sin( ))θ θ0 0,− . Figure 4 shows the 
change in valuations of the variables θ and y as a 
function of time.

2.3 Hybrid dynamical systems
In the previous two subsections we discussed mode-
ling of purely discrete and purely continuous dynam-
ical systems. We saw that in a discrete dynamical 
system the state of the system changes during a dis-
crete transition where it “jumps” (see Figure 5) to 
the new value governed by the transition relation, 
while in a continuous system the state of the system 
continuously “flows” (see Figure 5) in a fashion gov-
erned by ordinary differential equations. Hybrid sys-
tems share their properties with both discrete as well 
as continuous systems, as their state progresses with 

time in both discrete jumps as well as continuous 
flows. In this section we present hybrid automata, 
a combination of extended finite state machines 
and continuous dynamical systems, where in every 
control mode the dynamics of the variables of the 
system can be specified using ordinary differential 
equations.

Definition 5 (Hybrid Automata: Syntax): A 
hybrid automaton is a tuple H = (M, M

0,
 ∑, X, ∆, 

I, F, V
0
) where:

– M is a finite set of control modes including 
a distinguished initial set of control modes 
M

0
 ⊆ M,

– ∑ is a finite set of actions,
– X is a finite set of real-valued variables,
– ∆ ⊆ M × pred(X) × ∑ × pred(X ∪ X′) × M is 

the transition relation,
– I : M → pred(X) is the mode-invariant function,
– F : M → (R|X| → R|X|) is the mode-dependent 

flow function characterizing the flow for each 
mode m ∈ M as the set of ODEs X F m X= ( )( ), 
and

– V
0
 ∈ pred(X) is the set of initial valuations.

To ensure existence of unique solutions of the 
ODEs in flow functions, we assume that for each 
mode m ∈ M the flow function F(m) is Lipschitz-
continuous.

Just like in an extended finite state machine, 
a configuration of a hybrid automaton is a tuple 
(m, v) where m ∈ M is a mode and v ∈ R|X| is a var-
iable valuation. For a Lipschitz-continuous flow 
function F : M → (R|X| → R|X|), a valuation v ∈ R|X|, 
a mode m ∈ M, and a time delay t ∈ R≥0

 we define 
(v⊕ 

F(m)
 t) for the unique valuation f(t) where f is 

the unique run of the continuous dynamical sys-
tem (X, F(m), v). For a jump predicate j ∈ pred(X 
∪ X′) and valuation v we define v[j] for the set of 
valuations  ν′ ∈R ≥0

| |X  such that (v, v′) ∈ j.
The execution of a hybrid automaton begins in 

an initial configuration (m
0
, v

0
) where m

0
 ∈ M

0
 is an 

initial mode and v
0
 ∈ V

0
 is an initial valuation sat-

isfying v
0
 ∈I(m

0
). The system stays in a mode for 

some time, say t
1
 ∈ R≥0

, and while the system stays 
in a control mode m the valuation of the variables 
changes according to ODE specified by the flow 
F(m) of the corresponding mode. After spending 
t

1
 ∈ R≥0

 time in mode m
0
 an enabled transition 

(m
0
, g, a, j, m

1
) is non-deterministically chosen 

and executed. Notice that we say that a transition 
(m

0
, g, a, j, m

1
) is enabled if ( )( )ν0 10

⊕F m t g∈   
and all the intermediate valuations that system 
passes through from v

0
 to ( )( )ν0 10

⊕F m t  satisfy the 
invariant of the mode m

0
, i.e. for all t ∈ [0, t

1
] we 

have that ( ) ( )( )ν0 00
⊕F m t I m∈  . After executing 

Figure 3: An idealized pendulum with length l 
and mass m.

Figure 4: The variables θ (angle displacement) 
and y (angular velocity) are plotted with respect to 
the time for a pendulum with l = 1 meter with θ0 = 
5 degrees.
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the transition (m
0
, g, a, j, m

1
) the state of the sys-

tem jumps to a new configuration (m
1
, v

1
) such 

that v
1
 ∈ I(m

1
) and v

1
 ∈ ( )[ ]( )ν0 10

⊕F m t j . The 
system continues its operation in a similar man-
ner from the resulting configuration (m

1
, v

1
). We 

can formalize this semantics using a (uncountably 
infinite) state transition graph. 

Definition 6 (Hybrid Automata: Semantics): 
The semantics of a hybrid automaton H = (M, M

0
, 

∑, X, ∆, I, F, V
0
) is given as a state transition graph 

T S SH H H H H= ∆( , , , )0 Σ  where:

– SH ⊆ (M × R|X|) is the set of configurations of 
H such that for all (m, v) ∈ SH we have that v ∈ 
I(m);

– S S0
H H⊆  s.t. (m, v) ∈ S0

H  if m ∈ M 
0
 and v ∈ V

0
;

– ∑H = R≥0
 × ∑ is the set of labels;

– ∆H ⊆ SH × ∑H × SH is the set of transitions such 
that ((m, v), (t, a), (m′, v′)) ∈ ∆H if there exists 
a transition δ = (m, g, a, j, m′) ∈ ∆ such that
– (v⊕

F(m)
t) ∈ g;

– (v⊕
F(m)

t) ∈ I(m) for all t ∈ [0, t];
– ν ′ ∈ (ν ⊕

F(m)
t)[j]; and

– (v′ ∈ I(m′).
Example 5 (A bouncing ball): In Figure 6 we 

model a bouncing ball using a hybrid automaton 
with one control mode m and two variables: the 
variable x

1
, representing the vertical position of 

the ball, and the variable x
2
, representing the verti-

cal velocity of the ball.
The differential equations governing the free 

fall of the ball can be given using Newton’s law of 
motion as x x1 2=  and x g2 = − . The valuations of 
the variables flow according to these equations until 
the ball comes in the contact with ground, and at 
that time it reverses the direction of its velocity, while 
losing some energy proportional to its restitution 
coefficient c, i.e. after the impact we have ′ =x x1 1  
and ′ = −x cx2 2. Observe that the bouncing ball sys-
tem is a hybrid system since its dynamics involve 
both flows and jumps. The continuous dynamics of 
the system is captured using flow function of the 
unique mode m, while the jump is modeled with 

the discrete transition labeled impact. For the start-
ing valuation we assume x

1
 =  meters and x

2
 = 0. 

Formally the hybrid automata H = (M, M
0
, Σ, X, ∆, 

I, F, V
0
) models the bouncing ball where:

– M = M
0
 = {m

0
},

– Σ = {impact},
– X = {x

1
, x

2
},

– ∆ contains the following transition 
( )m x x x x x cx m, = ∧ ≤ , , ′ = ∧ ′ = − , ,1 2 1 1 2 20 0 impact
– I(m) = x

1
 ≥ 0,

– F m x x x g( ) = = ∧ = − 1 2 2 , and
– V

0
 = {(, 0)}.

The transition diagram corresponding to this 
automaton is shown in Figure 6. The transition 
diagram of a hybrid automaton follows the simi-
lar conventions as that of an extended finite state 
machine, with the exception of flow conditions. 
We write flow conditions of a mode inside the 
rounded rectangle representing the mode.

Now let us explain the unique run of the system 
starting from the configuration (m, (, 0)). The solu-
tion to ODE corresponding to the flow function is

x t gt Ct D x t gt C1
2

2
1

2
( ) ( )= − + + = − +and  (2)

For the initial configuration is (m, (, 0)) 
solving (2) we get C = 0 and D = . Hence from 

Figure 6: A hybrid automaton modeling the 
dynamics of a bouncing ball.

Figure 5: Runs of discrete, continuous, and hybrid systems.
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(m, (, 0)) system flows according to the equations 
x t gt1

1
2

2( ) = − +   and x
2
(t) = −gt. According to 

these equations the value of variable x
1
 continue 

to fall for the next t g1 2= /  time units when 
x

1
 becomes 0, and the transition impact becomes 

available and must be taken (since the invariant of 
the mode requires x

1
 to be non-negative). Imme-

diately before taking the transition the configura-
tion is (0, −gt

1
). Using our notations we can write 

it as (0, −gt
1
) = (, 0)⊕

F(m)
t

1
.

After taking the transition impact this valu-
ation changes according to the jump function 

′ = ∧ ′ = −x x x cx1 1 2 2  resulting in the new valua-
tion (0, cgt

1
). Again, in our notation we write 

( ) ( )[ ]0 01 1 1 1 2 2, ∈ ,− ′ = ∧ ′ = −cgt gt x x x cx . The run 
of the system, so far, can be written as 〈(m, 
(, 0)), (t

1
, impact), (m, (0, cgt

1
))〉. Now from the 

configuration (m, (0, cgt
1
)) the system can flow 

continuously according to F(m). Solving (2) 
for this initial valuation we get C = cgt

1
 and 

D = 0. Hence from (m, (0, cgt
1
)) the system flows 

according to the equations x t gt cgt t1
1
2

2
1( ) = − +  

and x
2
(t) = −gt + cgt

1
 for the next t

2
 = 2ct

1
 time 

units till it reaches the valuation x
1
 = 0 (the ball 

hits the ground again). At this point the result-
ing configuration will be (0, −cgt

1
) and after the 

transition the configuration will be (0, c2gt
1
). 

The system continues in this fashion forever 
and realizes the following infinite run of the 
system:

〈( ( )) ( ) ( ( ))
( ) ( (

m t m cgt
ct m c

, , , , , , , ,
, , , ,

 0 0
2 0
1 1

1
2

impact
impact ggt

c t m c gt
1

2
1

3
12 0

))
( ) ( ( )) ...

,
, , , , ,impact 〉,

 (3)

where t g1 2= / . The first two transitions of the 
run for  = 10 and c = 1 are shown in Figure 7.

For a given run r = 〈(m
0
, v

0
), (t

1
, a

1
), 

(m
1
, v

1
), …〉 of a hybrid automaton we define its 

time T(r) as

T r t
i

i( ) = .
=

∞

∑
1

We say that a run r time-diverging if T(r) = 
∞. For an example of a time-diverging run con-
sider (3) for c = 1 as shown in Figure 7 where time 
between every consecutive transition is 2 2/g . 
The infinite run in this example seems natural 
since we assume the restitution coefficient c = 1, 
and under this unrealistic situation we expect the 
ball to bounce indefinitely. However, given the 
generality of the model of hybrid automata the 
time divergence of a run is not always guaran-
teed. As an example consider again the bounc-
ing ball system now with restitution coefficient 
0 < c < 1. In this case the time of the run (3), 
T(r) = t

1
(1 + c)/(1 – c) is finite for any 0 < c < 

1. Runs that are not time-diverging, on an intui-
tive level, are not physically realizable since they 
execute infinitely many discrete transitions in a 
finite amount of time. Assuming the possibility 
of realizing infinitely many discrete actions in a 
finite time often lead to paradoxical situations, 
commonly known as Zeno’s paradoxes, and the 
runs that do not diverge also go by the name of 
Zeno runs. We call a hybrid automaton non-Zeno 
if it does not permit any Zeno run. We will later 
see that the ability of hybrid automata to model 
Zeno runs often cause difficulty in their analysis.

2.4  Composition of a network of hybrid 
automata

While modeling a complex hybrid system using a 
hybrid automaton, it is often convenient to repre-
sent various components of the system as a net-
work of hybrid automata c = {H1, H2, …, Hn} that 
communicate with each other using shared vari-
ables and action. Specifying a system as a com-
position of various subsystems offer two main 
advantages, namely abstraction and modularity. 
The first advantage (abstraction) is that it allows 
the system designer to concentrate on the details 
of one subsystem at a time without getting over-
whelmed by the complexity of the interaction of 
this subsystem with other. The second advantage 
(modularity) is that in a system designed in this 
fashion, it is easy to add, remove, and modify 
subsystems. The semantics of such a network can 
also be given as a single hybrid automaton H, 
called the product automaton of C, whose states 
are products of states of individual component 
automata. We define this construction as the 
following.

Figure 7: A run of the system where the initial ver-
tical position is  = 10 meters and the coefficient of 
restitution c = 1.
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Definition 7 (Composition): Let C = {H1, H2, …, 
Hn} be a network of hybrid automata where for each 
1 ≤ i ≤ n let Hi be ( )M M X I F Vi i i i i i i i, , , ,∆ , , ,0 0Σ . For 
an action a i

n
i∈∪ =1Σ  we define E a i a i( ) { }def= : ∈Σ . 

The product automata H1 ⊗ H2 ⊗ … H
n
 of C is 

defined as a hybrid automaton H = (M, M
0
, Σ, X, 

∆, I, F, V
0
) where

– M = M1 × M2 × … Mn,
– M M M M n

0 0
1

0
2

0= × × ,
– Σ = Σ 1 ∪ Σ 2 ∪ … Σ n,
– X = X1 ∪ X 2 ∪ … Xn,
– ∆ ⊆ (M × pred(X) × Σ × pred(X ∪ X′) × M) is 

defined s.t. (( ... ) ( ... ))m m g a j m mn n1 1, , , , , , ′, , ′ ∈∆ 
if and only if for all i ∉ E(a) we have that 
m mi i= ′  and for all i ∈ E(a) there exists a 
transition ( )m g a j mi i i i, , , , ′  such that g = ∧

i∈E(a)
 

g
i
 and j = ∧

i∈E(a)
 j

i
.

– I is such that I m m I mn i
n i

i( ... ) ( )1 1, , = ∧ = ;
– F is such that F(m

1
, …, m

n
)(x) = Fi (m

i
)(x) if 

x ∈Xi; and
– V

0
 is such that V Vi

n i
0 1 0= ∧ = .

As an example of modeling a system using a 
composition of a network of hybrid automata, we 
consider the job-shop scheduling problem mod-
eled as a collection of hybrid automata. In the 
next section, we show that solving the job-shop 
problem reduces to solving a verification problem 
(reachability) over the resulting hybrid automata.

Example 6 (Job-shop Scheduling Problem): The 
job-shop scheduling problem is an important 
optimization problem studied frequently in both 
computer science as well as in operations research. 
It consists of a finite set J = {j

1
, …, j

n
} of jobs to 

be processed on a finite set M = {m
1
, …, m

k
} of 

machines. There is a strict precedence requirement 
between the jobs given as a strict partial order ≺ 
over the set of jobs in J. A mapping ζ : J → 2M 
specifies the set of machines where a job can be 
executed, while the function δ : J → R≥0

 specify 
the time duration of a job. We can model the 
job-shop scheduling problem using a network of 
hybrid automata where each job and each machine 
is specified using a separate hybrid automaton. 
We have the following constraints on the job 
execution: i) a job j can be executed iff all jobs in 
its precedence, j↓ = {j′ : j′ ≺ j}, have terminated; 
2) each machine m ∈ M can process atmost one 
job at a time; and 3) a job, once started, cannot be 
preempted.

Modeling Jobs. We model each job j
i
 ∈ J 

as a hybrid automaton H
i
 with three modes U

i
 

(unscheduled), S
i
 (scheduled), and F

i
 (finished) 

where U
i
 being the initial mode. With each 

automaton H
i
 we associate two variables: variable 

x
i
, measuring the time while the job j

i
 is being 

executed on a machine; and variable done
i
 with 

values 0 and 1 denoting whether the job is unfin-
ished (0) or finished (1). For each job j

i
 the initial 

valuation of variable x
i
 is 0, while the valuation for 

done
i
 = 0. For each mode m ∈ {U

i
, S

i
, F

i
} we have 

that F(m)(done
i
) = 0 and F(S

i
)(x

i
) = 1 (to measure 

time spent during processing of the job) and F(U
i
)

(x
i
) = 0 and F(F

i
)(x

i
) = 0. The transition from a 

mode U
i
 to S

i
 with action begin

i
 is guarded by the 

condition that all of the preceding jobs according 
to ≺ has been finished, i.e. ∧ =:k k i k≺ ( )done 1 . The 
transition from a mode S

i
 to F

i
 with action finish

i
 

is guarded by predicate done′ =i ijδ ( ) specifying 
that job j

i
 takes exactly δ(j

i
) time units, and the 

jump of this transition includes done′ =j 1.
Modeling Machines. We model each machine 

m
i
 ∈ M using a hybrid automaton with no vari-

able and k + 1 modes where k is the number of 
jobs that can be scheduled to this machine: there 
is a unique mode I

i
 (idle), and for each job j

j
 that 

can be scheduled to this machine, i.e. m
i
 ∈ ζ(j

i
) 

there is a mode P
i,j
 (corresponding to processing 

job j
j
 ∈ J on machine m

i
 ∈ M). For each mode 

P
i,j
 there is a transition from I

i
 to P

i,j
 with action 

begin
j
 and a transition from P

i,j
 to I

i
 with action 

finish
j
 denoting the scheduling and the finishing, 

respectively, of job j
j
 on machine m

i
. Since there 

are no variables associated with these automata 
the guard and the jump predicate of these transi-
tions is simply .

As an example of such modeling, consider the 
job-shop problem with J = {j

1
, j

2
}, M = {m

1
}, ζ(j

1
) 

= ζ(j
2
) = m

1
, j

1
 ≺ j

2
, and δ(j

1
) = 3 and δ(j

2
) = 4. 

Figure 8 shows hybrid automata H
j1
, H

j2
, and H

m1
 

corresponding to the jobs j
1
 and j

2
, and the machine 

m
1
 respectively. This figure also shows the compo-

sition of these automata H
j1
 ⊗ H

j2
 ⊗ H

m1
 repre-

senting the hybrid automata corresponding to the 
complete job-shop problem.

3 Formal Verification of Hybrid Systems
Formal modeling and verification of systems is the 
set of techniques that employ rigorous mathemati-
cal reasoning to analyze properties of a system. In 
this article we concentrate on model checking—a 
formal verification framework introduced by 
Clarke, Sifakis and Emerson47—that, given a formal 
description of a system and its specification, sys-
tematically verifies whether the specification holds 
for the system model. Since, by definition the states 
of a dynamical system changes with time, classical 
propositional logic is not sufficient to reason with 
temporal properties of such dynamical systems. 
Temporal logics extend propositional or predicate 
logics by modalities that are useful to capture the 
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change of behaviour of a system over time. Manna 
and Pnueli1,77 were the first one to propose and pro-
mote the use of temporal logic to specify properties 
of dynamical systems in the context of system veri-
fication. Linear temporal logic (LTL),77 computation 
tree logic (CTL) and its generalization CTL*,50,77 
and modal µ-calculus53 are some of the popular 
temporal logics used for the system specification. 
Timed and weighted extensions of these logics e.g. 
metric temporal logics (MTL and MITL),83 dura-
tion calculus (DC),43 and weighted logics31,37 have 
also been proposed to specify more involved quan-
titative properties of hybrid dynamical systems.

In this article we limit the discussion to simple 
qualitative properties of hybrid systems that 
broadly can be classified into the following two 
categories:76

– The reachability or guarantee properties, that ask 
whether the system can reach a configuration 
satisfying certain property p? (symbolically, we 
write ◊p and we say eventually p); and

– The safety properties that ask whether the sys-
tem can stay forever in configurations satisfy-
ing certain property p? (symbolically, we write  
p and we say always or globally p).

The linear temporal logic, LTL, provides a for-
mal language to specify more involved nesting of 
such properties with ease. We begin this section 
(Section 3.1) by introducing Kripke structures 
that provide a way to mark states of the hybrid 
automata with properties of interest, and present 
the syntax and semantics of LTL that are inter-
preted over Kripke structures. In Section 3.2 we 
formally introduce LTL model-checking problem 
for hybrid automata, and show that in general this 

problem is undecidable. On a positive note, in Sec-
tion 3.3, we show that LTL model-checking can be 
algorithmically solved for finite Kripke structures. 
Finally, in Section 3.4 we introduce the notion 
of bisimulation, and show that the existence of a 
finite bisimulation implies the decidability of LTL 
model-checking problem.

3.1  Hybrid Kripke structures and linear 
temporal logic

The formal specification of the underlying system 
begins by identifying key properties of interests 
(called atomic propositions) regarding the states 
of the system under verification. Kripke structures 
provide a way to label the states of state-transition 
graphs with such atomic propositions, and the 
linear temporal logic specifies properties of the 
sequence of the truth values of these propositions, 
called traces, for the runs of corresponding tran-
sition system. Hence, before we introduce linear 
temporal logic LTL we need to introduce Kripke 
structures and their corresponding hybrid exten-
sion, and the concept of traces.

Defintion 8 (Hybrid Kripke Structure): A Kripke 
Structure is a tuple (T, P, L) where:

– T = (S, S
0
, Σ, ∆) is a state transition graph,

– P is a finite set of atomic propositions, and
– L : S → 2P is a labeling function that labels 

every state with a subset of P.

Similarly, we define a Hybrid Kripke Structure 
as a tuple (H, P, L) where:

– H = (M, M
0
, Σ, X, ∆, I, F, V

0
) is a hybrid 

automaton,
– P is a finite set of atomic propositions, and

Figure 8: Network of hybrid automata Hj1, Hj1, and Hm1 corresponding to jobs j1 and j2, and a machine m1, 
and their product automata Hj1 ⊗ Hj2 ⊗ Hm1.
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– L : M → 2P is a labeling function that labels 
every mode with a subset of P.

Observe that the semantics of a hybrid Kripke 
structure is a Kripke structure. 

Let us fix a hybrid Kripke structure (H, P, L) 
and its semantics Kripke structure (H, P, L) for 
the rest of this section. When the set of proposi-
tions and labeling function is clear from the con-
text, we use the terms state transition graph and 
Kripke structure, and the terms hybrid Kripke 
structure and hybrid automaton interchangeably.

Given a hybrid Kripke structure (H, P, L) and 
an infinite run r = 〈(m

0
, v

0
), (t

1
, a

1
), (m

1
, v

1
), …, 

(m
n
, v

n
),…〉 of H, we define a trace corresponding 

to r, denoted as Trace(r), as the sequence 〈L(m
0
), 

L(m
1
), L(m

2
),…L(m

n
),…〉. Let Trace(H, P, L) be 

the set of traces of the Hybrid Kripke Structure H. 
For a trace σ = 〈P

0
, P

1
, …, P

n
, …〉 ∈ Trace(H, P, L) 

we write σ[i] = 〈P
i
, P

i
 + 1

, …,〉 for the suffix of the 
trace starting at the index i ≥ 0.

Now we are in a position to define the syntax 
and semantics of linear temporal logic.

Definition 9 (Linear Temporal Logic (Syntax)): 
The set of valid LTL formulas over a set P of 
atomic propositions can be inductively defined as 
the following:

–  and ⊥ are valid LTL formulas;
– if p ∈ P then p is a valid LTL formula;
– if φ and ψ are valid LTL formulas then so are 

¬φ, φ ∧ ψ and φ ∨ ψ;
– if φ and ψ are valid LTL formulas then so are 

○φ, ◊φ, φ and φ Uψ.

We often use φ ⇒ ψ as a shorthand for ¬φ ∨ ψ. 
Before we define the semantics of LTL formula 
formally, let us give an informal description of the 
temporal operators ○, ◊, , and U. LTL formu-
las are interpreted over traces of (Hybrid) Kripke 
structures. The formula ○φ, read as next φ, holds 
for a trace σ = 〈P

0
, P

1
, P

2
, …〉 if ψ holds for the 

trace σ [1]. The formula ◊φ, read as eventually φ, 
holds for a trace σ = 〈P

0
, P

1
, P

2
, …〉 if there exists 

i ≥ 0 such that the formula ψ holds for the trace 
σ[i]. The formula φ, read as globally or always 
φ, holds for a trace σ = 〈P

0
, P

1
, P

2
, …〉 if for all i 

≥ 0 the formula ψ holds for traces σ[i]. Finally, the 
formula φ U ψ, read as φ until ψ, holds for a trace 
σ = 〈P

0
, P

1
, P

2
, …〉 if there is an index i such that 

ψ holds for the trace σ[i], and for every index j 
before i the formula φ holds for the trace σ[j], i.e 
the formula φ holds until formula ψ holds.

Definition 10 (Linear Temporal Logic (Seman-
tics)): For a trace σ = 〈P

0
, P

1
, P

2
, …〉 of a (Hybrid) 

Kripke structure we write σ |= φ to say that the 
trace σ satisfies the formula φ. The satisfaction of 
LTL formulas is defined as follows:

– σ   and σ / ⊥ ;
– σ  p  if p ∈ P

0
;

– σ φ¬  if σ φ/ ;
– σ φ ∧ψ  if σ φ  and σ ψ;
– σ φ ∨ψ if σ φ  or σ ψ;
– σ φ○  if σ φ[ ]1  ;
– σ φ ◊  if there exists i ≥ 0 such that σ φ[ ]i  ;
– σ φ  if for all i ≥ 0 we have that σ φ[ ]i  ; 

and
– σ φ Uψ  if there exists i ≥ 0 such that σ [ ]i ψ, 

and for all 0 ≤ j < i or σ φ[ ]j  .

For a (hybrid) Kripke structure (H, P, L), and 
an LTL formula φ we say that ( )H , ,P L φ  if for all 
σ ∈ Trace(H, P, L) we have that σ φ .

Lamport72 observed that most of the system 
specifications can be classified in safety properties 
(something will not happen) and liveness proper-
ties (something must happen). Manna and Pnueli76 
further refined the class of specifications starting 
from reachability and safety properties to intro-
duce a hierarchy of temporal properties using 
nesting of LTL operators, for instance

– The recurrence properties that ask whether the 
system can infinitely often visit configurations 
satisfying certain property p? (symbolically, we 
write ◊p and we say infinitely often p); and

– The persistence properties that ask whether the 
system visits configurations not satisfying a 
certain property p only finitely often? (sym-
bolically, we write ◊p and we say eventually 
always p).

Some examples for expressing reachability, 
safety, and liveness properties using LTL are shown 
in the following example.

Example 7: As an example let us write LTL 
specifications for an elevator serving k different 
floors. Let op

i
, fl

i
 and req

i
 be atomic propositions 

representing the situations that “the door at floor 
i is open”, “the lift is at floor i and is not moving” 
and “there is a request for the lift to move to the ith 
floor” respectively. The following are some specifi-
cations in English and their LTL counterparts:

1. Reachability property: The lift will visit the 
ground floor sometime.

φ1 0

def
fl= .◊
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2. Safety property: The door of the lift is never 
open at a floor if the lift is not present there.

φ2
0

def

i

k

i ifl op=
=

¬ ⇒ ¬






. ∧ ( )

3. Recurrence property: The lift keeps coming back 
to the ground floor.

φ3 0 0 0

def

fl fl fl= ¬ ⇒ ∧ .( ) ◊ ◊

4. Persistence property: Eventually always a 
requested floor will be eventually served.

φ4
0

def

i

k

i ireq fl= ∧ ⇒





.
=

◊ ◊ ( )

We refer the reader to22,50,76,77 for a detailed 
overview of LTL for system specification.

3.2  LTL model checking for hybrid 
automata

LTL model-checking problem for hybrid automata 
can be formally stated in the following manner. 

Definition 11 (LTL Model-Checking): Given 
a system modeled as a (Hybrid) Kripke struc-
ture (H, P, L), and a specification written as an 
LTL formula φ, the LTL model-checking problem 
is to decide whether all traces of H satisfy φ, i.e. 
( )H , ,P L φ . Moreover, if the system does not sat-
isfy the property give a counterexample (run of 
the system) violating the property.

Example 8: Consider the Kripke structure T 
shown in Figure 9 with set of atomic propositions 
{p, q}. We are depicting the labeling function by 
writing the set of propositions inside the state, 
and we omit other non-relevant details. Let us 
consider the LTL formulas φ

1
 = ◊(p ∧ ¬q) and φ

2
 = 

q∨ ◊p. Observe that T / φ1 as is clear from the 
counterexample r = 〈m

0
, a, m

1
, a, m

0
, …〉 as it never 

visits the configuration satisfying (p ∧ ¬q) as is 
clear from its trace Trace(r) = {q}{p, q} {q} {p, q}. 
On the other hand, it is easy to verify that T satis-
fies φ

2
 as any run of T either never visits m

2
 (and in 

that case satisfies q, or it eventually visits m
2
 and 

never leaves it (and thus satisfies ◊p).
Example 9 (Job-Shop Scheduling Revisited): 

Consider the job-shop scheduling problem mod-
eled as a network of hybrid automata in Fig-
ure 8. Consider the atomic propositions j

1
.finish 

and j
2
.finish that are true only in modes F

1
 and 

F
2
. The counterexample produced in model-

checking LTL property ¬(◊(j
1
.finish ∧ j

2
.finish)) 

gives a valid schedule for the job-shop scheduling 
problem.

Next, we show that LTL model-checking prob-
lem for hybrid Kripke structures is undecidable. 
To prove this result, we show a reduction from a 
well-known undecidable problem of reachability 
(halting) for two-counter Minsky machines.81

A Minsky machine A is a tuple (L, C) where: 
L = {

0
, 

1
, …, 

n
} is the set of instructions. There is a 

distinguished terminal instruction 
n
 called HALT. 

C = {c
1
, c

2
} is the set of two counters; the instruc-

tions L are one of the following types:

1. (increment c) 
i
 : c = c + 1; goto 

k
,

2. (test-and-decrement c) 
i
 : if (c > 0) then 

(c = c – 1); goto 
k
 else goto 

m
,

3. (Halt) 
n
 : HALT.

where c ∈ C, 
i
, 

k
, 

m
 ∈ L.

A configuration of a Minsky machine is a tuple 
(, c, d) where  ∈ L is an instruction, and c, d are 
natural numbers that specify the value of counters 
c

1
 and c

2
, respectively. The initial configuration is 

(
0
, 0, 0 ). A run of a Minsky machine is a (finite 

or infinite) sequence of configurations 〈k
0
, k

1
, …〉 

where k
0
 is the initial configuration, and the relation 

between subsequent configurations is governed by 
transitions between respective instructions. The 
run is a finite sequence if and only if the last con-
figuration is the terminal instruction 

n
. Note that 

a Minsky machine has exactly one run starting 
from the initial configuration. The halting prob-
lem for a Minsky machine asks whether its unique 
run ends at the terminal instruction 

n
. It is well 

known81 that the halting problem for two-counter 
Minsky machines is undecidable.

Theorem 3: The LTL model-checking problem 
for hybrid Kripke structures is undecidable.

Proof. Given a two counter machine A, we con-
struct a hybrid Kripke structure H and an LTL for-
mula φ such that Hφ  iff A halts. The modes of H 
are labeled with the labels l

i
 of instructions. There 

is a unique mode of H labeled with atomic propo-
sition “HALT” which corresponds to the terminal 
instruction of A. The increment, decrement and 
test instructions are encoded by suitable modules 

Figure 9: A Kripke structure T. 
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in H. The variables of H are X = {x
1
, x

2
, y, z, z

1
} with 

F(m) for all modes is defined as the following:

    x x y z z1 2 11 1 1 1 2= ∧ = ∧ = ∧ = ∧ = .

The initial mode is labeled by l
0
, the label of the 

first instruction. The values of the counters c, d are 
encoded as x c1

1
2

=  and x d2
1

2
= . After the execu-

tion of each instruction, x
1
, x

2
 will contain the cur-

rent values of counters c, d encoded in the above 
form. For instance, if we have x xc d1

1
2 2

1
2

= =,  
before incrementing counter c, then at the end of 
simulating the increment instruction, we will have 
x c1

1
2 1= +  and x d2

1
2

= .
In Figure 10, we illustrate the case of the incre-

ment instruction l
i
 : increment c and goto l

j
. The 

case for the decrement instruction is similar, 
and hence omitted. Mode l

i
 is entered with y = 0, 

x c1
1
2

=  and x d2
1

2
= . On entering mode A

i
, we have 

x y x xc d c c1
1
2 2

1
2

1
2 2

1
2

1 1 1 1= , = − , = + − = − −( ) or η  

if 1
2

1
2

1 1d c+ = ≤ −η η,  and z = 0. Mode B
i
 

can be entered if x
2
, y < 1 and x

1
 > 1. Assume 

k > 0 units of time was spent at mode A
i
. This 

gives y k x kc d c= − + , = + − +1 11
2 2

1
2

1
2

( )  (or 
1 1

2
− − +c kη , or 1 – η′ if 1 11

2
− − + ′ =c η η , η′ ≤ k), 

z = k, x
1
 = 0, z

1
 =0 on entering mode B

i
. We can  

reach mode l
j
 only if the values of z and 

z
1
 are the same. Assume l units of time 

was spent at B
i
. Then z = k + l, z

1
 = 2l, 

x k l x l y k ld c c2
1

2
1
2 1

1
2

1 1= + − + + , = , = − + +( ) . To 

satisfy the constraints z = z
1
, y = 1, we have k = 1 and 

k l k c+ = =2 1
2

 giving x xc d1
1

2 2
1

21= , =+ , y = 0 at l
j
.

The LTL formula φ = l
0
 ∧ ◊ HALT will be satisfied 

by H iff A halts. This shows that LTL model check-
ing of hybrid Kripke structures is undecidable. 

3.3  LTL model-checking for finite Kripke 
structures

As we discussed in previous section the LTL model-
checking problem is undecidable for general hybrid 
automata. However, for finite Kripke structures 
Wolper, Vardi, and Sistla99 developed an elegant 
automata-theoretic algorithm for solving the LTL 
model-checking problem. The algorithm exploits 
the connection between LTL formulas and a type 
of ω-automata—automata that extend the theory 
of finite automata to infinite inputs—called Büchi 

automata.40,56 The syntax for the Büchi automata 
specifies a finite state transition graph T along 
with a set F of accepting states, and the semantics 
of Büchi automata restricts the set of valid runs to 
the runs of T that visit F infinitely often. In general 
Büchi automata are closed under all Boolean oper-
ations including union, intersection, and comple-
mentation, however deterministic variant of Büchi 
automata is not closed under complementation. 
Emptiness checking for Büchi automata can be 
decided efficiently (linear in time) by analyzing 
strongly connected components of T.

The LTL model-checking problem exploits the 
following connection between linear temporal 
logic and Büchi automata.

Theorem 4 (LTL-to-Büchi Automata):99 For 
every LTL formula φ we can effectively construct 
a finite (Büchi) automaton Aφ (of size exponential 
in φ) such that words recognized by Aφ are pre-
cisely the set of traces that satisfy φ.

Based on this result, the LTL model checking 
for a finite Kripke structure K can be performed 
in the following manner:

1. Construct a Büchi automaton A¬φ correspond-
ing to the negation of the LTL property.

2. Construct the composition K⊗A¬φ of the Kripke 
structure K with the Büchi automaton A¬φ.

3. If the Büchi automaton H⊗A¬φ is empty, then 
return “TRUE”

4. Else, return a lasso-shaped (a finite prefix fol-
lowed by a cycle that contains an accepting 
state) infinite run accepted by H⊗A¬φ as a 
counter-example.

The correctness of this algorithm follows from 
the observation that the set of traces for this com-
position K⊗A¬φ characterize the set of traces that 
are generated by K that do not satisfy φ. Hence, 
the Kripke structure K satisfies the LTL property φ 
if and only if H⊗A¬φ is empty.

Theorem 5 (LTL model-Checking for Finite 
Structures):91 LTL model checking problem for 
finite Kripke structures is decidable in PSPACE.

LTL model-checking for finite Kripke struc-
tures is implemented by a number of mature 
tools, notably SPIN92 and NuSMV,82 and has been 
applied to a number of practical case-studies.82,92

Figure 10: Module simulating li: increment c, goto lj .
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3.4 Finite bisimulation and decidability
In this section we introduce the concept of bisimu-
lation relation between two Kripke structures, and 
show that for two bisimilar systems (systems hav-
ing a bisimulation relation between their states) we 
have that both systems have the same set of traces, 
and hence precisely the same set of LTL formulas 
are satisfied by both of them. Using this idea, we 
show that if for a given hybrid Kripke structure 
H there exists a bisimulation relation with some 
finite state Kripke structure K, then the problem 
of LTL model-checking for H can be reduced to 
the decidable problem of LTL model-checking for 
finite Kripke structure K.

We say that a Kripke structure ′ = ′, , ′K T( )P L  
can simulate a Kripke structure K = (T, P, L) if 
every step of K can be matched (with respect to 
atomic propositions) by one or more steps of K′. 
A Bisimulation equivalence denotes the presence 
of a mutual simulation between two structures K 
and K′. Formally, bisimulation relation is defined 
in the following manner.

Definition 12 (Bisimulation Relation): Let 
K = (T = S, S

0
, Σ, ∆), P, L) and ′ = =K T(  

( ) )′, ′ , ′, ′∆ , , ′S S P L0 Σ  be two Kripke structures. A 
bisimulation relation between K and K′ is a binary 
relation R ⊆ S × S′ such that:

– every initial state of T is related to some initial 
state of T′, and vice-versa, i.e. for every s ∈ S

0
 

there exists ′ ∈ ′s S0  such that (s, s′) ∈ R and for 
every ′ ∈ ′s S0  there exists a s ∈ S

0
 such that (s, 

s′) ∈ R;
– for every (s, s′) ∈ R the following holds:

– L(s) = L′ (s′),
– every outgoing transition of s is matched 

with some outgoing transition of s′, i.e. if 
t ∈ Post(s) then there exists t′ ∈ Post(s′) 
with (t, t′) ∈ R, and

– every outgoing transition of s′ is matched 
with some outgoing transition of s, i.e. if t′ 
∈ Post(s′) then there exists t ∈ Post(s) with 
(t, t′) ∈ R.

We say that T and T  ′ (analogously, K and K′) 
are bisimilar or bisimulation equivalent, and we 
write T ∼ T  ′, if there exists a bisimulation relation 
R ⊆ S × S′.

The following Proposition follows from the def-
inition of bisimulation and the semantics of LTL.

Proposition 6: If T ∼ T  ′ then Trace(T  ) = 
Trace(T  ′). Moreover, if T ∼ T  ′ then for every 
LTL formula φ we have that T φ  if and only if 

′T φ .
Proof. Let T ∼ T  ′. Using a simple inductive argu-

ment, one can show that for every run a = 〈s
0
, a

1
, 

s
1
, a

2
, …〉 of T there is a run ′ = ′ , ′, ′, ′ ,r s a s a〈 〉0 1 1 2 ...  

of T  ′ such that L s L si i( ) ( )= ′ ′  for every i ≥ 0. 
This implies that Trace(r) = Trace(r ′) and hence 
Trace(T  ) ⊆ Trace(T  ′). Similarly, we can show that 
Trace(T  ′) ⊆ Trace(T). Hence it follows that T ∼ T  ′ 
implies Trace(T) = Trace(T  ′). To prove the other 
part of the proposition, observe LTL formulae are 
interpreted over traces of structures, and since two 
bisimilar Kripke structures have the same set of 
traces, it follows that for every LTL formula φ we 
have that T ∼ T  ′ implies that T φ  if and only if 

′T φ . 
This proposition shows that LTL model check-

ing problem can be reduced to solving LTL model 
checking problem over a bisimilar Kripke struc-
ture. We next show how to extend this idea to 
define bisimulation over the states of a Kripke 
structure, and use it to produce a bisimilar Kripke 
structure with fewer states.

Definition 13 (Bisimulation Relation on K): Let 
K = (T = (S, S

0,
 Σ, ∆), P, L) be a Kripke structure. A 

bisimulation on K is a binary relation R ⊆ S × S 
such that for all (s, s′) ∈ R we have that:

– L(s) = L(s′);
– if t ∈ Post(s), then there exists an t′ ∈ Post(s′) 

such that (t, t′) ∈ R;
– if t′ ∈ Post(s′), then there exists an t ∈ Post(s) 

such that (t, t′) ∈ R.

It is easy to see that a bisimulation relation R 
over the state space of K is an equivalence relation. 
For a state s ∈ S we write [s]

R
 for the equivalence 

class of R containing s. We say that states s, s′ ∈ S 
are bisimulation equivalent, and we write s ∼ 

T
 s′, 

if there exists a bisimulation relation R for T with 
(s, s′) ∈ R.

Given a Kripke structure T, we use a bisimula-
tion relation R for reducing the state space of T 
using the following quotient construction.

Definition 14 (Bisimulation Quotient): Given a 
Kripke structure K = (T = (S, S

0,
 Σ, ∆), P, L) and a 

bisimulation relation R ⊆ S × S over K, the bisimu-
lation quotient K

R
 is defined as a Kripke structure 

K TR R R R R R R= = , ∆ , ,( ( , , ) )S S P L0 Σ  where:

– The state space of T
R

 is the quotient space of T, 
i.e. S

R
 = {[s]

R
: s ∈ S};

– The set of initial states is the set of R-equivalence 
classes of the initial states, i.e. S s s SR R

0
0= : ∈{[ ] };

– ∑
R

 = {t};

c Observe that the definition of bisimulation ensures that the 

state labeling L
R

 is well defined.
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– Each transition (s, a, s′) ∈ ∆ induces a 
transition from [s]

R
 to [s′]

R
 in ∆

R
, i.e. 

∆R R R= , ′ : , , ′ ∈∆{([ ] , [ ] ) ( ) }s s s sτ α , and
– L

R
 is defined such that L

R
([s]) = L(s)c.

We say that a bisimulation quotient is finite if 
there are finitely many equivalence classes of R, 
i.e. |S

R
| < ∞.

The proof of the following theorem is imme-
diate from Proposition 6 and Theorem 5.

Theorem 7: The existence of a finite bisimula-
tion quotient for a hybrid Kripke structure imply 
the decidability of LTL model-checking problem.

4  Decidable Subclasses of Hybrid 
Automata

Given the expressiveness of hybrid automata it is 
not surprising that simple reachability questions 
are undecidable for general hybrid kripke struc-
tures. In this section we discuss some prominent 
subclasses of hybrid automata for which LTL 
model checking problem is decidable. In the pre-
vious section we discussed that showing the exist-
ence of a finite bisimulation quotient guarantees 
decidable model-checking. Timed automata were 
among the first hybrid automata shown to have 
decidable model-checking using this approach. 
We begin this section by presenting timed autom-
ata and discuss this bisimulation known as region-
equivalence relation. We will also review multi-rate 
and rectangular hybrid automata (Section 4.2) 
that under certain restriction (initialized) recover 
decidability of LTL model-checking via reductions 
to similar problem on timed automata. Finally, in 
Section 4.3 we discuss a relatively simple class of 
hybrid systems, called piecewise-constant deriva-
tive systems, that capture the essence of undecid-
ability and provide references to its variants that 
permit algorithmic analysis.

4.1 Timed automata
Timed automata, introduced by Alur and Dill,10,11 
is a popular formalism to model real-time systems. 
A timed automaton is a hybrid automaton where 
all variables grow with a constant and uniform 
rate (for all variables x ∈ X we have that x = 1) 
and the only jump permitted during the discrete 
transitions is reset to zero. Moreover, the set of 
predicates permitted to appear as guard on transi-
tions is restricted to the following kind of octago-
nal predicates:

g x c x y c g g: = | − | ∧   (4)

where x, y are clock variables, ∈ <,≤,=,>,≥{ } and 
c ∈ N. We write Z(X) for this class of octagonal 

predicates over the set X. Formally, we define a 
timed automata as a restriction of hybrid autom-
ata in the following manner.

Definition 15 (Timed Automata: Syntax): 
A timed automaton is a hybrid automaton 
T = (M, M

0
, ∑, X, ∆, I, F, V

0
) with the following 

restrictions:

– The transition relation ∆ ⊆ M × pred(X) × ∑ × 
pred(X ∪ X′) × M is such that if (m, g, a, j, m′) 
∈ ∆ then
– the guard g is of the form (4), i.e. g ∈ Z(X) 

and
– the jump predicate j only permits variable 

resets to zero, i.e. j is of the form

 ∧ ′ = ,∈x Y x( )0

 for some Y ⊆ X. We denote such set Y 
as reset(j).

– The mode-invariant function I : M → pred(X) 
is such that for all m ∈ M we have that I(m) ∈ 
Z(X);

– The flow function F : M → (R|X| → R|X|) is 
such that for all m ∈ M we have that F(m) 
characterizes:

 ∧ = ,∈x X x( ) 1 and

– V
0
 ∈ pred(X) is the set of initial valuations is 

such that V xx X0 0= ∧ =∈ ( ).

The semantics of timed automata and the 
concept of timed Kripke structures is defined in a 
similar way as for hybrid automata.

Example 10: The hybrid automaton correspond-
ing to the job-shop scheduling problem, shown in 
Figure 8, can also be modeled as a timed automa-
ton by requiring that the rates of variables x

1
 and 

x
2
 is 1 in all the modes (unlike the current example 

where these clocks are paused in certain modes).
Example 11: As an example of a timed automa-

ton consider Figure 11 that models a login pro-
tocol using a timed automaton. The system starts 
in the “standby” mode. If the user gives a correct 
password within 60 time-units after giving the 
user name, a connection will be established; if, 
however, the password given is wrong, the sys-
tem restarts after a delay of at least 10 time units. 
Moreover, if no password is given within 60 time 
units after supplying user name, then the system 
restarts in the standby mode. This system is mod-
eled using a timed automaton with five modes and 
one clock in Figure 11.

Alur and Dill11 proposed the notion of region 
equivalence to define a bisimulation relation over 
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the timed Kripke structures (T , P, L). We say 
that two clock valuations v and v′ are region equiv-
alent, and we write v ∼ 

R
 v′, if and only if all clocks 

have the same integer parts in v and v′, and if the 
partial orders of the clocks, determined by their 
fractional parts in v and v′, are the same.

Definition 16 (Region Equivalence): Let T be 
a timed automaton and let K be the maximum 
constant used in the guards of T. We say that two 
clock valuations v and v′ are region equivalent, and 
we write v ∼ 

R
 v′ if and only if:

– either for x ∈ X we have v(x) > K and v′(x) > K, 
or

– for any x, y, ∈ X with v(x), v′(x) ≤ K and v(y), 
v′(y) ≤ K the following conditions hold:
– v(x) = v′(x), and v(x)  = 0 iff v′(x)  = 0,
– v(y) = v′(y), and v(y)  = 0 iff v′(y)  = 0,
– v(x)  ≤ v(y)  if and only if v′(x)  ≤ v′(y) ,

where c  =
def

c c−  ( ) represents the fractional part 
of c ∈ R≥0

.
It is easy to see that ∼

R
 is an equivalence relation. 

For a clock valuation v we write [v] for the region 
equivalence class of v. Region equivalence relation 
can be extended from valuations to configurations of 
a timed automaton T in a straightforward manner: 
we say that two configurations (m,v) and (m′,v′) are 
region equivalent, and we write [(m,v)] = [(m′,v′)], 
if and only if m = m′ and [v] = [v′].

Alur and Dill11 showed that region equivalence 
relations characterize finite bisimulation quotients 
for timed Kripke structures by showing that the 
number of equivalence classes for a timed  automaton 
(M, M

0
, ∑, X, ∆, I, F, V

0
) are bounded from above by 

| | ⋅ | |!⋅ ⋅ ⋅ . +| |
=

| |M X KX
i
X2 2 21Π ( ) .

Theorem 8:11 Region equivalence relation char-
acterizes a finite bisimulation quotient for timed 
Kripke structures.

This theorem combined with Theorem 7 
proves the decidability of LTL model checking for 
timed Kripke structures. The complexity of LTL 
model checking was considered by Courcoubetis 

and Yannakakis51 who showed that simple reach-
ability problem for timed Kripke structures with 
three or more clocks is PSPACE-complete. Despite 
the high computational complexity of verification, 
algorithms based on region equivalence relation 
coupled with clever data-structures27 to symboli-
cally represent sets of regions have been shown 
to perform well in practice on medium-sized 
applications.41,95 UPPAAL,96 KRONOS,66 and 
RED89 are some of the leading tools that can 
perform timed automata based verification. The 
theory of timed automata has also been extended 
in several directions to allow them to model 
more realistic real-time systems, e.g. real-time 
systems with cost and rewards,26,33,63,73,88 uncon-
trollable nondeterminism,7,17,19,20,31,38 stochastic 
behavior,8,25,36,62,68,69,70,75 and recursion.5,94 We refer 
the reader to Waez, Dingel, and Rudie97 for a 
detailed survey fo these extensions.

4.2  Multi-rate and rectangular hybrid 
automata

Multi-rate hybrid automata, introduced by Hen-
zinger and Kopke,58,59,87 are a subclass of hybrid 
automata where the dynamics of variables is 
restricted to constant rates. However, unlike timed 
automata, different variables can have different 
rates, and it can vary among different modes. 
Moreover, during discrete transitions these vari-
ables can be reseted to real numbers. Also in a 
multi-rate hybrid automaton the set of predi-
cates permitted to appear as guard on transitions 
is restricted to the following kind of rectangular 
predicates:

g c x c: = ′ ,   (5)

where x is a variable, ∈ <,≤, =,>,≥{ } and c, 
c′ ∈ N. We write rect(X) for this class of rectangu-
lar predicates over the set X. Formally, we define 
a multi-rate hybrid automata as a restriction of 
hybrid automata in the following manner.

Definition 17 (Multi-rate Hybrid Automata: 
Syntax): A multi-rate hybrid automaton is a hybrid 
automaton H = (M, M

0
, ∑, X, ∆, I, F, V

0
) with the 

following restrictions:

– the transition relation ∆ ⊆ M × pred(X) × ∑ 
× pred(X ∪ X′) × M is such that if (m, g, a, j, 
m′) ∈ ∆ then
– the guard g is of the form (5), i.e. g ∈ 

rect(X) and
– the jump predicate j only permits variable 

resets to real numbers, i.e. j is of the form 

 ∧ ′ =∈x Y xx c( )

Figure 11: A time-sensitive login protocol imple-
mented as a timed automaton. 



Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science  VOL 93:3  Jul.–Sep. 2013  journal.iisc.ernet.in436

 where Y ⊆ X and c
x
 ∈ Z for each x ∈ Y. 

We denote such set Y as reset(j).
– the mode-invariant function I : M → pred(X) 

is such that for all m ∈ M we have that 
I(m) ∈ rect(X);

– the flow function F : M → (R|X| → R|X|) is 
such that for all m ∈ M we have that F(m) 
characterize:

 
∧ = ,∈ ,x X x mx c( )

where c
x,m

 ∈ Z for each x ∈ X; and
– V

0
 ∈ pred(X) is the set of initial valuations is 

such that V xx X0 0= ∧ =∈ .

The semantics of multi-rate automata and 
the concept of multi-rate Kripke structures is 
defined is a similar way as for hybrid automata. 
Rectangular hybrid automata58,59 are a generaliza-
tion of multi-rate hybrid automata where within 
each mode the rate of a variable can change non-
 deterministically within a given mode-dependent 
interval.

Using a reduction from two counter Minsky 
machine, one can easily show that the LTL model 
checking problem for multi-rate hybrid automata 
is undecidable.

Theorem 9:59 LTL model-checking problem for 
multi-rate hybrid automata is undecidable.

We say that a multi-rate (or rectangular) 
hybrid automaton is initialized if it satisfies the 
property that every transition between two modes 
with different rates (rate intervals, resp.) for a var-
iable, resets that variable, i.e. for every transition 
(m, g, a, j, m′) ∈ ∆ with F(m)(x) ≠ F(m′)(x) we 
have x ∈ reset(j). Figure 12 shows an initialized 
rectangular automaton.

Henzinger et al.59 showed the decidability 
of initialized rectangular and multi-rate hybrid 
automata.

Theorem 10: The LTL model-checking prob-
lem for initialized rectangular (multi-rate) hybrid 
automata is decidable.

Proof. The decidability of LTL model-check-
ing problem for initialized multi-rate automata 
by reducing the problem to similar problem for 
timed automata by rescaling the rate of all vari-
ables to one via appropriate adjustment of the 
constraints on the mode invariants and guards in 
all the transitions.

To prove the decidability for an initialized 
rectangular automaton H

r
, we reduce the prob-

lem to corresponding problem for an initialized 
multi-rate automaton H

m
. Each variable x of H

r
 

with rate in the rectangle a x b≤ ≤  is simulated 
using two variables x

l
, x

u
 such that x al =  and 

x bu = . The variables x
l
, x

u
 keep track of the lower 

and upper bounds of x respectively. With this 
replacement, the invariant conditions of modes, 
as well as guards and resets on transitions have to 
be adjusted appropriately. For example, if we had 
a transition with guard x ≤ 10, then it is replaced 
with (i) x

l
 ≤ 10 and (ii) x xu u> , ′ =10 10 . This con-

version from initialized rectangular to initialized 
multirate automata is language preserving. Hence, 
from the decidability of LTL model checking prob-
lem for initialized multi-rate hybrid automata, 
the decidability for initialized rectangular hybrid 
follows. 

4.3  Piecewise-constant derivative 
systems and their variants

Asarin, Maler, and Pnueli18 initiated the study 
of hybrid dynamical systems with piecewise-
constant derivatives (PCD) defined as a partition 
of the Euclidean space into a finite set of regions 
(polyhedral predicates), where the dynamics in a 
region is defined by a constant rate vector. They 
defined PCD systems as completely determin-
istic systems where a discrete transition occurs 
at region boundaries, where runs change their 
directions according to the rate vector available 
in the new region. Given the simplicity of such 
systems, it is perhaps surprising that the reach-
ability problem for PCD systems with three or 
more variables is undecidable.18 In fact, Asarin 
and Maler16 observed that, due to the capability 
of such systems to perform Zeno runs, every set 
of arithmetical hierarchy (a hierarchy of unde-
cidable problems) can be recognized by a PCD 
system of some finite dimension. On the positive 
side, Asarin, Maler, and Pnueli18 gave an algo-
rithm to solve the reachability problem for two-
dimensional PCD systems. Cerans and Viksna42 
later generalized this decidability result to more 
general piecewise-Hamiltonian systems. We also 
mention the work of Asarin, Schneider, Yovine21 
who extended the decidability result for two-di-
mensional PCD systems to a non-deterministic 
setting of simple planar differential inclusion sys-
tems (SPDIs) where a number of rate vectors are 
available in each region.

Kesten, Pnueli, Sifakis, and Yovine64 also 
studied another variant of constant-rate hybrid 
systems, called integration graphs, that can be 
considered as a subset of multi-rate automaton 

Figure 12: An initialized rectangular automaton. 
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where no test of non-clock (integrator) variables 
is allowed to appear on a loop. Kesten et al.64 
showed the decidability for the two subclasses of 
integration graphs: The class with a single clock 
variable, and the class where integrators are tested 
only once.

Recently, Bouyer et al.35 introduced timed 
automata with energy constraints, that can be 
considered as multi-rate automata with a single 
non-clock variable (energy variable) that does 
not appear on guards, and showed decidability 
of schedulability problem where the energy vari-
able is required to be greater than a given lower-
bound. Bouyer, Fahrenberg, Larsen, and Markey34 
later generalized this result to give an EXPTIME 
algorithm for a subclass where energy variables 
can grow exponentially.

Alur, Trivedi, and Wojtczak recently studied 
constant-rate multi-mode systems,13 that can be 
considered as multi-rate automata with the excep-
tion that there is no structure in the automata, 
i.e. any mode can be used after any other mode, 
and there is only a global invariant over variables. 
They showed that reachability and schedulability 
problems for these systems can be solved in poly-
nomial time for starting states strictly inside the 
global invariant space. Alur, Trivedi, and Wojtczak 
also showed that introducing either local invari-
ants or guards make the reachability problem 
undecidable. Alur et al.12 later studied this problem 
for a generalization of constant-rate multi-mode 
systems to bounded-rate multi-mode system 
and showed the decidability of the schedulability 
problem.

5 Summary
In this article we presented hybrid automata for 
modeling and formal verification of cyber-phys-
ical systems. Hybrid automata naturally combine 
features from continuous dynamical systems and 
discrete finite state machines, and provide an ele-
gant and expressive model. This expressiveness, 
however, comes with a price—the simple reach-
ability problem for simple subclasses of hybrid 
automata, like piecewise-constant derivative sys-
tems, turned out to be highly undecidable. In this 
article we discussed a general approach of finding 
finite bisimulation quotient to show decidability 
of subclasses of hybrid automata, and sketched 
the proof for the decidability for two key sub-
classes: timed automata and initialized rectangu-
lar hybrid automata. Hybrid automata provide 
an intuitive and semantically unambiguous way 
to model cyber-physical systems. These formal-
isms provide a rich theory and a mature set of 
tools, UPPAAL,96 Kronos,66 RED,89 HyTECH,60 

and PHAVer,86 able to perform automatic verifi-
cation of systems modeled using them. A grow-
ing number of case-studies using these tools have 
shown promise in extending the state-of-the-art 
to industrial-sized examples.

Received 22 August 2013.
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