
Journal of the Indian Institute of Science

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

© Indian Institute of Science

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in

R
ev

ie
w

s

Department of Computer
Science and Engineering
Indian Institute of
Technology Bombay
Mumbai, India 400076

krishnas@cse.iitb.ac.in

trivedi@cse.iitb.ac.in

Hybrid Automata for Formal Modeling
and Verification of Cyber-Physical Systems

Shankara Narayanan Krishna and Ashutosh Trivedi

Abstract | The presence of a tight integration between the discrete control
(the “cyber”) and the analog environment (the “physical”)—via sensors and
actuators over wired or wireless communication networks—is the defining
feature of cyber-physical systems. Hence, the functional correctness of a
cyber-physical system is crucially dependent not only on the dynamics of
the analog physical environment, but also on the decisions taken by the
discrete control that alter the dynamics of the environment. The framework
of Hybrid automata—introduced by Alur, Courcoubetis, Henzinger, and
Ho—provides a formal modeling and specification environment to analyze
the interaction between the discrete and the continuous parts of cyber-
physical systems. Hybrid automata can be considered as generalizations
of finite state automata augmented with a finite set of real-valued variables
whose dynamics in each state is governed by a system of ordinary dif-
ferential equations. Moreover, the discrete transitions of hybrid automata
are guarded by constraints over the values of these real-valued variables,
and enable discontinuous jumps in the evolution of these variables. Con-
sidering the richness of the dynamics in a hybrid automaton, it is perhaps
not surprising that the fundamental verification questions, like reachabil-
ity and schedulability, for the general model are undecidable. In this arti-
cle we present a review of hybrid automata as modeling and verification
framework for cyber-physical systems, and survey some of the key results
related to practical verification questions related to hybrid automata.
Keywords: Cyber-Physical Systems, Dynamical Systems, Formal Modeling, Formal Verification, LTL
Model-Checking, Timed Automata, Hybrid Automata.

1 Introduction
The term “cyber-physical systems” refers to any
network of digital and analog systems whose per-
formance crucially depends on both the continu-
ous dynamics of the analog parts and the real-time
switching decisions made by the digital system. A
typical cyber-physical system may consist of several
processors connected with a set of physical systems
via sensors and actuators over wired or wireless com-
munication networks. Such systems are increasingly
playing safety-critical role in modern life, where a
fault in their design can be catastrophic.

Modern cars are an important paradigmatic
example of such safety-critical cyber-physical

systems. A modern premium car typically has 70 to
100 interconnected electronic control units (ECUs)
with dozens of sensors39 performing various func-
tions44 like air-bag control, cruise control, electronic
stability control, antilock brakes, engine ignition,
windshield-wiper control, engine control, and
collision-avoidance system. Many of these ECUs
are connected with analog environment via sensors
and actuators, and are expected to perform their
operations within hard time limits. For instance, the
air-bag ECU needs to respond within 20–30 mil-
lisecond after the impact sensor connected to it
detects a severe impact. As the number of ECUs
in a typical car is increasing and performing more

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in420

autonomously, it is becoming increasingly difficult
to ensure their correctness. The severity of the prob-
lem can perhaps be best realized by looking into the
growing list of recalls44 by leading car companies
due to software-related problems. Some promi-
nent examples include Toyota’s recall of 160,000
of its 2004/05 Prius models because of a software
problem causing the car to suddenly stall, Jaguar’s
2011 recall of nearly 18,000 X-type cars due to a
software bug resulting in driver’s inability in turn-
ing off the cruise control, and Volkswagen’s 2011
recall of about 4000 of its 2008 Passats models for
engine-control module software problem. The list
is long and underscores the challenges in designing
and verifying safety-critical cyber-physical systems.
Similar examples can also be cited for the cyber-
physical system from other domains such as avion-
ics, implantable medical devices, transportation
networks, and energy sector.

Formal modeling and verification of systems is
the set of techniques that employ rigorous math-
ematical reasoning to analyze properties of a system.
In this article we concentrate on a celebrated3,4 formal
verification framework known as model checking.50
Model Checking—pioneered by Clarke, Sifakis and
Emerson2—is a widely used automated technique
that, given a formal description of a system and a
property, systematically checks whether this prop-
erty holds for a given state of the system model. The
three key steps of this framework are the following:

1. formal modeling: modeling a system under
consideration using mathematically precise
syntax that approximate a given system to a
desired level of abstraction;

2. formal specification: specify the properties of the
system using some mathematically precise speci-
fication language (typically in formal logic); and

3. formal analysis: analyze the formal model with
respect to the formal specification and report
counter-example in case the system model vio-
lates the specification.

The success of the model checking framework in
formal verification of systems is largely due to it being
highly automatic—a push-button technology47—in
comparison to other competing approaches like
theorem proving. The counterexamples generated in
the model-checking process often are used to auto-
matically refine—known as counterexample-guided
abstraction refinement (CEGAR)48,49 framework—
the model and/or the property and the entire proce-
dure can be repeated and thus removing the need of
a very accurate initial model or specification.

Early research on formal modeling and verifica-
tion of systems concentrated on simplified models

of the systems as finite state-transition graphs. Since
these models are finite in nature, it is—in theory—
possible to exhaustively explore the state space of
the system to verify the properties of interest. How-
ever, the biggest challenge in model-checking of
finite state-transition graphs is so-called state-space
explosion problem50 characterizing the exponential
blowup in the number of states in the explicit rep-
resentation of the system where the system is natu-
rally represented succinctly using state variables, or
as a composition of a network of interacting finite
state-transition graphs. In general, the state-space
explosion problem renders the explicit exhaustive
exploration of the system intractable. However, a
number of techniques have been proposed to over-
come the state-space explosion problem—including
symmetry reduction,46 partial-order reduction,85
symbolic model checking80 and bounded model
checking29,30—that has culminated into efficient
and mature tool support including SPIN92 and
NuSMV82 for finite state model-checking. Examples
of the use of finite-state model-checking in indus-
try include the verification of hardware circuits,67
communication15 and security24,78 protocols, and
software device drivers.23

These finite state-transition graphs, however,
often do not satisfactorily model cyber-physical
systems as they disregard the continuous dynamics
of the physical environment. Alur and Dill10 were
the first one to propose a formal model, known as
timed automata, combining finite state-transition
graphs with a finite set of real-valued variables
that evolve as time progresses while the system
occupies a state. In a timed automaton the real-
valued variables—called clocks—simulate per-
fect clocks as they evolve with a uniform constant
speed (rate) and hence can model asynchronous
real-time systems interacting with a continuous
physical environment. The clock variables can
be used to constrain the evolution of the system
by guarding the transitions of the graph, and can
also be reset at the time of taking a transition to
remember the time since that transition. These
capabilities make timed automata quite expressive
formalism to define real-time systems. Moreover,
the decidabilitya of key verification problems like

a The concept of decidability is a central one in computer sci-

ence and it characterizes the set of problems for which one can

write computer programs that always terminate with a correct

answer. The problems for which it is not possible to write such

a program are known as undecidable problems. A most famous

undecidable problem is the halting problem (similar to reach-

ability problem) for the configurations of Turing machines (an

abstract model of computation capturing the notion of algo-

rithmic computation).

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 421

reachability and schedulability10 and availability
of mature verification tools—like UPPAAL,27,96
Kronos,66 and RED89—make timed automata an
appealing tool for real-time system verification.

Alur, Courcoubetis, Henzinger, and Ho gen-
eralized the timed automata to hybrid automata9
to include real-valued variables with arbitrary
dynamics specified using ordinary differential
equations. Considering the richness of dynamics
of a hybrid automata, it is perhaps not surprising
that the fundamental verification questions like
reachability are undecidable for hybrid autom-
ata. A number of subclasses of hybrid automata
has been proposed with decidable verification
problems and some of the algorithms have been
implemented as part of tools like HyTech60 and
PHAVer.86

Timed and hybrid automata provide an intui-
tive and semantically unambiguous way to model
cyber-physical systems, and a number of case-
studies41,55,61,74,84,93,95 demonstrate their application
for the analysis of cyber-physical systems. In this
article we aim to provide a general introduction to
verification using hybrid automata as we focus on
model-checking classical LTL logic77 over hybrid
automata. To keep the discussion simple we do
not cover other logics, for instance, computation
tree logic (CTL, CTL*),50,77 modal µ-calculus,53 and
real-time and hybrid extensions of these logics14
including metric temporal logics (MTL)65,83 and
duration calculus (DC).43

The goal of this article is to introduce key con-
cepts for cyber-physical system modeling and
verification using hybrid automata with a focus
on LTL model-checking. In order to better focus
our attention, we will not cover several useful
extensions of hybrid automata that capture cer-
tain natural aspects of modeling hybrid systems,
including

– game-theoretic extensions7,17,20,32,45,52 that allow
the model to distinguish between controllable
and uncontrollable non-determinism;

– probabilistic extensions6,25,36,68,71,75 that permit
modeling of stochastic behavior arising due to,
e.g., faulty or unreliable sensors or actuators,
uncertainty in timing delays, and performance
characteristics of (third-party) components;
and

– priced extensions28,31,33,73,88 that permit mod-
eling of resource consumption and payoffs
associated with decisions.

We also restrict our attention to theoreti-
cal results regarding decidability of LTL model-
 checking problems, and do not cover data

structures and algorithms27,54,57 for efficient imple-
mentation of these results.

We begin (Section 2) this survey by intro-
ducing two formalisms to model discrete and
continuous dynamical systems, and then we
present hybrid automata model that combines
features from these two models. Section 3 intro-
duces syntax and semantics of linear temporal
logic (LTL) followed by a formal definition of
corresponding model-checking problem over a
hybrid automata, and using two-counter Minsky
machines81 we prove the in general LTL model-
checking over hybrid automata is undecidable.
In this section, we also introduce the idea of
state-space reduction using a well-established
technique called quotienting which we later
exploit to show decidability of model checking
problem for some variants of hybrid automata.
We conclude the survey by discussing (Section 4)
three key subclasses of hybrid automata—timed
automata, (initialized) rectangular hybrid
automata, and (two dimensional) piecewise-
constant derivative systems—with decidable
model checking problem.

2 Hybrid Automata
A dynamical system is simply a system whose
“state” evolves with “time” governed by a fixed
set of rules or “dynamics”. The state of a dynami-
cal system is specified as valuations of the vari-
ables of interest in the system. Depending upon
the nature of variables (discrete or continuous)
and the notion of time (discrete or continu-
ous) the dynamics of variables can be specified
by differential equations or discrete assign-
ments. For the purpose of this paper, we clas-
sify the dynamical systems into the following
three broad classes: i) discrete systems where
both the notion of time and the variables are
discrete, ii) continuous systems where the notion
of time is continuous, while the variables are
continuous, and iii) hybrid systems where some
variables are continuous and some are discrete,
and although the notion of time is continuous,
special dynamic-changing events can happen at
discrete instants. Notice that both discrete and
continuous systems can be considered as sub-
classes of hybrid systems.

On an abstract level any dynamical system
can simply be represented as a graph whose
nodes represent the states and edges represent
transition between the states. Formally, a state
transition graph can be defined in the following
manner.

Definition 1 (State Transition Graphs): A state
transition graph is a tuple T = (S, S

0
, ∑, ∆) where:

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in422

begin this section by introducing concepts and
notation used throughout this article, followed
by discussing such syntactical models to represent
purely discrete and purely continuous dynamical
system. After introducing these models we present
hybrid automata capable of modeling hybrid
dynamical systems.

Variables and predicates
Let R be the set of real numbers, R≥0

 be the set
of non-negative real numbers, and Z be the set of
integers.

Let X be a set of real-valued variables. A valua-
tion on X is a function v : X→R and we write V(X)
for the set of valuations on X. Abusing notation,
we also treat a valuation v as a point in Rn that
is equipped with the standard Euclidean norm ||⋅||
where n is the cardinality of X.

We define a predicate over a set X as a subset
of R|X|. For efficient computer-readable represen-
tation of predicates we often define them using
non-linear algebraic equations involving X. We
write pred(X) for the set of predicates over X. For
a predicate π ∈ pred(X) we write π for the set
of valuations in R|X| satisfying the equation π. We
write for the predicate that is true for all valu-
ations, while for the predicate which is false for
all the valuations.

Example 2: An example of a predicate over the
variables θ and θ is

m mg θ θ= − ,sin()

characterizing the motion of an idealized pendu-
lum (Figure 3) where θ is the angle the pendulum
forms with its rest position, θ is second deriva-
tive of θ, m is the mass of the pendulum, g is the
gravitational constant, and  is the length of the
pendulum.

We say that a predicate P is polyhedral if it is
defined as a conjunction of a finite set of linear
constraints of the form a

1
x

1
 + … + a

n
x

n
 k, where

k ∈ Z, for all 1 ≤ i ≤ n we have that a
i
 ∈ R, x

i
 ∈X,

and ∈{<, ≤, =, >, ≥}. An example of a polyhedral
predicate over the set {x, y, z} is 2x + 3y – 9z ≤ 5.
We define an octagonal predicate as the conjunc-
tion of a finite set of linear constraints over X of
the form ±x ±y k or x k, where k ∈ R, x, y ∈
X. Similarly a rectangular predicate is defined as
the conjunction of a finite set of linear constraints
over X of the form x k, where k ∈ R, and x ∈ X.

2.1 Discrete dynamical systems
Discrete dynamical systems can be conveniently
modeled as extended finite state machines having
finitely many modes and transitions between these

Figure 1: State transition graph for a mod-4
counter.

– S is a (potentially infinite) set of states;
– S

0
 ⊆ S is the set of initial states;

– ∑ is a (potentially infinite) set of actions; and
– ∆ ⊆ S × ∑ × S is the transition relation.

We say that a state transition graph T is
finite (countable), if the sets S and ∑ are finite
(countable).

Given an action a ∈ ∑ and a state s we write
Post (s, a) for the set of states that are reachable
from s on a and Post (s) for the states reachable in
one step from s, i.e.

= ′ : , , ′ ∈∆
= , .

∈

{ () }
()

s s a s
s a

a Σ
∪

A run—an execution or a trajectory—of a dynam-
ical system modeled as a state transition graph
T is a (finite or infinite) alternating sequence of
states and actions that begins with an initial state
and all consecutive states are connected with their
predecessor via the transition relation. Formally,
a finite run is a sequence 〈s

0
, a

1
, s

1
, a

2
, s

2
, …, s

n
〉

such that s
0
 ∈ S

0
 and for all 0 ≤ i < n we have that

s
i+1

 ∈ Post (s
i
, a

i+1
). An infinite run is defined

analogously.
Example 1: A graphical description of a state

transition graph depicting a mod-4 counter with
pause is shown in Figure 1. We represent a state
using a rounded rectangle and a transition using a
labeled edge between participating states. An ini-
tial state is marked using an incoming arrow to
that state labeled “start”. An example of a run is
the finite sequence:

() () ()
()

count tick count pause pause tick,
pause on

, , , , , , , ,
, ,

0 1 1
1 ,, , , , , .() ()count tick count1 2

A state transition graph is a feasible way to
represent and computationally analyze dynami-
cal systems with finitely many states. However, to
enable computational analysis of a general infinite
state dynamical system we need a finitary way to
represent a potentially infinite space of states. We

 Post(s, a)
 Post(s) Post

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 423

modes. The values of variables remain unchanged
while the system is in some mode, and changes
only when a transition takes place where they
can “jump” to new values assigned by the transi-
tion. These jumps are specified using predicates
over the set X ∪ X′ that relates the current values
of variables of system, given as the set X, to the
values in the next time-step, given as the set X′ of
primed-versions of variables in X. Transitions are
often guarded by predicates over variables speci-
fying the enabledness condition of the transition.
Starting from some initial valuation to the vari-
ables, a system modeled using an extended finite
state machine evolves in discrete time-steps. At
each discrete step the system can take any enabled
transition, i.e. satisfied by the current variable
valuation, and after executing the transition the
valuation of the variables is changed according to
the jump condition. The system continues evolv-
ing in this fashion forever. An extended finite state
machine is formally defined as the following.

Definition 2 (Extended Finite State Machines:
Syntax): An extended finite state machine is a tuple
M = (M, M

0
, ∑, X, ∆, I, V

0
) such that:

– M is a finite set of control modes including
a distinguished initial set of control modes
M

0
 ⊆ M,

– ∑ is a finite set of actions,
– X is a finite set of real-valued variable,
– ∆ ⊆ M × pred(X) × ∑ × pred(X ∪ X′) × M is

the transition relation,
– I : M → pred(X) is the mode-invariant func-

tion, and
– V

0
 ∈ pred(X) is the set of initial valuations.

For a transition δ = (m, g, a, j, m′) ∈ ∆ we refer
to m ∈ M as its source mode, g ∈ pred(X) as its
guard, a ∈ A as its action, j ∈ pred(X ∪ X′) as its
jump constraint, and m′ ∈ M as the target mode.

A configuration of an extended finite state
machine is a tuple (m, v) where m is a control
mode and v is a valuation of variables in X. The
execution of an extended finite state machine
begins in a configuration (m

0
, v

0
) such that the

control mode m
0
 ∈ M

0
 is in the set of initial con-

trol modes and the valuation v
0
 ∈ V

0
 satisfies the

invariant of mode m
0
, i.e. v

0
 ∈ I(m

0
). At each

discrete time-step the system executes a transition
(m, g, a, j, m′) that is enabled in the current con-
figuration (m, v), i.e., v ∈ g, and the configura-
tion of the system jumps to a new configuration
(m′, v′) while respecting the jump constraints, i.e.
(v, v′) ∈ j as well as the invariant condition of the
resulting mode v′ ∈ I(m′). The system contin-
ues its execution from the resulting configuration

in the similar fashion. Hence, we can define the
semantics of an extended finite state machine as a
state transition graph in the following manner.

Definition 3 (Extended Finite State Machine:
Semantics): The semantics of an extended finite
state machine M = (M, M

0
, ∑, X, ∆, I, V

0
) is given as

a state transition graph T S SM M M M M= ∆(, , ,)0 Σ
where:

– SM ⊆ (M × R|X|) is the set of configurations of
M such that for all (m, v) ∈SM we have that
v ∈ I(m);

– S S0
M M⊆ such that (m, v) ∈ SM if m ∈ M

0

and v ∈ V
0
;

– ∑M = ∑ is the set of labels;
– ∆M ⊆ SM × ∑M × SM is the set of transitions

such that ((m, v), a, (m′, v′)) ∈ ∆M if there
exists a transition δ = (m, g, a, j, m′) ∈ ∆ such
that the current valuation v satisfies the guard
of δ, i.e. v ∈ g; the pair of current and next
valuations (v, v′) satisfies the jump constraint
of δ, i.e. (v, v′) ∈ j; and the next valuation
satisfies the invariant of the target mode of δ,
i.e. v′ ∈ I(m′).

Let us consider an example of the syntax and
semantics of an extended finite state machine.

Example 3 (Modulo-4 counter): Let us consider
a modulo-4 counter with reset and pause function-
ality shown in Figure 2. This extended finite state
machine M = (M, M

0
, ∑, X, ∆, I, V

0
) has two con-

trol modes M = {count, pause} with count being
the initial mode. The variable x is the only variable,
while the set of action is ∑ = {tick, on, pause} where
tick, on, and pause stand for clock-tick, start-
counting, and pause-counting actions, respectively.
While drawing an extended finite state machine,
we depict modes by rounded rectangles and transi-
tions by arrows connecting the modes labeled by a
triplet (g, a, j) showing the guard, the action, and
the jump predicate of the transition. For example
the transition (count, x = 3, tick, x′ = 0, count) is
shown in the Figure 2 as a self-loop labeled with
(x = 3, tick, x′ = 0) on the mode labeled count. It is
straightforward to see that the extended finite state
machine in Figure 2 models a modulo-4 counter

Figure 2: An EFSM description of a mod-4
 counter with reset and pause.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in424

with reset and pause. The corresponding state tran-
sition graph is shown in the Figure 1.

In the rest of the article, to minimize clutter,
we will omit the guard if it is the predicate , and
we omit the jump predicates specifying that the
value of a variable remains unchanged, i.e. predi-
cates of the form x′ = x.

2.2 Continuous dynamical systems
For the purpose of this article, a continuous
dynamical system is a finite set of continuous
variables along with a set of ordinary differential
equations characterizing the dynamics or the flow
of these variables as a function of time. We rep-
resent the flow of a continuous dynamical system
using a flow function F : R|X| → R|X| characterizing
the system of ordinary differential equations:

X F X= () (1)

where, following Newton’s dot notation for dif-
ferentiation, X represents the set of first-order
derivatives of the variables in the set X. Informa-
tion about the higher-order derivatives can be
represented using only first-order derivatives intro-
ducing auxiliary variables. For example the second-
order differential equation  θ θ+ / =() sin()g 0
can be written as a system of first-order differen-
tial equations   θ θ= , = − /y y g() sin() . Formally,
a continuous dynamical system is defined in the
following manner.

Definition 4 (Continuous Dynamical System):
A continuous dynamical system is a tuple M = (X,
F, v

0
) such that

– X is a finite set of real-valued variable,
– F : R|X| → R|X| is the flow function characteriz-

ing the the set of ordinary differential equation
X F X= (), and

– v
0
 ∈ R|X| is the initial valuation.

A run of a continuous dynamical system M =
(X, F, v

0
) is given as a solution to the system of dif-

ferential equations (1) with initial valuation v
0
. Let

a differentiable function f : R≥0
 →R|X| be a solution

to (1), that provides the valuations of the variables
as a function of time, such that:

f v

f t F f t t

()

() (()) ,

0

forevery

0=

= ∈  ≥0

where f : R≥0
 → R|X| is the time derivative of the

function f. We call such a function f a run of the
continuous dynamical system M. Since, in gen-
eral, a solution of (1) may not exist or may not
be unique, a run of a continuous dynamical sys-
tem may not exist or may not be unique.74 To

ensure the existence and the uniqueness of the
run we enforce Lipschitz-continuityb assumption
on F. The following result states the existence and
uniqueness of the set of ordinary differential equa-
tions (1) under Lipschitz-continuity assumption.

Theorem 1 (Picard-Lindelöf Theorem):90 If a
function F: R|X| → R|X| is Lipschitz-continuous
then the differential equation X F X= () with ini-
tial valuation v

0
 ∈ R|X| has a unique solution f : R≥0

→ R|X| for all v

0
 ∈ R|X|.

In addition, Lipschitz-continuity offers the
following advantage while numerically simulat-
ing an approximate solution to the differential
equations (1).

Theorem 2 (Stability wrt initial valuation):74
Let F be a Lipschitz-continuous function with
constant K > 0 and let f : R≥0

 → R|X| and f ′: R≥0

→ R|X| be solutions to the differential equation
X F X= () with initial valuation v

0
 ∈ R|X| and ν

0
′

∈R | |X , respectively. Then, for all t ∈ R≥0
 we have

that ||f(t) – f ′(t)||≤||v–v
0
||eKt.

This theorem implies that, under Lipschitz-
continuous assumption on the flow function F,
any two runs whose initial valuations are close to
one-another remain close as the time progresses.
Since it is not always possible to analytically solve
differential equations, this property permits us to
numerically simulate the behaviour of continuous
dynamical system using approximation methods,
e.g. Euler’s method or Runge-Kutta method, that
are readily available in tools such as Matlab79 and
Mathematica.98

Example 4 (Simple Pendulum): Consider a
simple pendulum shown in Figure 3 and its the
motion equations:


 
θ

θ
= ,
= − / ,

y
y g() sin()

with initial valuations (θ, y) = (θ
0
, 0). To analyti-

cally solve these equations let us assume small
enough angular displacement θ and sin(θ) ≈ θ.
Now the equations simplify to

  θ θ= = − / .y y gand ()

Hence our continuous dynamical system is M
= (X, F, v

0
) where X = {θ, y}, F is such that F y()θ =

and F y g() () = − / θ and v
0
 = (θ

0
, 0). The solution

for these differential equations is

θ() cos() sin()
() sin() cos()
t A Kt B Kt

y t AK Kt BK Kt
= +
= − + ,

b We say that a function F : Rn → Rn is Lipschitz-continuous if

there exists a constant K > 0, called the Lipschitz constant, such

that for all x, y ∈ Rn we have that ||F(x) – F(y)|| < K ||x–y||.

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 425

where K g= /. Substituting θ(0) = θ
0
 and y(0) =

0 from the initial valuation, we get that A = θ
0
 and

B = 0. Hence the unique run of the pendulum sys-
tem can be given as the function f : R≥0

 → {θ, y} as
t Kt K Kt (cos() sin())θ θ0 0,− . Figure 4 shows the
change in valuations of the variables θ and y as a
function of time.

2.3 Hybrid dynamical systems
In the previous two subsections we discussed mode-
ling of purely discrete and purely continuous dynam-
ical systems. We saw that in a discrete dynamical
system the state of the system changes during a dis-
crete transition where it “jumps” (see Figure 5) to
the new value governed by the transition relation,
while in a continuous system the state of the system
continuously “flows” (see Figure 5) in a fashion gov-
erned by ordinary differential equations. Hybrid sys-
tems share their properties with both discrete as well
as continuous systems, as their state progresses with

time in both discrete jumps as well as continuous
flows. In this section we present hybrid automata,
a combination of extended finite state machines
and continuous dynamical systems, where in every
control mode the dynamics of the variables of the
system can be specified using ordinary differential
equations.

Definition 5 (Hybrid Automata: Syntax): A
hybrid automaton is a tuple H = (M, M

0,
 ∑, X, ∆,

I, F, V
0
) where:

– M is a finite set of control modes including
a distinguished initial set of control modes
M

0
 ⊆ M,

– ∑ is a finite set of actions,
– X is a finite set of real-valued variables,
– ∆ ⊆ M × pred(X) × ∑ × pred(X ∪ X′) × M is

the transition relation,
– I : M → pred(X) is the mode-invariant function,
– F : M → (R|X| → R|X|) is the mode-dependent

flow function characterizing the flow for each
mode m ∈ M as the set of ODEs X F m X= ()(),
and

– V
0
 ∈ pred(X) is the set of initial valuations.

To ensure existence of unique solutions of the
ODEs in flow functions, we assume that for each
mode m ∈ M the flow function F(m) is Lipschitz-
continuous.

Just like in an extended finite state machine,
a configuration of a hybrid automaton is a tuple
(m, v) where m ∈ M is a mode and v ∈ R|X| is a var-
iable valuation. For a Lipschitz-continuous flow
function F : M → (R|X| → R|X|), a valuation v ∈ R|X|,
a mode m ∈ M, and a time delay t ∈ R≥0

 we define
(v⊕

F(m)
 t) for the unique valuation f(t) where f is

the unique run of the continuous dynamical sys-
tem (X, F(m), v). For a jump predicate j ∈ pred(X
∪ X′) and valuation v we define v[j] for the set of
valuations ν′ ∈R ≥0

| |X such that (v, v′) ∈ j.
The execution of a hybrid automaton begins in

an initial configuration (m
0
, v

0
) where m

0
 ∈ M

0
 is an

initial mode and v
0
 ∈ V

0
 is an initial valuation sat-

isfying v
0
 ∈I(m

0
). The system stays in a mode for

some time, say t
1
 ∈ R≥0

, and while the system stays
in a control mode m the valuation of the variables
changes according to ODE specified by the flow
F(m) of the corresponding mode. After spending
t

1
 ∈ R≥0

 time in mode m
0
 an enabled transition

(m
0
, g, a, j, m

1
) is non-deterministically chosen

and executed. Notice that we say that a transition
(m

0
, g, a, j, m

1
) is enabled if ()()ν0 10

⊕F m t g∈ 
and all the intermediate valuations that system
passes through from v

0
 to ()()ν0 10

⊕F m t satisfy the
invariant of the mode m

0
, i.e. for all t ∈ [0, t

1
] we

have that () ()()ν0 00
⊕F m t I m∈  . After executing

Figure 3: An idealized pendulum with length l
and mass m.

Figure 4: The variables θ (angle displacement)
and y (angular velocity) are plotted with respect to
the time for a pendulum with l = 1 meter with θ0 =
5 degrees.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in426

the transition (m
0
, g, a, j, m

1
) the state of the sys-

tem jumps to a new configuration (m
1
, v

1
) such

that v
1
 ∈ I(m

1
) and v

1
 ∈ ()[]()ν0 10

⊕F m t j . The
system continues its operation in a similar man-
ner from the resulting configuration (m

1
, v

1
). We

can formalize this semantics using a (uncountably
infinite) state transition graph.

Definition 6 (Hybrid Automata: Semantics):
The semantics of a hybrid automaton H = (M, M

0
,

∑, X, ∆, I, F, V
0
) is given as a state transition graph

T S SH H H H H= ∆(, , ,)0 Σ where:

– SH ⊆ (M × R|X|) is the set of configurations of
H such that for all (m, v) ∈ SH we have that v ∈
I(m);

– S S0
H H⊆ s.t. (m, v) ∈ S0

H if m ∈ M
0
 and v ∈ V

0
;

– ∑H = R≥0
 × ∑ is the set of labels;

– ∆H ⊆ SH × ∑H × SH is the set of transitions such
that ((m, v), (t, a), (m′, v′)) ∈ ∆H if there exists
a transition δ = (m, g, a, j, m′) ∈ ∆ such that
– (v⊕

F(m)
t) ∈ g;

– (v⊕
F(m)

t) ∈ I(m) for all t ∈ [0, t];
– ν ′ ∈ (ν ⊕

F(m)
t)[j]; and

– (v′ ∈ I(m′).
Example 5 (A bouncing ball): In Figure 6 we

model a bouncing ball using a hybrid automaton
with one control mode m and two variables: the
variable x

1
, representing the vertical position of

the ball, and the variable x
2
, representing the verti-

cal velocity of the ball.
The differential equations governing the free

fall of the ball can be given using Newton’s law of
motion as x x1 2= and x g2 = − . The valuations of
the variables flow according to these equations until
the ball comes in the contact with ground, and at
that time it reverses the direction of its velocity, while
losing some energy proportional to its restitution
coefficient c, i.e. after the impact we have ′ =x x1 1
and ′ = −x cx2 2. Observe that the bouncing ball sys-
tem is a hybrid system since its dynamics involve
both flows and jumps. The continuous dynamics of
the system is captured using flow function of the
unique mode m, while the jump is modeled with

the discrete transition labeled impact. For the start-
ing valuation we assume x

1
 =  meters and x

2
 = 0.

Formally the hybrid automata H = (M, M
0
, Σ, X, ∆,

I, F, V
0
) models the bouncing ball where:

– M = M
0
 = {m

0
},

– Σ = {impact},
– X = {x

1
, x

2
},

– ∆ contains the following transition
()m x x x x x cx m, = ∧ ≤ , , ′ = ∧ ′ = − , ,1 2 1 1 2 20 0 impact
– I(m) = x

1
 ≥ 0,

– F m x x x g() = = ∧ = − 1 2 2 , and
– V

0
 = {(, 0)}.

The transition diagram corresponding to this
automaton is shown in Figure 6. The transition
diagram of a hybrid automaton follows the simi-
lar conventions as that of an extended finite state
machine, with the exception of flow conditions.
We write flow conditions of a mode inside the
rounded rectangle representing the mode.

Now let us explain the unique run of the system
starting from the configuration (m, (, 0)). The solu-
tion to ODE corresponding to the flow function is

x t gt Ct D x t gt C1
2

2
1

2
() ()= − + + = − +and (2)

For the initial configuration is (m, (, 0))
solving (2) we get C = 0 and D = . Hence from

Figure 6: A hybrid automaton modeling the
dynamics of a bouncing ball.

Figure 5: Runs of discrete, continuous, and hybrid systems.

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 427

(m, (, 0)) system flows according to the equations
x t gt1

1
2

2() = − +  and x
2
(t) = −gt. According to

these equations the value of variable x
1
 continue

to fall for the next t g1 2= / time units when
x

1
 becomes 0, and the transition impact becomes

available and must be taken (since the invariant of
the mode requires x

1
 to be non-negative). Imme-

diately before taking the transition the configura-
tion is (0, −gt

1
). Using our notations we can write

it as (0, −gt
1
) = (, 0)⊕

F(m)
t

1
.

After taking the transition impact this valu-
ation changes according to the jump function

′ = ∧ ′ = −x x x cx1 1 2 2 resulting in the new valua-
tion (0, cgt

1
). Again, in our notation we write

() ()[]0 01 1 1 1 2 2, ∈ ,− ′ = ∧ ′ = −cgt gt x x x cx . The run
of the system, so far, can be written as 〈(m,
(, 0)), (t

1
, impact), (m, (0, cgt

1
))〉. Now from the

configuration (m, (0, cgt
1
)) the system can flow

continuously according to F(m). Solving (2)
for this initial valuation we get C = cgt

1
 and

D = 0. Hence from (m, (0, cgt
1
)) the system flows

according to the equations x t gt cgt t1
1
2

2
1() = − +

and x
2
(t) = −gt + cgt

1
 for the next t

2
 = 2ct

1
 time

units till it reaches the valuation x
1
 = 0 (the ball

hits the ground again). At this point the result-
ing configuration will be (0, −cgt

1
) and after the

transition the configuration will be (0, c2gt
1
).

The system continues in this fashion forever
and realizes the following infinite run of the
system:

〈(()) () (())
() ((

m t m cgt
ct m c

, , , , , , , ,
, , , ,

 0 0
2 0
1 1

1
2

impact
impact ggt

c t m c gt
1

2
1

3
12 0

))
() (()) ...

,
, , , , ,impact 〉,

 (3)

where t g1 2= / . The first two transitions of the
run for  = 10 and c = 1 are shown in Figure 7.

For a given run r = 〈(m
0
, v

0
), (t

1
, a

1
),

(m
1
, v

1
), …〉 of a hybrid automaton we define its

time T(r) as

T r t
i

i() = .
=

∞

∑
1

We say that a run r time-diverging if T(r) =
∞. For an example of a time-diverging run con-
sider (3) for c = 1 as shown in Figure 7 where time
between every consecutive transition is 2 2/g .
The infinite run in this example seems natural
since we assume the restitution coefficient c = 1,
and under this unrealistic situation we expect the
ball to bounce indefinitely. However, given the
generality of the model of hybrid automata the
time divergence of a run is not always guaran-
teed. As an example consider again the bounc-
ing ball system now with restitution coefficient
0 < c < 1. In this case the time of the run (3),
T(r) = t

1
(1 + c)/(1 – c) is finite for any 0 < c <

1. Runs that are not time-diverging, on an intui-
tive level, are not physically realizable since they
execute infinitely many discrete transitions in a
finite amount of time. Assuming the possibility
of realizing infinitely many discrete actions in a
finite time often lead to paradoxical situations,
commonly known as Zeno’s paradoxes, and the
runs that do not diverge also go by the name of
Zeno runs. We call a hybrid automaton non-Zeno
if it does not permit any Zeno run. We will later
see that the ability of hybrid automata to model
Zeno runs often cause difficulty in their analysis.

2.4 Composition of a network of hybrid
automata

While modeling a complex hybrid system using a
hybrid automaton, it is often convenient to repre-
sent various components of the system as a net-
work of hybrid automata c = {H1, H2, …, Hn} that
communicate with each other using shared vari-
ables and action. Specifying a system as a com-
position of various subsystems offer two main
advantages, namely abstraction and modularity.
The first advantage (abstraction) is that it allows
the system designer to concentrate on the details
of one subsystem at a time without getting over-
whelmed by the complexity of the interaction of
this subsystem with other. The second advantage
(modularity) is that in a system designed in this
fashion, it is easy to add, remove, and modify
subsystems. The semantics of such a network can
also be given as a single hybrid automaton H,
called the product automaton of C, whose states
are products of states of individual component
automata. We define this construction as the
following.

Figure 7: A run of the system where the initial ver-
tical position is  = 10 meters and the coefficient of
restitution c = 1.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in428

Definition 7 (Composition): Let C = {H1, H2, …,
Hn} be a network of hybrid automata where for each
1 ≤ i ≤ n let Hi be ()M M X I F Vi i i i i i i i, , , ,∆ , , ,0 0Σ . For
an action a i

n
i∈∪ =1Σ we define E a i a i() { }def= : ∈Σ .

The product automata H1 ⊗ H2 ⊗ … H
n
 of C is

defined as a hybrid automaton H = (M, M
0
, Σ, X,

∆, I, F, V
0
) where

– M = M1 × M2 × … Mn,
– M M M M n

0 0
1

0
2

0= × × ,
– Σ = Σ 1 ∪ Σ 2 ∪ … Σ n,
– X = X1 ∪ X 2 ∪ … Xn,
– ∆ ⊆ (M × pred(X) × Σ × pred(X ∪ X′) × M) is

defined s.t. ((...) (...))m m g a j m mn n1 1, , , , , , ′, , ′ ∈∆
if and only if for all i ∉ E(a) we have that
m mi i= ′ and for all i ∈ E(a) there exists a
transition ()m g a j mi i i i, , , , ′ such that g = ∧

i∈E(a)

g
i
 and j = ∧

i∈E(a)
 j

i
.

– I is such that I m m I mn i
n i

i(...) ()1 1, , = ∧ = ;
– F is such that F(m

1
, …, m

n
)(x) = Fi (m

i
)(x) if

x ∈Xi; and
– V

0
 is such that V Vi

n i
0 1 0= ∧ = .

As an example of modeling a system using a
composition of a network of hybrid automata, we
consider the job-shop scheduling problem mod-
eled as a collection of hybrid automata. In the
next section, we show that solving the job-shop
problem reduces to solving a verification problem
(reachability) over the resulting hybrid automata.

Example 6 (Job-shop Scheduling Problem): The
job-shop scheduling problem is an important
optimization problem studied frequently in both
computer science as well as in operations research.
It consists of a finite set J = {j

1
, …, j

n
} of jobs to

be processed on a finite set M = {m
1
, …, m

k
} of

machines. There is a strict precedence requirement
between the jobs given as a strict partial order ≺
over the set of jobs in J. A mapping ζ : J → 2M
specifies the set of machines where a job can be
executed, while the function δ : J → R≥0

 specify
the time duration of a job. We can model the
job-shop scheduling problem using a network of
hybrid automata where each job and each machine
is specified using a separate hybrid automaton.
We have the following constraints on the job
execution: i) a job j can be executed iff all jobs in
its precedence, j↓ = {j′ : j′ ≺ j}, have terminated;
2) each machine m ∈ M can process atmost one
job at a time; and 3) a job, once started, cannot be
preempted.

Modeling Jobs. We model each job j
i
 ∈ J

as a hybrid automaton H
i
 with three modes U

i

(unscheduled), S
i
 (scheduled), and F

i
 (finished)

where U
i
 being the initial mode. With each

automaton H
i
 we associate two variables: variable

x
i
, measuring the time while the job j

i
 is being

executed on a machine; and variable done
i
 with

values 0 and 1 denoting whether the job is unfin-
ished (0) or finished (1). For each job j

i
 the initial

valuation of variable x
i
 is 0, while the valuation for

done
i
 = 0. For each mode m ∈ {U

i
, S

i
, F

i
} we have

that F(m)(done
i
) = 0 and F(S

i
)(x

i
) = 1 (to measure

time spent during processing of the job) and F(U
i
)

(x
i
) = 0 and F(F

i
)(x

i
) = 0. The transition from a

mode U
i
 to S

i
 with action begin

i
 is guarded by the

condition that all of the preceding jobs according
to ≺ has been finished, i.e. ∧ =:k k i k≺ ()done 1 . The
transition from a mode S

i
 to F

i
 with action finish

i

is guarded by predicate done′ =i ijδ () specifying
that job j

i
 takes exactly δ(j

i
) time units, and the

jump of this transition includes done′ =j 1.
Modeling Machines. We model each machine

m
i
 ∈ M using a hybrid automaton with no vari-

able and k + 1 modes where k is the number of
jobs that can be scheduled to this machine: there
is a unique mode I

i
 (idle), and for each job j

j
 that

can be scheduled to this machine, i.e. m
i
 ∈ ζ(j

i
)

there is a mode P
i,j
 (corresponding to processing

job j
j
 ∈ J on machine m

i
 ∈ M). For each mode

P
i,j
 there is a transition from I

i
 to P

i,j
 with action

begin
j
 and a transition from P

i,j
 to I

i
 with action

finish
j
 denoting the scheduling and the finishing,

respectively, of job j
j
 on machine m

i
. Since there

are no variables associated with these automata
the guard and the jump predicate of these transi-
tions is simply .

As an example of such modeling, consider the
job-shop problem with J = {j

1
, j

2
}, M = {m

1
}, ζ(j

1
)

= ζ(j
2
) = m

1
, j

1
 ≺ j

2
, and δ(j

1
) = 3 and δ(j

2
) = 4.

Figure 8 shows hybrid automata H
j1
, H

j2
, and H

m1

corresponding to the jobs j
1
 and j

2
, and the machine

m
1
 respectively. This figure also shows the compo-

sition of these automata H
j1
 ⊗ H

j2
 ⊗ H

m1
 repre-

senting the hybrid automata corresponding to the
complete job-shop problem.

3 Formal Verification of Hybrid Systems
Formal modeling and verification of systems is the
set of techniques that employ rigorous mathemati-
cal reasoning to analyze properties of a system. In
this article we concentrate on model checking—a
formal verification framework introduced by
Clarke, Sifakis and Emerson47—that, given a formal
description of a system and its specification, sys-
tematically verifies whether the specification holds
for the system model. Since, by definition the states
of a dynamical system changes with time, classical
propositional logic is not sufficient to reason with
temporal properties of such dynamical systems.
Temporal logics extend propositional or predicate
logics by modalities that are useful to capture the

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 429

change of behaviour of a system over time. Manna
and Pnueli1,77 were the first one to propose and pro-
mote the use of temporal logic to specify properties
of dynamical systems in the context of system veri-
fication. Linear temporal logic (LTL),77 computation
tree logic (CTL) and its generalization CTL*,50,77
and modal µ-calculus53 are some of the popular
temporal logics used for the system specification.
Timed and weighted extensions of these logics e.g.
metric temporal logics (MTL and MITL),83 dura-
tion calculus (DC),43 and weighted logics31,37 have
also been proposed to specify more involved quan-
titative properties of hybrid dynamical systems.

In this article we limit the discussion to simple
qualitative properties of hybrid systems that
broadly can be classified into the following two
categories:76

– The reachability or guarantee properties, that ask
whether the system can reach a configuration
satisfying certain property p? (symbolically, we
write ◊p and we say eventually p); and

– The safety properties that ask whether the sys-
tem can stay forever in configurations satisfy-
ing certain property p? (symbolically, we write
p and we say always or globally p).

The linear temporal logic, LTL, provides a for-
mal language to specify more involved nesting of
such properties with ease. We begin this section
(Section 3.1) by introducing Kripke structures
that provide a way to mark states of the hybrid
automata with properties of interest, and present
the syntax and semantics of LTL that are inter-
preted over Kripke structures. In Section 3.2 we
formally introduce LTL model-checking problem
for hybrid automata, and show that in general this

problem is undecidable. On a positive note, in Sec-
tion 3.3, we show that LTL model-checking can be
algorithmically solved for finite Kripke structures.
Finally, in Section 3.4 we introduce the notion
of bisimulation, and show that the existence of a
finite bisimulation implies the decidability of LTL
model-checking problem.

3.1 Hybrid Kripke structures and linear
temporal logic

The formal specification of the underlying system
begins by identifying key properties of interests
(called atomic propositions) regarding the states
of the system under verification. Kripke structures
provide a way to label the states of state-transition
graphs with such atomic propositions, and the
linear temporal logic specifies properties of the
sequence of the truth values of these propositions,
called traces, for the runs of corresponding tran-
sition system. Hence, before we introduce linear
temporal logic LTL we need to introduce Kripke
structures and their corresponding hybrid exten-
sion, and the concept of traces.

Defintion 8 (Hybrid Kripke Structure): A Kripke
Structure is a tuple (T, P, L) where:

– T = (S, S
0
, Σ, ∆) is a state transition graph,

– P is a finite set of atomic propositions, and
– L : S → 2P is a labeling function that labels

every state with a subset of P.

Similarly, we define a Hybrid Kripke Structure
as a tuple (H, P, L) where:

– H = (M, M
0
, Σ, X, ∆, I, F, V

0
) is a hybrid

automaton,
– P is a finite set of atomic propositions, and

Figure 8: Network of hybrid automata Hj1, Hj1, and Hm1 corresponding to jobs j1 and j2, and a machine m1,
and their product automata Hj1 ⊗ Hj2 ⊗ Hm1.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in430

– L : M → 2P is a labeling function that labels
every mode with a subset of P.

Observe that the semantics of a hybrid Kripke
structure is a Kripke structure.

Let us fix a hybrid Kripke structure (H, P, L)
and its semantics Kripke structure (H, P, L) for
the rest of this section. When the set of proposi-
tions and labeling function is clear from the con-
text, we use the terms state transition graph and
Kripke structure, and the terms hybrid Kripke
structure and hybrid automaton interchangeably.

Given a hybrid Kripke structure (H, P, L) and
an infinite run r = 〈(m

0
, v

0
), (t

1
, a

1
), (m

1
, v

1
), …,

(m
n
, v

n
),…〉 of H, we define a trace corresponding

to r, denoted as Trace(r), as the sequence 〈L(m
0
),

L(m
1
), L(m

2
),…L(m

n
),…〉. Let Trace(H, P, L) be

the set of traces of the Hybrid Kripke Structure H.
For a trace σ = 〈P

0
, P

1
, …, P

n
, …〉 ∈ Trace(H, P, L)

we write σ[i] = 〈P
i
, P

i
 + 1

, …,〉 for the suffix of the
trace starting at the index i ≥ 0.

Now we are in a position to define the syntax
and semantics of linear temporal logic.

Definition 9 (Linear Temporal Logic (Syntax)):
The set of valid LTL formulas over a set P of
atomic propositions can be inductively defined as
the following:

– and ⊥ are valid LTL formulas;
– if p ∈ P then p is a valid LTL formula;
– if φ and ψ are valid LTL formulas then so are

¬φ, φ ∧ ψ and φ ∨ ψ;
– if φ and ψ are valid LTL formulas then so are

○φ, ◊φ, φ and φ Uψ.

We often use φ ⇒ ψ as a shorthand for ¬φ ∨ ψ.
Before we define the semantics of LTL formula
formally, let us give an informal description of the
temporal operators ○, ◊, , and U. LTL formu-
las are interpreted over traces of (Hybrid) Kripke
structures. The formula ○φ, read as next φ, holds
for a trace σ = 〈P

0
, P

1
, P

2
, …〉 if ψ holds for the

trace σ [1]. The formula ◊φ, read as eventually φ,
holds for a trace σ = 〈P

0
, P

1
, P

2
, …〉 if there exists

i ≥ 0 such that the formula ψ holds for the trace
σ[i]. The formula φ, read as globally or always
φ, holds for a trace σ = 〈P

0
, P

1
, P

2
, …〉 if for all i

≥ 0 the formula ψ holds for traces σ[i]. Finally, the
formula φ U ψ, read as φ until ψ, holds for a trace
σ = 〈P

0
, P

1
, P

2
, …〉 if there is an index i such that

ψ holds for the trace σ[i], and for every index j
before i the formula φ holds for the trace σ[j], i.e
the formula φ holds until formula ψ holds.

Definition 10 (Linear Temporal Logic (Seman-
tics)): For a trace σ = 〈P

0
, P

1
, P

2
, …〉 of a (Hybrid)

Kripke structure we write σ |= φ to say that the
trace σ satisfies the formula φ. The satisfaction of
LTL formulas is defined as follows:

– σ  and σ / ⊥ ;
– σ  p if p ∈ P

0
;

– σ φ¬ if σ φ/ ;
– σ φ ∧ψ if σ φ and σ ψ;
– σ φ ∨ψ if σ φ or σ ψ;
– σ φ○ if σ φ[]1  ;
– σ φ ◊ if there exists i ≥ 0 such that σ φ[]i  ;
– σ φ if for all i ≥ 0 we have that σ φ[]i  ;

and
– σ φ Uψ if there exists i ≥ 0 such that σ []i ψ,

and for all 0 ≤ j < i or σ φ[]j  .

For a (hybrid) Kripke structure (H, P, L), and
an LTL formula φ we say that ()H , ,P L φ if for all
σ ∈ Trace(H, P, L) we have that σ φ .

Lamport72 observed that most of the system
specifications can be classified in safety properties
(something will not happen) and liveness proper-
ties (something must happen). Manna and Pnueli76
further refined the class of specifications starting
from reachability and safety properties to intro-
duce a hierarchy of temporal properties using
nesting of LTL operators, for instance

– The recurrence properties that ask whether the
system can infinitely often visit configurations
satisfying certain property p? (symbolically, we
write ◊p and we say infinitely often p); and

– The persistence properties that ask whether the
system visits configurations not satisfying a
certain property p only finitely often? (sym-
bolically, we write ◊p and we say eventually
always p).

Some examples for expressing reachability,
safety, and liveness properties using LTL are shown
in the following example.

Example 7: As an example let us write LTL
specifications for an elevator serving k different
floors. Let op

i
, fl

i
 and req

i
 be atomic propositions

representing the situations that “the door at floor
i is open”, “the lift is at floor i and is not moving”
and “there is a request for the lift to move to the ith
floor” respectively. The following are some specifi-
cations in English and their LTL counterparts:

1. Reachability property: The lift will visit the
ground floor sometime.

φ1 0

def
fl= .◊

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 431

2. Safety property: The door of the lift is never
open at a floor if the lift is not present there.

φ2
0

def

i

k

i ifl op=
=

¬ ⇒ ¬






. ∧ ()

3. Recurrence property: The lift keeps coming back
to the ground floor.

φ3 0 0 0

def

fl fl fl= ¬ ⇒ ∧ .() ◊ ◊

4. Persistence property: Eventually always a
requested floor will be eventually served.

φ4
0

def

i

k

i ireq fl= ∧ ⇒





.
=

◊ ◊ ()

We refer the reader to22,50,76,77 for a detailed
overview of LTL for system specification.

3.2 LTL model checking for hybrid
automata

LTL model-checking problem for hybrid automata
can be formally stated in the following manner.

Definition 11 (LTL Model-Checking): Given
a system modeled as a (Hybrid) Kripke struc-
ture (H, P, L), and a specification written as an
LTL formula φ, the LTL model-checking problem
is to decide whether all traces of H satisfy φ, i.e.
()H , ,P L φ . Moreover, if the system does not sat-
isfy the property give a counterexample (run of
the system) violating the property.

Example 8: Consider the Kripke structure T
shown in Figure 9 with set of atomic propositions
{p, q}. We are depicting the labeling function by
writing the set of propositions inside the state,
and we omit other non-relevant details. Let us
consider the LTL formulas φ

1
 = ◊(p ∧ ¬q) and φ

2
 =

q∨ ◊p. Observe that T / φ1 as is clear from the
counterexample r = 〈m

0
, a, m

1
, a, m

0
, …〉 as it never

visits the configuration satisfying (p ∧ ¬q) as is
clear from its trace Trace(r) = {q}{p, q} {q} {p, q}.
On the other hand, it is easy to verify that T satis-
fies φ

2
 as any run of T either never visits m

2
 (and in

that case satisfies q, or it eventually visits m
2
 and

never leaves it (and thus satisfies ◊p).
Example 9 (Job-Shop Scheduling Revisited):

Consider the job-shop scheduling problem mod-
eled as a network of hybrid automata in Fig-
ure 8. Consider the atomic propositions j

1
.finish

and j
2
.finish that are true only in modes F

1
 and

F
2
. The counterexample produced in model-

checking LTL property ¬(◊(j
1
.finish ∧ j

2
.finish))

gives a valid schedule for the job-shop scheduling
problem.

Next, we show that LTL model-checking prob-
lem for hybrid Kripke structures is undecidable.
To prove this result, we show a reduction from a
well-known undecidable problem of reachability
(halting) for two-counter Minsky machines.81

A Minsky machine A is a tuple (L, C) where:
L = {

0
, 

1
, …, 

n
} is the set of instructions. There is a

distinguished terminal instruction 
n
 called HALT.

C = {c
1
, c

2
} is the set of two counters; the instruc-

tions L are one of the following types:

1. (increment c) 
i
 : c = c + 1; goto 

k
,

2. (test-and-decrement c) 
i
 : if (c > 0) then

(c = c – 1); goto 
k
 else goto 

m
,

3. (Halt) 
n
 : HALT.

where c ∈ C, 
i
, 

k
, 

m
 ∈ L.

A configuration of a Minsky machine is a tuple
(, c, d) where  ∈ L is an instruction, and c, d are
natural numbers that specify the value of counters
c

1
 and c

2
, respectively. The initial configuration is

(
0
, 0, 0). A run of a Minsky machine is a (finite

or infinite) sequence of configurations 〈k
0
, k

1
, …〉

where k
0
 is the initial configuration, and the relation

between subsequent configurations is governed by
transitions between respective instructions. The
run is a finite sequence if and only if the last con-
figuration is the terminal instruction 

n
. Note that

a Minsky machine has exactly one run starting
from the initial configuration. The halting prob-
lem for a Minsky machine asks whether its unique
run ends at the terminal instruction 

n
. It is well

known81 that the halting problem for two-counter
Minsky machines is undecidable.

Theorem 3: The LTL model-checking problem
for hybrid Kripke structures is undecidable.

Proof. Given a two counter machine A, we con-
struct a hybrid Kripke structure H and an LTL for-
mula φ such that Hφ iff A halts. The modes of H
are labeled with the labels l

i
 of instructions. There

is a unique mode of H labeled with atomic propo-
sition “HALT” which corresponds to the terminal
instruction of A. The increment, decrement and
test instructions are encoded by suitable modules

Figure 9: A Kripke structure T.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in432

in H. The variables of H are X = {x
1
, x

2
, y, z, z

1
} with

F(m) for all modes is defined as the following:

    x x y z z1 2 11 1 1 1 2= ∧ = ∧ = ∧ = ∧ = .

The initial mode is labeled by l
0
, the label of the

first instruction. The values of the counters c, d are
encoded as x c1

1
2

= and x d2
1

2
= . After the execu-

tion of each instruction, x
1
, x

2
 will contain the cur-

rent values of counters c, d encoded in the above
form. For instance, if we have x xc d1

1
2 2

1
2

= =,
before incrementing counter c, then at the end of
simulating the increment instruction, we will have
x c1

1
2 1= + and x d2

1
2

= .
In Figure 10, we illustrate the case of the incre-

ment instruction l
i
 : increment c and goto l

j
. The

case for the decrement instruction is similar,
and hence omitted. Mode l

i
 is entered with y = 0,

x c1
1
2

= and x d2
1

2
= . On entering mode A

i
, we have

x y x xc d c c1
1
2 2

1
2

1
2 2

1
2

1 1 1 1= , = − , = + − = − −() or η

if 1
2

1
2

1 1d c+ = ≤ −η η, and z = 0. Mode B
i

can be entered if x
2
, y < 1 and x

1
 > 1. Assume

k > 0 units of time was spent at mode A
i
. This

gives y k x kc d c= − + , = + − +1 11
2 2

1
2

1
2

() (or
1 1

2
− − +c kη , or 1 – η′ if 1 11

2
− − + ′ =c η η , η′ ≤ k),

z = k, x
1
 = 0, z

1
 =0 on entering mode B

i
. We can

reach mode l
j
 only if the values of z and

z
1
 are the same. Assume l units of time

was spent at B
i
. Then z = k + l, z

1
 = 2l,

x k l x l y k ld c c2
1

2
1
2 1

1
2

1 1= + − + + , = , = − + +() . To

satisfy the constraints z = z
1
, y = 1, we have k = 1 and

k l k c+ = =2 1
2

 giving x xc d1
1

2 2
1

21= , =+ , y = 0 at l
j
.

The LTL formula φ = l
0
 ∧ ◊ HALT will be satisfied

by H iff A halts. This shows that LTL model check-
ing of hybrid Kripke structures is undecidable.

3.3 LTL model-checking for finite Kripke
structures

As we discussed in previous section the LTL model-
checking problem is undecidable for general hybrid
automata. However, for finite Kripke structures
Wolper, Vardi, and Sistla99 developed an elegant
automata-theoretic algorithm for solving the LTL
model-checking problem. The algorithm exploits
the connection between LTL formulas and a type
of ω-automata—automata that extend the theory
of finite automata to infinite inputs—called Büchi

automata.40,56 The syntax for the Büchi automata
specifies a finite state transition graph T along
with a set F of accepting states, and the semantics
of Büchi automata restricts the set of valid runs to
the runs of T that visit F infinitely often. In general
Büchi automata are closed under all Boolean oper-
ations including union, intersection, and comple-
mentation, however deterministic variant of Büchi
automata is not closed under complementation.
Emptiness checking for Büchi automata can be
decided efficiently (linear in time) by analyzing
strongly connected components of T.

The LTL model-checking problem exploits the
following connection between linear temporal
logic and Büchi automata.

Theorem 4 (LTL-to-Büchi Automata):99 For
every LTL formula φ we can effectively construct
a finite (Büchi) automaton Aφ (of size exponential
in φ) such that words recognized by Aφ are pre-
cisely the set of traces that satisfy φ.

Based on this result, the LTL model checking
for a finite Kripke structure K can be performed
in the following manner:

1. Construct a Büchi automaton A¬φ correspond-
ing to the negation of the LTL property.

2. Construct the composition K⊗A¬φ of the Kripke
structure K with the Büchi automaton A¬φ.

3. If the Büchi automaton H⊗A¬φ is empty, then
return “TRUE”

4. Else, return a lasso-shaped (a finite prefix fol-
lowed by a cycle that contains an accepting
state) infinite run accepted by H⊗A¬φ as a
counter-example.

The correctness of this algorithm follows from
the observation that the set of traces for this com-
position K⊗A¬φ characterize the set of traces that
are generated by K that do not satisfy φ. Hence,
the Kripke structure K satisfies the LTL property φ
if and only if H⊗A¬φ is empty.

Theorem 5 (LTL model-Checking for Finite
Structures):91 LTL model checking problem for
finite Kripke structures is decidable in PSPACE.

LTL model-checking for finite Kripke struc-
tures is implemented by a number of mature
tools, notably SPIN92 and NuSMV,82 and has been
applied to a number of practical case-studies.82,92

Figure 10: Module simulating li: increment c, goto lj .

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 433

3.4 Finite bisimulation and decidability
In this section we introduce the concept of bisimu-
lation relation between two Kripke structures, and
show that for two bisimilar systems (systems hav-
ing a bisimulation relation between their states) we
have that both systems have the same set of traces,
and hence precisely the same set of LTL formulas
are satisfied by both of them. Using this idea, we
show that if for a given hybrid Kripke structure
H there exists a bisimulation relation with some
finite state Kripke structure K, then the problem
of LTL model-checking for H can be reduced to
the decidable problem of LTL model-checking for
finite Kripke structure K.

We say that a Kripke structure ′ = ′, , ′K T()P L
can simulate a Kripke structure K = (T, P, L) if
every step of K can be matched (with respect to
atomic propositions) by one or more steps of K′.
A Bisimulation equivalence denotes the presence
of a mutual simulation between two structures K
and K′. Formally, bisimulation relation is defined
in the following manner.

Definition 12 (Bisimulation Relation): Let
K = (T = S, S

0
, Σ, ∆), P, L) and ′ = =K T(

())′, ′ , ′, ′∆ , , ′S S P L0 Σ be two Kripke structures. A
bisimulation relation between K and K′ is a binary
relation R ⊆ S × S′ such that:

– every initial state of T is related to some initial
state of T′, and vice-versa, i.e. for every s ∈ S

0

there exists ′ ∈ ′s S0 such that (s, s′) ∈ R and for
every ′ ∈ ′s S0 there exists a s ∈ S

0
 such that (s,

s′) ∈ R;
– for every (s, s′) ∈ R the following holds:

– L(s) = L′ (s′),
– every outgoing transition of s is matched

with some outgoing transition of s′, i.e. if
t ∈ Post(s) then there exists t′ ∈ Post(s′)
with (t, t′) ∈ R, and

– every outgoing transition of s′ is matched
with some outgoing transition of s, i.e. if t′
∈ Post(s′) then there exists t ∈ Post(s) with
(t, t′) ∈ R.

We say that T and T  ′ (analogously, K and K′)
are bisimilar or bisimulation equivalent, and we
write T ∼ T  ′, if there exists a bisimulation relation
R ⊆ S × S′.

The following Proposition follows from the def-
inition of bisimulation and the semantics of LTL.

Proposition 6: If T ∼ T  ′ then Trace(T  ) =
Trace(T  ′). Moreover, if T ∼ T  ′ then for every
LTL formula φ we have that T φ if and only if

′T φ .
Proof. Let T ∼ T  ′. Using a simple inductive argu-

ment, one can show that for every run a = 〈s
0
, a

1
,

s
1
, a

2
, …〉 of T there is a run ′ = ′ , ′, ′, ′ ,r s a s a〈 〉0 1 1 2 ...

of T  ′ such that L s L si i() ()= ′ ′ for every i ≥ 0.
This implies that Trace(r) = Trace(r ′) and hence
Trace(T  ) ⊆ Trace(T  ′). Similarly, we can show that
Trace(T  ′) ⊆ Trace(T). Hence it follows that T ∼ T  ′
implies Trace(T) = Trace(T  ′). To prove the other
part of the proposition, observe LTL formulae are
interpreted over traces of structures, and since two
bisimilar Kripke structures have the same set of
traces, it follows that for every LTL formula φ we
have that T ∼ T  ′ implies that T φ if and only if

′T φ .
This proposition shows that LTL model check-

ing problem can be reduced to solving LTL model
checking problem over a bisimilar Kripke struc-
ture. We next show how to extend this idea to
define bisimulation over the states of a Kripke
structure, and use it to produce a bisimilar Kripke
structure with fewer states.

Definition 13 (Bisimulation Relation on K): Let
K = (T = (S, S

0,
 Σ, ∆), P, L) be a Kripke structure. A

bisimulation on K is a binary relation R ⊆ S × S
such that for all (s, s′) ∈ R we have that:

– L(s) = L(s′);
– if t ∈ Post(s), then there exists an t′ ∈ Post(s′)

such that (t, t′) ∈ R;
– if t′ ∈ Post(s′), then there exists an t ∈ Post(s)

such that (t, t′) ∈ R.

It is easy to see that a bisimulation relation R
over the state space of K is an equivalence relation.
For a state s ∈ S we write [s]

R
 for the equivalence

class of R containing s. We say that states s, s′ ∈ S
are bisimulation equivalent, and we write s ∼

T
 s′,

if there exists a bisimulation relation R for T with
(s, s′) ∈ R.

Given a Kripke structure T, we use a bisimula-
tion relation R for reducing the state space of T
using the following quotient construction.

Definition 14 (Bisimulation Quotient): Given a
Kripke structure K = (T = (S, S

0,
 Σ, ∆), P, L) and a

bisimulation relation R ⊆ S × S over K, the bisimu-
lation quotient K

R
 is defined as a Kripke structure

K TR R R R R R R= = , ∆ , ,((, ,))S S P L0 Σ where:

– The state space of T
R

 is the quotient space of T,
i.e. S

R
 = {[s]

R
: s ∈ S};

– The set of initial states is the set of R-equivalence
classes of the initial states, i.e. S s s SR R

0
0= : ∈{[] };

– ∑
R

 = {t};

c Observe that the definition of bisimulation ensures that the

state labeling L
R

 is well defined.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in434

– Each transition (s, a, s′) ∈ ∆ induces a
transition from [s]

R
 to [s′]

R
 in ∆

R
, i.e.

∆R R R= , ′ : , , ′ ∈∆{([] , []) () }s s s sτ α , and
– L

R
 is defined such that L

R
([s]) = L(s)c.

We say that a bisimulation quotient is finite if
there are finitely many equivalence classes of R,
i.e. |S

R
| < ∞.

The proof of the following theorem is imme-
diate from Proposition 6 and Theorem 5.

Theorem 7: The existence of a finite bisimula-
tion quotient for a hybrid Kripke structure imply
the decidability of LTL model-checking problem.

4 Decidable Subclasses of Hybrid
Automata

Given the expressiveness of hybrid automata it is
not surprising that simple reachability questions
are undecidable for general hybrid kripke struc-
tures. In this section we discuss some prominent
subclasses of hybrid automata for which LTL
model checking problem is decidable. In the pre-
vious section we discussed that showing the exist-
ence of a finite bisimulation quotient guarantees
decidable model-checking. Timed automata were
among the first hybrid automata shown to have
decidable model-checking using this approach.
We begin this section by presenting timed autom-
ata and discuss this bisimulation known as region-
equivalence relation. We will also review multi-rate
and rectangular hybrid automata (Section 4.2)
that under certain restriction (initialized) recover
decidability of LTL model-checking via reductions
to similar problem on timed automata. Finally, in
Section 4.3 we discuss a relatively simple class of
hybrid systems, called piecewise-constant deriva-
tive systems, that capture the essence of undecid-
ability and provide references to its variants that
permit algorithmic analysis.

4.1 Timed automata
Timed automata, introduced by Alur and Dill,10,11
is a popular formalism to model real-time systems.
A timed automaton is a hybrid automaton where
all variables grow with a constant and uniform
rate (for all variables x ∈ X we have that x = 1)
and the only jump permitted during the discrete
transitions is reset to zero. Moreover, the set of
predicates permitted to appear as guard on transi-
tions is restricted to the following kind of octago-
nal predicates:

g x c x y c g g: = | − | ∧  (4)

where x, y are clock variables, ∈ <,≤,=,>,≥{ } and
c ∈ N. We write Z(X) for this class of octagonal

predicates over the set X. Formally, we define a
timed automata as a restriction of hybrid autom-
ata in the following manner.

Definition 15 (Timed Automata: Syntax):
A timed automaton is a hybrid automaton
T = (M, M

0
, ∑, X, ∆, I, F, V

0
) with the following

restrictions:

– The transition relation ∆ ⊆ M × pred(X) × ∑ ×
pred(X ∪ X′) × M is such that if (m, g, a, j, m′)
∈ ∆ then
– the guard g is of the form (4), i.e. g ∈ Z(X)

and
– the jump predicate j only permits variable

resets to zero, i.e. j is of the form

 ∧ ′ = ,∈x Y x()0

 for some Y ⊆ X. We denote such set Y
as reset(j).

– The mode-invariant function I : M → pred(X)
is such that for all m ∈ M we have that I(m) ∈
Z(X);

– The flow function F : M → (R|X| → R|X|) is
such that for all m ∈ M we have that F(m)
characterizes:

 ∧ = ,∈x X x() 1 and

– V
0
 ∈ pred(X) is the set of initial valuations is

such that V xx X0 0= ∧ =∈ ().

The semantics of timed automata and the
concept of timed Kripke structures is defined in a
similar way as for hybrid automata.

Example 10: The hybrid automaton correspond-
ing to the job-shop scheduling problem, shown in
Figure 8, can also be modeled as a timed automa-
ton by requiring that the rates of variables x

1
 and

x
2
 is 1 in all the modes (unlike the current example

where these clocks are paused in certain modes).
Example 11: As an example of a timed automa-

ton consider Figure 11 that models a login pro-
tocol using a timed automaton. The system starts
in the “standby” mode. If the user gives a correct
password within 60 time-units after giving the
user name, a connection will be established; if,
however, the password given is wrong, the sys-
tem restarts after a delay of at least 10 time units.
Moreover, if no password is given within 60 time
units after supplying user name, then the system
restarts in the standby mode. This system is mod-
eled using a timed automaton with five modes and
one clock in Figure 11.

Alur and Dill11 proposed the notion of region
equivalence to define a bisimulation relation over

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 435

the timed Kripke structures (T , P, L). We say
that two clock valuations v and v′ are region equiv-
alent, and we write v ∼

R
 v′, if and only if all clocks

have the same integer parts in v and v′, and if the
partial orders of the clocks, determined by their
fractional parts in v and v′, are the same.

Definition 16 (Region Equivalence): Let T be
a timed automaton and let K be the maximum
constant used in the guards of T. We say that two
clock valuations v and v′ are region equivalent, and
we write v ∼

R
 v′ if and only if:

– either for x ∈ X we have v(x) > K and v′(x) > K,
or

– for any x, y, ∈ X with v(x), v′(x) ≤ K and v(y),
v′(y) ≤ K the following conditions hold:
– v(x) = v′(x), and v(x) = 0 iff v′(x) = 0,
– v(y) = v′(y), and v(y) = 0 iff v′(y) = 0,
– v(x) ≤ v(y) if and only if v′(x) ≤ v′(y) ,

where c =
def

c c−  () represents the fractional part
of c ∈ R≥0

.
It is easy to see that ∼

R
 is an equivalence relation.

For a clock valuation v we write [v] for the region
equivalence class of v. Region equivalence relation
can be extended from valuations to configurations of
a timed automaton T in a straightforward manner:
we say that two configurations (m,v) and (m′,v′) are
region equivalent, and we write [(m,v)] = [(m′,v′)],
if and only if m = m′ and [v] = [v′].

Alur and Dill11 showed that region equivalence
relations characterize finite bisimulation quotients
for timed Kripke structures by showing that the
number of equivalence classes for a timed automaton
(M, M

0
, ∑, X, ∆, I, F, V

0
) are bounded from above by

| | ⋅ | |!⋅ ⋅ ⋅ . +| |
=

| |M X KX
i
X2 2 21Π () .

Theorem 8:11 Region equivalence relation char-
acterizes a finite bisimulation quotient for timed
Kripke structures.

This theorem combined with Theorem 7
proves the decidability of LTL model checking for
timed Kripke structures. The complexity of LTL
model checking was considered by Courcoubetis

and Yannakakis51 who showed that simple reach-
ability problem for timed Kripke structures with
three or more clocks is PSPACE-complete. Despite
the high computational complexity of verification,
algorithms based on region equivalence relation
coupled with clever data-structures27 to symboli-
cally represent sets of regions have been shown
to perform well in practice on medium-sized
applications.41,95 UPPAAL,96 KRONOS,66 and
RED89 are some of the leading tools that can
perform timed automata based verification. The
theory of timed automata has also been extended
in several directions to allow them to model
more realistic real-time systems, e.g. real-time
systems with cost and rewards,26,33,63,73,88 uncon-
trollable nondeterminism,7,17,19,20,31,38 stochastic
behavior,8,25,36,62,68,69,70,75 and recursion.5,94 We refer
the reader to Waez, Dingel, and Rudie97 for a
detailed survey fo these extensions.

4.2 Multi-rate and rectangular hybrid
automata

Multi-rate hybrid automata, introduced by Hen-
zinger and Kopke,58,59,87 are a subclass of hybrid
automata where the dynamics of variables is
restricted to constant rates. However, unlike timed
automata, different variables can have different
rates, and it can vary among different modes.
Moreover, during discrete transitions these vari-
ables can be reseted to real numbers. Also in a
multi-rate hybrid automaton the set of predi-
cates permitted to appear as guard on transitions
is restricted to the following kind of rectangular
predicates:

g c x c: = ′ ,  (5)

where x is a variable, ∈ <,≤, =,>,≥{ } and c,
c′ ∈ N. We write rect(X) for this class of rectangu-
lar predicates over the set X. Formally, we define
a multi-rate hybrid automata as a restriction of
hybrid automata in the following manner.

Definition 17 (Multi-rate Hybrid Automata:
Syntax): A multi-rate hybrid automaton is a hybrid
automaton H = (M, M

0
, ∑, X, ∆, I, F, V

0
) with the

following restrictions:

– the transition relation ∆ ⊆ M × pred(X) × ∑
× pred(X ∪ X′) × M is such that if (m, g, a, j,
m′) ∈ ∆ then
– the guard g is of the form (5), i.e. g ∈

rect(X) and
– the jump predicate j only permits variable

resets to real numbers, i.e. j is of the form

 ∧ ′ =∈x Y xx c()

Figure 11: A time-sensitive login protocol imple-
mented as a timed automaton.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in436

 where Y ⊆ X and c
x
 ∈ Z for each x ∈ Y.

We denote such set Y as reset(j).
– the mode-invariant function I : M → pred(X)

is such that for all m ∈ M we have that
I(m) ∈ rect(X);

– the flow function F : M → (R|X| → R|X|) is
such that for all m ∈ M we have that F(m)
characterize:

∧ = ,∈ ,x X x mx c()

where c
x,m

 ∈ Z for each x ∈ X; and
– V

0
 ∈ pred(X) is the set of initial valuations is

such that V xx X0 0= ∧ =∈ .

The semantics of multi-rate automata and
the concept of multi-rate Kripke structures is
defined is a similar way as for hybrid automata.
Rectangular hybrid automata58,59 are a generaliza-
tion of multi-rate hybrid automata where within
each mode the rate of a variable can change non-
 deterministically within a given mode-dependent
interval.

Using a reduction from two counter Minsky
machine, one can easily show that the LTL model
checking problem for multi-rate hybrid automata
is undecidable.

Theorem 9:59 LTL model-checking problem for
multi-rate hybrid automata is undecidable.

We say that a multi-rate (or rectangular)
hybrid automaton is initialized if it satisfies the
property that every transition between two modes
with different rates (rate intervals, resp.) for a var-
iable, resets that variable, i.e. for every transition
(m, g, a, j, m′) ∈ ∆ with F(m)(x) ≠ F(m′)(x) we
have x ∈ reset(j). Figure 12 shows an initialized
rectangular automaton.

Henzinger et al.59 showed the decidability
of initialized rectangular and multi-rate hybrid
automata.

Theorem 10: The LTL model-checking prob-
lem for initialized rectangular (multi-rate) hybrid
automata is decidable.

Proof. The decidability of LTL model-check-
ing problem for initialized multi-rate automata
by reducing the problem to similar problem for
timed automata by rescaling the rate of all vari-
ables to one via appropriate adjustment of the
constraints on the mode invariants and guards in
all the transitions.

To prove the decidability for an initialized
rectangular automaton H

r
, we reduce the prob-

lem to corresponding problem for an initialized
multi-rate automaton H

m
. Each variable x of H

r

with rate in the rectangle a x b≤ ≤ is simulated
using two variables x

l
, x

u
 such that x al = and

x bu = . The variables x
l
, x

u
 keep track of the lower

and upper bounds of x respectively. With this
replacement, the invariant conditions of modes,
as well as guards and resets on transitions have to
be adjusted appropriately. For example, if we had
a transition with guard x ≤ 10, then it is replaced
with (i) x

l
 ≤ 10 and (ii) x xu u> , ′ =10 10 . This con-

version from initialized rectangular to initialized
multirate automata is language preserving. Hence,
from the decidability of LTL model checking prob-
lem for initialized multi-rate hybrid automata,
the decidability for initialized rectangular hybrid
follows.

4.3 Piecewise-constant derivative
systems and their variants

Asarin, Maler, and Pnueli18 initiated the study
of hybrid dynamical systems with piecewise-
constant derivatives (PCD) defined as a partition
of the Euclidean space into a finite set of regions
(polyhedral predicates), where the dynamics in a
region is defined by a constant rate vector. They
defined PCD systems as completely determin-
istic systems where a discrete transition occurs
at region boundaries, where runs change their
directions according to the rate vector available
in the new region. Given the simplicity of such
systems, it is perhaps surprising that the reach-
ability problem for PCD systems with three or
more variables is undecidable.18 In fact, Asarin
and Maler16 observed that, due to the capability
of such systems to perform Zeno runs, every set
of arithmetical hierarchy (a hierarchy of unde-
cidable problems) can be recognized by a PCD
system of some finite dimension. On the positive
side, Asarin, Maler, and Pnueli18 gave an algo-
rithm to solve the reachability problem for two-
dimensional PCD systems. Cerans and Viksna42
later generalized this decidability result to more
general piecewise-Hamiltonian systems. We also
mention the work of Asarin, Schneider, Yovine21
who extended the decidability result for two-di-
mensional PCD systems to a non-deterministic
setting of simple planar differential inclusion sys-
tems (SPDIs) where a number of rate vectors are
available in each region.

Kesten, Pnueli, Sifakis, and Yovine64 also
studied another variant of constant-rate hybrid
systems, called integration graphs, that can be
considered as a subset of multi-rate automaton

Figure 12: An initialized rectangular automaton.

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 437

where no test of non-clock (integrator) variables
is allowed to appear on a loop. Kesten et al.64
showed the decidability for the two subclasses of
integration graphs: The class with a single clock
variable, and the class where integrators are tested
only once.

Recently, Bouyer et al.35 introduced timed
automata with energy constraints, that can be
considered as multi-rate automata with a single
non-clock variable (energy variable) that does
not appear on guards, and showed decidability
of schedulability problem where the energy vari-
able is required to be greater than a given lower-
bound. Bouyer, Fahrenberg, Larsen, and Markey34
later generalized this result to give an EXPTIME
algorithm for a subclass where energy variables
can grow exponentially.

Alur, Trivedi, and Wojtczak recently studied
constant-rate multi-mode systems,13 that can be
considered as multi-rate automata with the excep-
tion that there is no structure in the automata,
i.e. any mode can be used after any other mode,
and there is only a global invariant over variables.
They showed that reachability and schedulability
problems for these systems can be solved in poly-
nomial time for starting states strictly inside the
global invariant space. Alur, Trivedi, and Wojtczak
also showed that introducing either local invari-
ants or guards make the reachability problem
undecidable. Alur et al.12 later studied this problem
for a generalization of constant-rate multi-mode
systems to bounded-rate multi-mode system
and showed the decidability of the schedulability
problem.

5 Summary
In this article we presented hybrid automata for
modeling and formal verification of cyber-phys-
ical systems. Hybrid automata naturally combine
features from continuous dynamical systems and
discrete finite state machines, and provide an ele-
gant and expressive model. This expressiveness,
however, comes with a price—the simple reach-
ability problem for simple subclasses of hybrid
automata, like piecewise-constant derivative sys-
tems, turned out to be highly undecidable. In this
article we discussed a general approach of finding
finite bisimulation quotient to show decidability
of subclasses of hybrid automata, and sketched
the proof for the decidability for two key sub-
classes: timed automata and initialized rectangu-
lar hybrid automata. Hybrid automata provide
an intuitive and semantically unambiguous way
to model cyber-physical systems. These formal-
isms provide a rich theory and a mature set of
tools, UPPAAL,96 Kronos,66 RED,89 HyTECH,60

and PHAVer,86 able to perform automatic verifi-
cation of systems modeled using them. A grow-
ing number of case-studies using these tools have
shown promise in extending the state-of-the-art
to industrial-sized examples.

Received 22 August 2013.

References
 1. ACM Turing award citation for A. Pnueli. http://awards.

acm org/citation.cfm?id=4725172&srt=alpha&alpha=P&

aw=140&ao=AMTURING&yr=1996, 1996. For seminal

work introducing temporal logic into computing science

and for outstanding contributions to program and system

verification.

 2. ACM Turing award citation for E.M. Clarke, E.A.

Emerson, and J. Sifakis. http://awards.acm.org/citation.

cfm?id=1167964&srt=alpha&alpha=C&aw=140&ao=A

MTURING&yr=2007, 2007. For their role in develop-

ing Model- Checking into a highly effective verification

technology, widely adopted in the hardware and software

industries.

 3. ACM Kanellakis theory and practice award citation for

G.J. Holzmann, R.P. Kurshan, M.Y. Vardi, and P. Wolpe.

http://awards.acm.org/citation.cfm?id=1625680&srt

=all&aw=147&ao=KANELLAK&yr=2005, 2005. For

the development of automata-theoretic techniques for

reactive-systems verification, and the practical realiza-

tion of powerful formal-verification tools based on these

techniques.

 4. ACM Kanellakis theory and practice award citation for

R.E. Bryant, E.M. Clarke, E.A. Emerson, K.L. Mcmillan.

http://awards.acm.org/citation.cfm?id=1167964&srt=a

ll&aw=147&ao=KANELLAK&yr=1998, 1998. For their

invention of “symbolic model checking”.

 5. P.A. Abdulla, M.F. Atig, and J. Stenman. Dense-timed

pushdown automata. In Proceedings of the 2012 27th

Annual IEEE/ACM Symposium on Logic in Computer Sci-

ence, LICS ’12, pp. 35–44, Washington, DC, USA, 2012.

IEEE Computer Society.

 6. R. Alur and M. Bernadsky. Bounded model checking for

GSMP models of stochastic real-time systems. In Proceed-

ings of HSCC, volume 3927, pp. 19–33. LNCS, 2006.

 7. R. Alur, M. Bernadsky, and P. Madhusudan. Optimal reach-

ability for weighted timed games. In J. Díaz, J. Karhumäki,

A. Lepistö, and D. Sannella, editors, Proc. ICALP’04,

 volume 3142 of LNCS, pp. 122–133. Springer, 2004.

 8. R. Alur, C. Courcoubetis, and D.L. Dill. Model-checking for

probabilistic real-time systems. In Automata, Languages and

Programming: Proceedings of the 18th ICALP, Lecture Notes

in Computer Science 510, pp. 115–126. Springer, 1991.

 9. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho.

Hybrid automata: An algorithmic approach to the speci-

fication and verification of hybrid systems. In Hybrid

 Systems I, volume 736 of Lecture Notes in Computer Science,

pp. 209–229. Springer-Verlag, 1993.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in438

10. R. Alur and D. Dill. Automata for modeling real-time

systems. In International Colloquium on Automata, Lan-

guages and Programming (ICALP), volume 443 of LNCS,

pp. 322–335. Springer, 1990.

11. R. Alur and D. Dill. A theory of timed automata. Theoretical

Computer Science, 126: pp. 183–235, 1994.

12. R. Alur, V. Forejt, S. Moarref, and A. Trivedi. Safe schedula-

bility of bounded-rate multi-mode systems. In Hybrid Sys-

tems: Computation and Control (HSCC), pp. 243–252, 2013.

13. R. Alur, A. Trivedi, and D. Wojtczak. Optimal scheduling

for constant rate multi-mode systems. In Hybrid Systems:

Computation and Control (HSCC), pp. 75–84, 2012.

14. Rajeev Alur and Thomas A. Henzinger. Logics and models

of real time: A survey. In Real-Time: Theory in Practice,

pp. 74–106. Springer, 1992.

15. P. Argón, G. Delzanno, S. Mukhopadhyay, and A. Podelski.

Model checking communication protocols. In Proceed-

ings of the 28th Conference on Current Trends in Theory

and Practice of Informatics Piestany: Theory and Practice

of Informatics, SOFSEM ’01, pp. 160–170, London, UK,

2001. Springer-Verlag.

16. E. Asarin and O. Maler. Achilles and the tortoise climb-

ing up the arithmetical hierarchy. Journal of Computer and

System Sciences, 57(3): pp. 389–398, 1998.

17. E. Asarin and O. Maler. As soon as possible: Time optimal

control for timed automata. In F.W. Vaandrager and J.H.

van Schuppen, editors, Proc. HSCC’99, volume 1569 of

LNCS, pp. 19–30. Springer, 1999.

18. E. Asarin, O. Maler, and A. Pnueli. Reachability analysis of

dynamical systems having piecewise-constant derivatives.

Theoretical Computer Science, 138(1): pp. 35–65, 1995.

19. E. Asarin, O. Maler, and A. Pnueli. Symbolic controller

synthesis for discrete and timed systems. In P. Antsaklis,

W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems

II, volume 999 of LNCS, pp. 1–20. Springer, 1995.

20. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller

synthesis for timed automata. In P. Antsaklis, W. Kohn, A.

Nerode, and Sastry S., editors, Proceedings of IFAC Sym-

posium on System Structure and Control, pp. 469–474.

Elsevier, 1998.

21. E. Asarin, G. Schneider, and S. Yovine. On the decid-

ability of the reachability problem for planar differential

inclusions. In Hybrid Systems: Computation and Control,

pp. 89–104. Springer, 2001.

22. C. Baier and J.-P. Katoen. Principles of Model Checking

(Representation and Mind Series). The MIT Press, 2008.

23. T. Ball, V. Levin, and S.K. Rajamani. A decade of software

model checking with SLAM. Communications of the ACM,

54(7): pp. 68–76, July 2011.

24. D. Basin, C. Cremers, and C. Meadows. Model checking

security protocols. Handbook of Model Checking, 2011.

http://people.inf.ethz.ch/cremersc/publications/index.html

25. D. Beauquier. Probabilistic timed automata. Theoretical

Computer Science, 292(1): pp. 65–84, 2003.

26. G. Behrmann, A. Fehnker, T. Hune, K.G. Larsen,

P. Pettersson, J. Romijn, and F.W. Vaandrager. Minimum-

cost reachability for priced timed automata. In M.D. Di

Benedetto and A.L. Sangiovanni-Vincentelli, editors, Proc.

HSCC’01, volume 2034 of LNCS, pp. 147–161, Heidelberg,

2001. Springer.

27. J. Bengtsson and W. Yi. Timed automata: Semantics, algo-

rithms and tools. In Lectures on Concurrency and Petri

Nets, pp. 87–124, 2003.

28. J. Berendsen, D. Jansen, and J.-P. Katoen. Probably on time

and within budget—on reachability in priced probabilis-

tic timed automata. In Proc. QEST’06, pp. 311–322, Wash-

ington, DC, USA, 2006. IEEE.

29. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and

Y. Zhu. Bounded model checking. Advances in computers,

58: pp. 117–148, 2003.

30. A. Biere, A. Cimatti, E.M. Clarke, O. Strichman, and Y.

Zhu. Bounded model checking. Handbook of Satisfiability,

185: pp. 457–481, 2009.

31. P. Bouyer. Weighted timed automata: Model-checking and

games. Electronic Notes Theoretical Computer Science, 158:

pp. 3–17, 2006.

32. P. Bouyer, T. Brihaye, M. Jurdzinski, R. Lazic, and

M. Rutkowski. Average-price and reachability-price games

on hybrid automata with strong resets. In Formal Mod-

eling and Analysis of Timed Systems (FORMATS), volume

5215 of LNCS, pp. 63–77. 2008.

33. P. Bouyer, E. Brinksma, and K.G. Larsen. Optimal infi-

nite scheduling for multi-priced timed automata. Formal

Methods in System Design, 32(1): pp. 3–23, 2008.

34. P. Bouyer, U. Fahrenberg, K.G. Larsen, and N. Markey.

Timed automata with observers under energy constraints.

In Hybrid Systems: Computation and Control (HSCC), 2010.

35. P. Bouyer, U. Fahrenberg, K.G. Larsen, N. Markey, and

J. Srba. Infinite runs in weighted timed automata with

energy constraints. In Formal Modeling and Analysis of

Timed Systems, pp. 33–47. Springer, 2008.

36. P. Bouyer, and V. Forejt. Reachability in stochastic timed

games. In International Colloquium on Automata, Lan-

guages and Programming (ICALP), volume 5556 of LNCS,

pp. 103–114. Springer, 2009.

37. T. Brihaye, V. Bruyere, and J.-F. Raskin. Model-checking

for weighted timed automata. In Yassine Lakhnech and

Sergio Yovine, editors, Formal Techniques, Modelling and

Analysis of Timed and Fault-Tolerant Systems, volume

3253 of Lecture Notes in Computer Science, pp. 277–292.

Springer Berlin Heidelberg, 2004.

38. T. Brihaye, T.A. Henzinger, V.S. Prabhu, and J. Raskin.

 Minimum-time reachability in timed games. In Proc.

ICALP’07, volume 4596 of LNCS, pp. 825–837. Springer,

2007.

39. M. Broy, I.H. Kruger, A. Pretschner, and C. Salzmann.

Engineering automotive software. Proceedings of the IEEE,

95(2): pp. 356–373, 2007.

40. J.R. Büchi. On a decision method in restricted second-

 order arithmetic. In Int. Congr. for Logic Methodology and

Philosophy of Science, pp. 1–11. Standford University Press,

Stanford, 1962.

Hybrid Automata for Formal Modeling and Verification of Cyber-Physical Systems

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in 439

41. F. Cassez, J. Jessen, K. Larsen, J. Raskin, and P. Reynier. Auto-

matic synthesis of robust and optimal controllers: an indus-

trial case study. In F.W. Vaandrager and J.H. van Schuppen,

editors, HSCC’09, volume 5469 of LNCS, 2009.

42. K. Cerans and J. Viksna. Deciding reachability for planar

multi-polynomial systems. In Hybrid Systems, pp. 389–400,

1995.

43. Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen.

An extended duration calculus for hybrid real-time systems.

In Hybrid Systems, volume 736 of Lecture Notes in Computer

Science, pp. 36–59. Springer Berlin Heidelberg, 1993.

44. Robert N. Charette. This car runs on code. http://news.

discovery.com/autos/toyota-recall-software-code.htm,

February 2013.

45. K. Chatterjee, T.A. Henzinger, and V. Prabhu. Timed par-

ity games: Complexity and robustness. In Proceedings of

the Sixth International Conference on Formal Modeling and

Analysis of Timed Systems (FORMATS’08), volume 5215 of

LNCS, pp. 124–140, 2008.

46. E.M. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Sym-

metry reductions in model checking. In Computer Aided

Verification, pp. 147–158. Springer, 1998.

47. E.M. Clarke, E.A. Emerson, and J. Sifakis. Model checking:

algorithmic verification and debugging. Communications

of the ACM, 52(11): pp. 74–84, 2009.

48. E.M. Clarke, A. Fehnker, Z. Han, J. Krogh, B.H. and Oua-

knine, O. Stursberg, and M. Theobald. Abstraction and

counterexample-guided refinement in model checking

of hybrid systems. International Journal of Foundations of

Computer Science, 14(4): pp. 583–604, 2003.

49. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.

Counterexample-guided abstraction refinement. In CAV,

pp. 154–169, 2000.

50. E.M. Clarke, O. Grumberg, and D. Peled. Model Checking.

MIT Press, 1999.

51. C. Courcoubetis and M. Yannakakis. Minimum and

maximum delay problems in real-time systems. In Formal

Methods in System Design, volume 1, pp. 385–415, Dor-

drecht, 1992. Kluwer.

52. L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar,

and M. Stoelinga. The element of surprise in timed

games. In R. Amadio and D. Lugiez, editors, Proc. CON-

CUR’03, volume 2761 of LNCS, pp. 144–158. Springer,

2003.

53. E.A. Emerson. Model checking and mu-calculus. In

N. Immerman and Ph. G. Kolaitis, editors, Descriptive

Complexity and Finite Models, volume 31 of DIMACS

Series in Discrete Mathematics and Theoretical Computer

Science, pp. 185–214. American Mathematical Society,

1996.

54. G. Frehse. Phaver: Algorithmic verification of hybrid sys-

tems past hytech. pp. 258–273. Springer, 2005.

55. Hong Fu, Guangyu Tian, Quanshi Chen, and Yiding Jin.

Hybrid automata of an integrated motor-transmission

powertrain for automatic gear shift. In American Control

Conference (ACC), 2011, pp. 4604–4609, 2011.

56. E. Grädel, W. Thomas, and T. Wilke, editors. Automata,

Logics, and Infinite Games. A Guide to Current Research,

volume 2500 of LNCS. Springer, 2002.

57. T.A. Henzinger, P. Ho, and H. Wong-toi. Hytech: A model

checker for hybrid systems. Software Tools for Technology

Transfer, 1: pp. 460–463, 1997.

58. T.A. Henzinger and P.W. Kopke. Discrete-time control

for rectangular hybrid automata. Theor. Comput. Sci.,

221(1–2): pp. 369–392, 1999.

59. T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What’s

decidable about hybrid automata? Journal of Computer

and System Sciences, 57(1): pp. 94–124, 1998.

60. Hytech.http://embedded.eecs.berkeley.edu/research/

hytech/

61. Zhihao Jiang, Miroslav Pajic, and Rahul Mangharam.

Cyber–physical modeling of implantable cardiac medical

devices. Proceedings of the IEEE, 100(1): pp. 122–137, 2012.

62. M. Jurdziński, J. Sproston, and F. Laroussinie. Model

checking probabilistic timed automata with one or two

clocks. Logical Methods in Computer Science, 4(3):12,

2008.

63. M. Jurdziński and A. Trivedi. Concavely-priced timed

automata. In F. Cassez and C. Jard, editors, Formal Mod-

eling and Analysis of Timed Systems (FORMATS), volume

5215 of LNCS, pp. 48–62. Springer, 2008.

64. Y. Kesten, A. Pnueli, J. Sifakis, and Yovine. S. Integration

graphs: A class of decidable hybrid systems. In R.L. Gross-

man, A. Nerode, A.P. Ravn, and H. Rischel, editors, Hybrid

Systems, volume 736 of LNCS, pp. 179–208. Springer, 1992.

65. Ron Koymans. Specifying real-time properties with met-

ric temporal logic. Real-time systems, 2(4): pp. 255–299,

1990.

66. Kronos.http://www-verimag.imag.fr/TEMPORISE/

kronos/

67. R.P. Kurshan. Verification technology transfer. In Orna

Grumberg and Helmut Veith, editors, 25 Years of Model

Checking, pp. 46–64. Springer-Verlag, Berlin, Heidelberg,

2008.

68. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston.

Performance analysis of probabilistic timed automata

using digital clocks. FMSD, 29: pp. 33–78, 2006.

69. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.

Verifying quantitative properties of continuous probabi-

listic timed automata. In Proc. of 11th International Con-

ference on Concurrency Theorey, (CONCUR’00), volume

1877 of LNCS, pp. 123–137, 2000.

70. M. Kwiatkowska, G. Norman, J. Sproston, and F. Wang.

Symbolic model checking for probabilistic timed autom-

ata. Information and Computation, 205(7):1027–1077,

2007.

71. M.Z. Kwiatkowska, G. Norman, R. Segala, and J. Sproston.

Automatic verification of real-time systems with discrete

probability distributions. In ARTS, pp. 75–95, 1999.

72. L. Lamport. Proving the correctness of multiprocess pro-

grams.Software Engineering, IEEE Transactions on, SE-

3(2): pp. 125–143, 1977.

Shankara Narayanan Krishna and Ashutosh Trivedi

Journal of the Indian Institute of Science VOL 93:3 Jul.–Sep. 2013 journal.iisc.ernet.in440

73. K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker,

T. Hune, P. Pettersson, and J. Romijn. As cheap as possi-

ble: Efficient cost-optimal reachability for priced timed

automata. In G. Berry, H. Comon, and A. Finkel, editors,

Proc. CAV’01, volume 2102 of LNCS, pp. 493–505, Heidel-

berg, 2001. Springer.

74. J. Lygeros, C. Tomlin, and S. Sastry. Hybrid Systems: Mod-

eling, Analysis and Control. In preparation, 2008. Unpub-

lished anuscript, http://www-inst.cs.berkeley.edu/_ee291e/

sp09/handouts/book.pdf

75. O. Maler, K.G. Larsen, and B. Krogh. On zone-based

analysis of duration probabilistic automata. In INFINITY,

pp. 33–46, 2010.

76. Z. Manna and A. Pnueli. A hierarchy of temporal proper-

ties. In Proceedings of the sixth annual ACM Symposium

on Principles of distributed computing, PODC ’87, pp. 205–

205, New York, NY, USA, 1987. ACM.

77. Z. Manna and A. Pnueli. The Temporal Logic of Reactive

and Concurrent Systems. Springer-Verlag, 1992.

78. W. Marrero, E.M. Clarke, and S. Jha. Model checking for

security protocols. Technical report, DTIC Document,

1997.

79. MATLAB. version 7.10.0 (R2010a). The MathWorks Inc.,

Natick, Massachusetts, 2010.

80. Kenneth L. McMillan. Symbolic model checking. Springer,

1993.

81. Marvin L. Minsky. Computation: finite and infinite

machines. Prentice-Hall, Inc., 1967.

82. Nusmv. http://nusmv.fbk.eu/

83. J. Ouaknine and J. Worrell. Some recent results in metric

temporal logic. In Franck Cassez and Claude Jard, edi-

tors, Formal Modeling and Analysis of Timed Systems, vol-

ume 5215 of Lecture Notes in Computer Science, pp. 1–13.

Springer Berlin Heidelberg, 2008.

84. William Pasillas-Lépine. Hybrid modeling and limit cycle

analysis for a class of five-phase anti-lock brake algorithms.

Vehicle System Dynamics, 44(2): pp. 173–188, 2006.

85. Doron Peled. Combining partial order reductions with

on-the-fly model-checking. In Computer aided verifica-

tion, pp. 377–390. Springer, 1994.

86. Phaver. http://www-verimag.imag.fr/~frehse/phaver web/.

87. A. Puri and P. Varaiya. Decidability of hybrid systems with

rectangular differential inclusion. In Computer Aided Veri-

fication (CAV), pp. 95–104, 1994.

88. J.I. Rasmussen, K.G. Larsen, and K. Subramani. On using

priced timed automata to achieve optimal scheduling. For-

mal Methods in System Design, 29(1): pp. 97–114, 2006.

89. RED. http://cc.ee.ntu.edu.tw/_farn/red/

90. Jaijeet Roychowdhury. Numerical simulation and mod-

elling of electronic and biochemical systems. Founda-

tions and Trends in Electronic Design Automation, 3(2 –3):

pp. 97–303, February 2009.

91. A.P. Sistla and E.M. Clarke. The complexity of proposi-

tional linear temporal logics. Journal of the ACM, 32(3):

pp. 733–749, July 1985.

92. Spin. http://spinroot.com/

93. T. Stauner, O. Muller, and M. Fuchs. Using hytech to ver-

ify an automotive control system. In Oded Maler, editor,

Hybrid and Real-Time Systems, volume 1201 of Lecture

Notes in Computer Science, pp. 139–153. Springer Berlin

Heidelberg, 1997.

94. A. Trivedi and D. Wojtczak. Recursive timed automata.

InProceedings of the 8th International Symposium on Auto-

mated Technology for Veri-fication and Analysis, volume

6252 of LNCS, pp. 306–324. Springer-Verlag, September

2010.

95. Uppaal case-studies. http://www.it.uu.se/research/group/

darts/uppaal/ examples.shtml

96. Uppaal. http://www.uppaal.com/

97. Md Tawhid Bin Waez, Juergen Dingel, and Karen Rudie.

A survey of timed automata for the development of real-

time systems. Computer Science Review, 2013.

98. Inc. Wolfram Research. Mathematica Edition: Version 8.0.

Wolfram Research, Inc., 2010. Champaign, Illinois.

99. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about

infinite computation paths. In Foundations of Computer

Science, pp. 185–194, 1983.

Krishna S. received her Ph.D. from the Indian
Institute of Technology Madras in 2003, and
she is faculty member in the department
of computer science and engineering at the
Indian Institute of Technology (IIT) Bombay.

Her research focuses on studying decidable models for real-
time systems, model-checking timed systems with weighted
timed logic, synthesis games for timed systems, and expres-
siveness and decidability issues in timed logic. She is also a
member of the centre for formal design and verification of
software (CFDVS) at IIT Bombay.

Ashutosh Trivedi received his Ph.D. from the
University of Warwick for studying competitive
optimisation on Timed Automata in 2009. After
this he worked on probabilistic timed systems at
the University of Oxford in the group of Marta

Kwiatkowska. In 2010 he joined the University of Pennsyl-
vania as a postdoctoral researcher with Rajeev Alur to work
on verification of hybrid systems. He is now an assistant
professor in the department of computer science and engi-
neering at the Indian Institute of Technology (IIT) Bombay.
His research focuses on developing theory, techniques, and
tools for formal analysis, verification, and synthesis of hybrid
systems. He is also a member of the centre for formal design
and verification of software (CFDVS) at IIT Bombay.

