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ABSTRACT
Bounded-rate multi-mode systems (BMS) are hybrid sys-
tems that can switch freely among a finite set of modes, and
whose dynamics is specified by a finite number of real-valued
variables with mode-dependent rates that can vary within
given bounded sets. The schedulability problem for BMS
is defined as an infinite-round game between two players—
the scheduler and the environment—where in each round the
scheduler proposes a time and a mode while the environment
chooses an allowable rate for that mode, and the state of the
system changes linearly in the direction of the rate vector.
The goal of the scheduler is to keep the state of the system
within a pre-specified safe set using a non-Zeno schedule,
while the goal of the environment is the opposite. Green
scheduling under uncertainty is a paradigmatic example of
BMS where a winning strategy of the scheduler corresponds
to a robust energy-optimal policy. We present an algorithm
to decide whether the scheduler has a winning strategy from
an arbitrary starting state, and give an algorithm to com-
pute such a winning strategy, if it exists. We show that the
schedulability problem for BMS is co-NP complete in gen-
eral, but for two variables it is in PTIME. We also study
the discrete schedulability problem where the environment
has only finitely many choices of rate vectors in each mode
and the scheduler can make decisions only at multiples of a
given clock period, and show it to be EXPTIME-complete.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Control Theory, Scheduling; D.4.7 [Organization and De-
sign]: Real-time systems and embedded systems

Keywords
Multi-Mode Systems; Green Scheduling; Controller Synthe-
sis; Invariant Sets; Constrained Control; Stability

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’13, April 8–11, 2013, Philadelphia, Pennsylvania, USA.
Copyright 2013 ACM 978-1-4503-1567-8/13/04 ...$10.00.

General Terms
Theory, Design, Algorithms

1. INTRODUCTION
There is a growing trend towards multi-mode composi-

tional design frameworks [10, 15, 11] for the synthesis of
cyber-physical systems where the desired system is built by
composing various modes, subsystems, or motion primitives—
with well-understood performance characteristics—so as to
satisfy certain higher level control objectives. A notable ex-
ample of such an approach is green scheduling proposed by
Nghiem et al. [13, 14] where the goal is to compose different
modes of heating, ventilation, and air-conditioning (HVAC)
installations in a building so as to keep the temperature
surrounding each installation in a given comfort zone while
keeping the peak energy consumption under a given bud-
get. Under the assumption that the state of the system
grows linearly in each mode, Nghiem et al. gave a polyno-
mial algorithm to decide the green schedulability problem.
Alur, Trivedi, and Wojtczak [2] studied general constant-
rate multi-mode systems and showed, among others, that
the result of Nghiem et al. holds for arbitrary multi-mode
systems with constant rate dynamics as long as the scheduler
can switch freely among the finite set of modes.

In this paper we present bounded-rate multi-mode systems
that generalize constant-rate multi-mode systems by allow-
ing non-constant mode-dependent rates that are given as
bounded polytopes. Our motivations to study bounded-rate
multi-mode schedulability are twofold. First, it allows one to
model a conservative approximation of green schedulability
problem in presence of more complex inter-mode dynamics.
Second motivation is theoretical and it stems from the de-
sire to characterize decidable problems in context of design
and analysis of cyber-physical systems. In particular, we
view a bounded-rate multi-mode system as a two-player ex-
tension of constant-rate multi-mode system, and show the
decidability of schedulability game for such systems.

Before discussing bounded-rate multi-mode system (BMS)
in any further detail, let us review the definition, relevant
results, and limitations of constant-rate multi-mode system
(CMS). A CMS is specified as a finite set of variables whose
dynamics in a finite set of modes is given as mode-dependent
constant rate vector. The schedulability problem for a CMS
and a bounded convex safety set of states is to decide whether
there exists an infinite sequence (schedule) of modes and
time durations such that choosing modes for corresponding
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Figure 1: Multi-mode systems with uncertain rates

time durations in that sequence keeps the system within the
safety set forever. Moreover such schedule is also required
to be physically implementable, i.e. the sum of time dura-
tions must diverge (the standard non-Zeno requirement [8]).
Alur et al. [2] showed that, for the starting states in the inte-
rior of the safety set, the necessary and sufficient condition
for safe schedulability is the existence of an assignment of
dwell times to modes such that the sum of rate vectors of
various modes scaled by corresponding dwell time is zero.
Intuitively, if it is possible using the modes to loop back to
the starting state, i.e. to go to some state other than the
starting state and then to return to the starting state, then
the same schedule can be scaled appropriately and repeated
forever to form a periodic schedule that keeps the system
inside the interior of any convex safety set while ensuring
time divergence. On the other hand, if no such assignment
exists then Farkas’ lemma implies the existence of a vector
such that choosing any mode the system makes a positive
progress in the direction of that vector, and hence for any
non-Zeno schedule the system will leave any bounded safety
set in a finite amount of time. Also, due to constant-rate
dynamics such condition can be modeled as a linear program
feasibility problem, yielding a polynomial-time algorithm.

Example 1. Consider the 2-dimensional CMS shown in
Figure 1 (left) with two modes m1 and m2 with rates of the
variables as ~r1 = (0, 1) in mode m1 and ~r2 = (0,−1) in
mode m2. It is easy to see that the system is schedulable
for any starting state (x0, y0) in the interior of any bounded
convex set S as ~r1+~r2 = (0, 0). The safe schedule consists of
the periodic schedule (m1, t), (m2, t) for a carefully selected
t ∈ R>0 such that (x0, y0) + ~r1t stays inside S.

However, the schedules constructed in this manner are not
robust as an arbitrarily small change in the rate can make
the schedule unsafe as shown in the following example.

Example 2. Consider a multi-mode system where some
environment related fluctuations [8] cause the rate vectors in
modes m1 and m2 to differ from those in Example 1 by an
arbitrarily small ε > 0 as shown in Figure 1 (center). Here,
m1 can have rate-vectors from {(0+δ, 1) : −ε≤δ≤ε}, while
rate-vectors of m2 are from {(0+δ,−1) : −ε≤δ≤ε}. First
we show that the periodic schedule (m1, t), (m2, t) proposed
in Example 1 is not safe for any t. Consider the case when
the rate vector in modes m1 and m2 are fixed to (ε, 1) and
(ε,−1). Starting from the state (x0, y0) and following the
periodic schedule (m1, t), (m2, t) for k steps the state of the
system will be (x0 + ktε, y0) after k steps. Hence it is easy
to see that for any bounded safety set the state of the system
will leave the safety set after finitely many steps. In fact, for
this choice of rate vectors no non-Zeno safe schedule exists
at all, since by choosing any mode for a positive time the
system makes a positive progress along the X axis.

We formalize modeling of such multi-mode system under un-
certainty as bounded-rate multi-mode systems (BMS). BMSs

can also approximate [5] the effect of more complex non-
linear, and even time-varying, mode dynamics over a bounded
safety set. Formally, a BMS is specified as a finite set of vari-
ables whose dynamics in a finite set of modes is given as a
mode-dependent bounded convex polytopes of rate vectors.
We present the schedulability problem on BMS as an infinite-
round zero-sum game between two players, the scheduler and
the environment ; at each round scheduler chooses a mode
and a time duration, the environment chooses a rate vector
from the allowable set of rates for that mode, and the state
of the system is evolved accordingly. The recipe for select-
ing their choices, or moves, is formalized in the form of a
strategy that is a function of the history of the game so far
to a move of the player. A strategy is called positional if it
is a function of the current state. We say that the sched-
uler wins the schedulability game, or has a winning strategy,
from a given starting state if there is a scheduler strategy
such that, irrespective of the strategies of the environment,
the state of the system stays within the safety set and time
does not converge to any real number. Similarly, we say that
the environment has a winning strategy if she has a strat-
egy such that for any strategy of the scheduler the system
leaves the safety set in a finite amount of time, or the time
converges to some real number. One of the central results
of this paper is that the schedulability games on BMS are
determined, i.e. for each starting state exactly one of the
player has a winning strategy. Note that the determinacy of
these games could be proved using more general results on
determinacy, e.g. [12], however our proof is direct and shows
the existence of positional winning strategies.

We distinguish between two kind of strategies of scheduler–
the static strategies, where scheduler can not observe the
decisions of the environment, and the dynamic strategies,
where scheduler can observe the decisions of the environ-
ment so far before choosing a mode and a time. Our use
of static vs. dynamic strategies closely corresponds to stan-
dard open-loop control vs. closed-loop control distinction in
control theory. Also notice that static strategies correspond
precisely to schedules, and we often use these two terms in-
terchangeably. A key challenge in the schedulability analysis
of BMS is inadequacy of static strategies as shown below.

Example 3. Consider the BMS of Figure 1 (right) where
the rates in mode m1 and m2 lie in {(0, 1 + δ) : 0 ≤ δ ≤ ε}
and {(0,−(1 + δ)) : 0 ≤ δ ≤ ε}, respectively. We hint that
there is no static winning strategy of scheduler in this BMS
(the formal conditions for the existence of static winning
strategies will be analyzed later in the paper). Let us as-
sume, for example, that σ = (m1, t1), (m2, t2), . . . is a static
non-Zeno winning strategy of the scheduler. Moreover con-
sider two strategies π and π′ of the environment that dif-
fer only in mode m1 where they propose rates (1, 0) and
(1+ε, 0) respectively. Let % and %′ be the sequences of system
states and player’s choices—what we subsequently refer to as
runs—as the game progresses from a starting state (x0, y0)
where the environment uses strategy π and π′, respectively,
against scheduler’s strategy σ. Let T1(i) and T2(i) be the
time spent in mode m1 and m2, resp., till the i-th round
in runs % and %′, while T1 and T2 be total time spent in
mode m1 and m2, resp. The state of the system in the runs
% and %′ after i rounds will be (x0, y0 + T1(i) − T2(i)) and
(x0, y0 + T1(i) − T2(i) + T1(i)ε). Hence the distance T1(i)ε
between states reached after i-rounds in runs % and %′ tends
to T1ε as i tends to∞. It is easy to see that if σ is a winning



strategy then T1=∞; since if T1<∞ and T2=∞ then the sys-
tem will move in the direction of rates of mode m2, while if
both T1 and T2 are finite then the strategy is not non-Zeno.
Hence system will eventually leave any bounded safety set,
contradicting our assumption on σ being a winning strategy.

The techniques used for schedulability analysis and sched-
ule construction for CMS cannot be generalized to BMS since
in a BMS, the scheduler may not have a strategy to loop
back to the starting state. In fact, in general scheduler does
not have a strategy to revisit any state as is clear from Fig-
ure 1 (right)—here the environment can always choose a rate
vector in both mode m1 and m2 to avoid any previously vis-
ited state. However, from our results on BMS it follows that
if the scheduler has a winning strategy then he has a strat-
egy to restrict the future states of the system to a ball of
arbitrary diameter centered around the starting state.

In order to solve schedulability game for BMS we ex-
ploit the following observation1: the scheduler has a win-
ning strategy, from all the starting states in the interior of
the safety set S, if and only if there is a polytope P ⊆ S,
such that for every vertex v of P there is a mode m(v) and
time t(v) such that choosing mode m(v) for time t(v) from
the vertex v, the line v + ~rt(v) stays within polytope P for
all allowable rates ~r of m(v). In other words, for any vertex
of P there is a mode and a time duration such that if the
system evolves with any rate vector of that mode for such
amount of time, the system stays in P . For a BMS H we call
such a polytopeH-closed. We show how such a polytope can
be constructed for a BMS based on its characteristics. We
also analyze the complexity of such a construction. The ex-
istence of an H-closed polytope immediately provides a non-
Zeno safe dynamic strategy for the scheduler for any start-
ing state in P : find the convex coefficient (λ1, λ2, . . . , λk)
of the current state x with respect to the finite set of ver-
tices (x1, x2, . . . , xk) of P and choose the mode m(xi) for
time t(xi)λi that maximizes t(xi)λi. Then, for some choice
~r of the environment for m(xi) the system will progress to
x′=x+t(xi)λi~r. One can repeat this dynamic strategy from
the next state x′ as the current state. We prove that such
strategy is both non-Zeno and safe.

An extreme-rate CMS of a BMS H is obtained by preserv-
ing the set of modes, and for each mode assigning a rate
which is a vertex of the available rate-set of that mode. The
main result of the paper is that an H-closed polytope exists
for a BMS H iff all extreme-rate CMSs of H are schedula-
ble. The “only if” direction of the above characterization is
immediate as if some extreme-rate CMS is not schedulable
then the environment can fix those rate vectors and win the
schedulability game in the BMS. We show the “if” direction
by explicitly constructing the H-closed polytope.

Example 4. Consider the BMS H from Figure 1 (right)
with ε = 0.5. The safety set is given as a shaded area in
Figure 2 (left) and x̄0 = (−1,−0.5) is the initial state. Ob-
serve that all extreme-rate combinations are schedulable and
hence we show a winning strategy. An H-closed polytope
for this BMS is the line-segment between the points (0, 2.5)
and (0,−2.5) (we explain the construction of such a poly-
tope in Section 3). After translating this line-segment to
x0 and scaling it to fit inside the safety set, we will get the

1Blanchini [3, Theorem 5.2] makes a similar observation to
design uniformly stable control for uncertain linear systems.
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Figure 2: H-closed polytope and dynamic strategy

line-segment connecting x̄1 = (−1, 1) to x̄2 = (−1,−2), as
shown in Figure 2 (left). At vertices x̄1 and x̄2 modes m2

and m1, respectively, can be used for 1 time unit. A win-
ning strategy of scheduler is to keep the system’s state along
the line segment. Our strategy observes the current state x
and finds the mode to choose by computing convex coeffi-
cient λ∈[0, 1] s.t. x=λx1+(1−λ)x2. For instance, at state
x̄0= 1

2
x̄1+ 1

2
x̄2 the scheduler can choose any of the modes for

1
2

time units. Assume that it chooses m1. Based on en-

vironment’s choice the state of system after 1
2

time units
will be in the set {−1, 0.5 + δ : 0 ≤ δ ≤ 0.5}. The sched-
uler observes this new state after 1

2
time-unit, and chooses

mode and time accordingly. For example, if the environment
chooses (0, 1.25) and so the next state is x̄ = (−1, 0.75) =
1
12
x̄1+ 11

12
x̄2, scheduler can choose mode m2 for 11

12
time units.

In Figure 2 (right) we show first two rounds of the game.
Since, for any point on our line segment scheduler can choose
a mode for at least 0.5 time unit and stay on the line seg-
ment, such strategy is both safe and non-Zeno.

We also extend the above result to decide the winner
starting from arbitrary states, i.e. including those states
that lie on the boundary of the safety set. Here we show
that the existence of a safe scheduler implies the existence
of a safe scheduler which only allows to move from lower-
dimensional faces to higher-dimensional ones and not the
other way around; this allows us to use an algorithm which
traverses the face lattice of the safety set and analyses each
face one by one. We also prove co-NP completeness of the
schedulability problem, showing the hardness by giving a re-
duction from 3-SAT to the non-schedulability problem. On
a positive note, we show that if the number of variables is
two, then the schedulability game can be decided in polyno-
mial time. This is because in such a case we can prove that
there is only polynomially many candidates for falsifiers we
need to consider, and hence we can check each of them one
by one. Finally, we study a discrete version of schedulabil-
ity games where scheduler can choose time delays only at
multiples of a given clock period, while the environment can
choose rate vectors from a finite set. We show that discrete
schedulability games on BMS are EXPTIME-complete, and
that the maximal clock period for which scheduler has a win-
ning strategy can be computed in exponential time. If the
system is a CMS, we get a PSPACE algorithm, improving
the result of [2] where only an approximation of the maximal
clock period for CMS was studied.

For a review of related work on CMS and green scheduling
we refer to [14, 13] and [2]. The work closest to this paper
is that on constrained regulator problem by Blanchini [3].
This work studies the concept of positively invariant region
that closely corresponds to our definition of H-closed poly-
tope, and present conditions for schedulability of more gen-
eral linear systems. However, [3] does not settle compu-



tational complexity of corresponding problem that form the
core of our results. We refer the reader to [4] for an excellent
survey on positively invariant sets and their applications in
controller synthesis. Another closely related work is by Hey-
mann et al. [8] that considers scheduling problem on BMS
where rate-vectors are given as upper and lower rate ma-
trices and the safety set as the entire non-negative orthant.
The main result of [8] is that the scheduler wins if he wins in
the CMS of the lower rate matrix, and wins only if he wins in
the CMS of the upper rate matrix. We study more general
BMS and safety sets, and characterize necessary and suffi-
cient condition for schedulability. Finally, to complete the
picture, we remark that games on hybrid automata [7, 6],
that corresponds to BMS with local invariants and guards,
have undecidable schedulability problem.

For the lack of space proofs are either sketched or omitted;
full proofs can be found in the technical report [1].

2. PROBLEM DEFINITION
Points and Vectors. Let R be the set of real numbers.

We represent the states in our system as points in Rn that
is equipped with the standard Euclidean norm ‖ · ‖. We
denote points in this state space by x, y, vectors by ~r,~v, and
the i-th coordinate of point x and vector ~r by x(i) and ~r(i),

respectively. We write ~0 for a vector with all its coordinates
equal to 0; its dimension is often clear from the context. The
distance ‖x, y‖ between points x and y is defined as ‖x−y‖.
For two vectors ~v1, ~v2 ∈ Rn, we write ~v1 · ~v2 to denote their
dot product defined as

∑n
i=1 ~v1(i) · ~v2(i).

Boundedness and Interior. We denote a closed ball of
radius d ∈ R≥0 centered at x asBd(x)= {y∈Rn : ‖x, y‖ ≤ d}.
We say that a set S ⊆ Rn is bounded if there exists d ∈ R≥0

such that for all x, y ∈ S we have ‖x, y‖ ≤ d. The interior
of a set S, int(S), is the set of all points x ∈ S for which
there exists d > 0 s.t. Bd(x) ⊆ S.

Convexity. A point x is a convex combination of a finite
set of pointsX = {x1, x2, . . . , xk} if there are λ1, λ2, . . . , λk ∈
[0, 1] such that

∑k
i=1 λi = 1 and x =

∑k
i=1 λi·xi. The convex

hull of X is then the set of all points that are convex com-
binations of points in X. We say that S ⊆ Rn is convex iff
for all x, y ∈ S and all λ ∈ [0, 1] we have λx+ (1− λ)y ∈ S
and moreover, S is a convex polytope if it is bounded and
there exists k ∈ N, a matrix A of size k × n and a vector
~b ∈ Rk such that x ∈ S iff Ax ≤ ~b. We write rows(M) for
the number of rows in a matrix M , here rows(A) = k.

A point x is a vertex of a convex polytope P if it is not a
convex combination of two distinct (other than x) points in
P . For a convex polytope P we write vert(P ) for the finite
set of points that correspond to the vertices of P . Each
point in P can be written as a convex combination of the
points in vert(P ), or in other words, P is the convex hull of
vert(P ). From standard properties of polytopes, it follows
that for every convex polytope P and every vertex c of P ,
there exists a vector ~v such that ~v · c = d and ~v ·x > d for all
x ∈ P \ {c} for some d. We call such a vector ~v a supporting
hyperplane of the polytope P at c.

2.1 Multi-Mode Systems
A multi-mode system is a hybrid system equipped with

finitely many modes and finitely many real-valued variables.
A configuration is described by values of the variables, which
change, as the time elapses, at the rates determined by the

modes being used. The choice of rates is nondeterministic,
which introduces a notion of adversarial behavior. Formally,

Definition 1 (Multi-Mode Systems). A multi-mode
system is a tuple H = (M,n,R) where: M is the finite
nonempty set of modes, n is the number of continuous vari-
ables, and R : M → 2Rn

is the rate-set function that, for
each mode m ∈M , gives a set of vectors.

We often write ~r ∈ m for ~r ∈ R(m) when R is clear
from the context. A finite run of a multi-mode system H
is a finite sequence of states, timed moves and rate vector
choices % = 〈x0, (m1, t1), ~r1, x1, . . . , (mk, tk), ~rk, xk〉 s.t. for
all 1 ≤ i ≤ k we have ~ri ∈ R(mi) and xi=xi−1 + ti · ~ri. For
such a run % we say that x0 is the starting state, while xk is
its last state. An infinite run is defined in a similar manner.
We write Runs and FRuns for the set of infinite and finite
runs ofH, while Runs(x) and FRuns(x) for the set of infinite
and finite runs starting from x.

An infinite run 〈x0, (m1, t1), ~r1, x1, (m2, t2), ~r2, . . .〉 is Zeno
if
∑∞
i=1 ti < ∞. Given a set S ⊆ Rn of safe states, we say

that a run 〈x0, (m1, t1), ~r1, x1, (m2, t2), ~r2, . . .〉 is S-safe if for
all i ≥ 0 we have that xi ∈ S and xi + t · ~ri+1 ∈ S for all
t ∈ [0, ti+1], assuming t0 = 0. Notice that if S is a convex
set and xi ∈ S for all i ≥ 0, then for all i ≥ 0 and for all
t ∈ [0, ti+1] we have that xi + t · ~ri+1 ∈ S. The concept
of S-safety for finite runs is defined in a similar manner.
Sometimes we simply call a run safe when the safety set and
the starting state is clear from the context.

We formally give the semantics of a multi-mode system H
as a turn-based two-player game between the players, sched-
uler and environment, who choose their moves to construct
a run of the system. The system starts in a given starting
state x0 ∈ Rn and at each turn scheduler chooses a timed
move, a pair (m, t) ∈ M × R>0 consisting of a mode and
a time duration, and the environment chooses a rate vec-
tor ~r ∈ R(m) and as a result the system changes its state
from x0 to the state x1 = x0 + t · ~r in t time units following
the linear trajectory according to the rate vector ~r. From
the next state x1 the scheduler again chooses a timed move
and the environment an allowable rate vector, and the game
continues forever in this fashion. The focus of this paper is
on safe-schedulability game, where the goal of the scheduler
is to keep the states of the system within a given safety set
S, while ensuring that the time diverges (non-Zenoness re-
quirement). The goal of the environment is the opposite,
i.e. to visit a state out of the safety set or make the time
converge to some finite number.

Given a bounded and convex safety set S, we define (safe)
schedulability objective WS

Safe as the set of S-safe and non-
Zeno runs of H. In a schedulability game the winning ob-
jective of the scheduler is to make sure that the constructed
run of a system belongs toWS

Safe, while the goal of the envi-
ronment is the opposite. The choice selection mechanism of
the players is typically defined as strategies. A strategy σ of
scheduler is function σ:FRuns→M×R≥0 that gives a timed
move for every history of the game. A strategy π of the en-
vironment is a function π : FRuns× (M × R≥0)→ Rn that
chooses an allowable rate for a given history of the game and
choice of the scheduler. We say that a strategy is positional
if it suggests the same action for all runs with common last
state. We write Σ and Π for the set of strategies of the
scheduler and the environment, respectively.

Given a starting state x0 and a strategy pair (σ, π) ∈ Σ×Π



we define the unique run Run(x0, σ, π) starting from x0 as

Run(x0, σ, π) = 〈x0, (m1, t1), ~r1, x1, (m2, t2), ~r2, . . .〉

where for all i≥1, (mi, ti) = σ(〈x0, (m1, t1), ~r1, x1, . . . , xi−1〉)
and ~ri = π(〈x0, (m1, t1), ~r1, x1, . . . , xi−1,mi, ti〉) and xi =
xi−1 + ti · ~ri. The scheduler wins the game if there is σ ∈ Σ
such that for all π ∈ Π we get Run(x0, σ, π) ∈ WS

Safe. Such
a strategy σ is winning. Similarly, the environment wins
the game if there is π ∈ Π such that for all σ ∈ Σ we have
Run(x0, σ, π) 6∈ WS

Safe. Again, π is called winning in this
case. If a winning strategy for scheduler exists, we say that
H is schedulable for S and x0 (or simply schedulable if S and
x0 are clear from the context). The following is the main
algorithmic problem studied in this paper.

Definition 2 (Schedulability). Given a multi-mode
system H, a safety set S, and a starting state x0 ∈ S, the
(safe) schedulability problem is to decide whether there ex-
ists a winning strategy of the scheduler.

2.2 Bounded-Rate Multi-Mode Systems
To algorithmically decide schedulability problem, we need

to restrict the range of R and the domain of safety set S in
a schedulability game on a multi-mode system. The most
general model that we consider is the bounded-rate multi-
mode systems (BMS) that are multi-mode systems (M,n,R)
such that R(m) is a convex polytope for every m ∈M . We
also assume that the safety set S is specified as a convex
polytope. In our proofs we often refer to another variant of
multi-mode systems in which there are only a fixed number
of different rates in each mode (i.e. R(m) is finite for all m ∈
M). We call such a multi-mode system multi-rate multi-
mode systems (MMS). Finally, a special form of MMS are
constant-rate multi-mode systems (CMS) [2] in which R(m)
is a singleton for all m ∈ M . We sometimes use R(m) to
refer to the unique element of the set R(m) in a CMS. The
concepts for the schedulability games for BMS and MMS are
already defined for multi-mode systems. Similar concepts
also hold for CMS but note that the environment has no
real choice in this case. For this reason, we can refer to a
schedulability game on CMS as a one-player game.

The prime [2] practical motivation for studying CMS was
to generalize results on green scheduling problem by Nghiem
et al. [14]. We argue that BMS are a suitable abstraction to
study green scheduling problem when various rates of tem-
perature change are either uncertain or follow a complex and
time-varying dynamics, as shown in the following example.

Example 5 (Green Scheduling). Consider a build-
ing with two rooms A and B. HVAC units in each zone can
be in one of the two modes 0 (OFF) and 1 (ON). We write
the mode of the combined system as mi,j to represent the fact
that rooms A and B are in mode i ∈ {0, 1} and j ∈ {0, 1},
respectively. The rate of temperature change and the energy
usage for each room is given below.

Zones ON OFF
A (temp. change rate/ usage) -2/2 2/1
B (temp. change/ usage) -2/2 2/1

Following [2] we assume that the energy cost is equal to en-
ergy usage if peak energy usage at any given point in time
is less than or equal to 3 units, otherwise energy cost is 10
times of that standard rate. It follows that to minimize en-
ergy cost the peak usage, if possible, must not be higher than

m0,0

m0,1

m1,0

(a) Constant-Rate

m0,0

m0,1

m1,0

(b) Bounded-Rate

m0,0

m0,1

m1,0

(c) Multi-Rate

Figure 3: Restricted Multi-mode Systems

3 units at any given time. We can model the system as a
CMS with modes m0,0, m0,1, and m1,0, because these are
the only ones that have peak usage at most 3. The vari-
ables of the CMS are the temperature of the rooms, while the
safety set is the constraint that temperature of both zones
should be between 65oF to 75oF . The existence of a win-
ning strategy in CMS implies the existence of a switching
schedule with energy peak demand less than or equal to 4
units. In Figure 3.(a) we show a graphical representation
of such CMS with three modes m0,0,m0,1 and m1,0 and two
variables (corresponding to the two axes). The rate of the
variables in mode m0,0 is (2, 2), in mode m0,1 is (2,−2), and
in mode m1,0 is (−2, 2).

Now assume that the rate of temperature change in a mode
is not constant and can vary within a given margin ε > 0.
Schedulability problem for such system can best be modeled
as a BMS as shown in Figure 3.(b) where the polytope of
possible rate vectors is shown as a shaded region. In Fig-
ure 3.(c) we show a MMS where variables can only change
with the extreme rates of the BMS in Figure 3.(b).

We say that a CMS H = (M,n,R) is an instance of a
multi-mode system H = (M,n,R) if for every m ∈ M we
have that R(m) ∈ R(m). For example, the CMS shown
in Figure 3.(a) is an instance of BMS in Figure 3.(b). We
denote the set of instances of a multi-mode system H by
JHK. Notice that for a BMS H the set JHK of its instances
is uncountably infinite, while for a MMS H the set JHK is
finite whose size is exponential in the size of H. We say
that a MMS (M,n,R′) is the extreme-rate MMS of a BMS
(M,n,R) if R′(m) = vert(R(m)). The MMS in Figure 3.(c)
is the extreme-rate MMS for the BMS in Figure 3.(b) We
write Ext(H) for the extreme-rate MMS of the BMS H.

Notice that for every starting state and winning objective
at most one player can have a winning strategy. We say
that a game is not determined if no player has a winning
strategy for some starting state. In the next section we
give an algorithm to decide the winner in a schedulability
game for an arbitrary starting state. Since for every starting
state we can decide the winner, it gives a direct proof of
determinacy of schedulability games on BMS. Moreover, it
follows from our results that whenever a player has a winning
strategy, he has a positional such strategy. These two results
together yield the first key results of this paper.

Theorem 1 (Determinacy). Schedulability games on
BMS with convex safety polytopes are positionally determined.

In Section 4 we analyze the complexity of deciding the
winner in a schedulability game. Using a reduction from
SAT problem to non-schedulability for a MMS, we prove
the following main contribution of the paper.

Theorem 2. Schedulability problems for BMS and MMS
are co-NP complete.



On a positive note, we show that schedulability games can
be solved in PTIME for BMS and MMS with 2 variables.

3. SOLVING SCHEDULABILITY GAMES
In this section we discuss the decidability of the schedu-

lability problem for BMS. We first present a solution for the
case when the starting state is in the interior of a safety set,
and generalize it to arbitrary starting states in Section 3.2.

3.1 Starting State in the Interior of Safety Set
Alur et al. [2] presented a polynomial-time algorithm to

decide if the scheduler has a winning strategy in a schedu-
lability game on a CMS for an arbitrary starting state. In
particular, for starting states in the interior of the safety set,
they characterized a necessary and sufficient condition.

Theorem 3 ([2]). The scheduler has a winning strat-
egy in a CMS (M,n,R), with convex safety set S and starting

state x0 in the interior of S, iff there is ~t ∈ R|M|≥0 satisfying:

|M|∑
i=1

R(i)(j) · ~t(i) = 0 for 1 ≤ j ≤ n and

|M|∑
i=1

~t(i) = 1. (1)

We call a CMS safe if it satisfies (1) and we call H un-
safe otherwise. The intuition behind Theorem 3 is that the
scheduler has a winning strategy if and only if it is possi-
ble to return to the starting state in strictly positive time
units. From the results of [2] it also follows that whenever a
winning strategy exists, there is a strategy which does not
look at a history or even the current state, but only uses
a bounded counter of size ` ≤ |M | − 1 and after a history
of length k makes a decision only based on the number k
modulo `. Such strategies are called periodic.

It is natural to ask whether the approach of [2] can be
generalized to BMS. Unfortunately, Example 3 shows that
in a BMS although a winning strategy may exist, it may not
be possible to return to the initial state, or indeed visit any
state twice. Another natural question to ask is whether a
suitable generalization of periodic strategies suffice for BMS.
Static strategies are BMS analog of periodic strategies that
behave in the same manner irrespective of the choices of the
environment, i.e. for a static strategy σ we have that σ(ρ) =
σ(ρ′) for all runs ρ = 〈x0, (m1, t1), ~r1, x1, . . . , (mk, tk), ~rk, xk〉
and ρ′ = 〈x0, (m1, t1), ~r′1, x

′
1, . . . , (mk, tk), ~r′k), x′k〉. Static

strategies are often desirable in the settings where scheduler
can not observe the state of the system. However, we ob-
serve [1] that except for the degenerate cases when the BMS
contains a subset of modes which induce a safe CMS, sched-
uler can never win a game on BMS using static strategies.
We saw an example of this phenomenon in the Introductory
section as Figure 1.(c).

This negative observations imply that to solve the schedu-
lability games for BMS one needs to take a different ap-
proach. In the rest of this section, we define the notion of
H-closed polytope and show that if such a polytope exists,
then for any convex set S we can construct a winning dy-
namic strategy which takes its decisions only based on the
last state. We also extend the notion of safety of a CMS to
BMS. We say that a BMS H is safe if all instances of its
extreme-rate MMS Ext(H) are safe, i.e. all H ∈ JExt(H)K
satisfy (1). Finally, we connect (Lemmas 5 and 6) the exis-
tence of H-closed polytope with the safety of the BMS.

Algorithm 1: Dynamic scheduling algorithm

Input: BMMS H, starting state x0
Output: non-Terminating Scheduling Algorithm

1 γ := the shortest distance of x0 from borders of S;
2 P := H-closed polytope s.t. P ⊆ Bγ(x0) and x0 ∈ P ;
3 foreach c ∈ vert(P ) do
4 foreach mode m ∈M do
5 foreach extreme rate vector ~r ∈ m do
6 t~r = max{t : c+ ~r · t ∈ P};
7 δm = min~r∈m t~r;

8 m∗ = arg maxm∈M δm; ∆c = δm∗ ; mc = m∗;

9 while true do
10 Store current state as x;
11 Find (λc ≥ 0)c∈vert(P ) where x =

∑
c∈vert(P ) λc · c;

12 Find c∗ = arg maxc∈vert(P ) λc ·∆c;

13 Schedule mode mc∗ for λc∗ ·∆c∗ ;

Dynamic Scheduling Algorithm. For a BMS H we
call a convex polytope P H-closed, if for every vertex of P
there exists a mode m such that all the rate vectors of m
keep the system in P , i.e. for all c ∈ vert(P ) there exists
m ∈ M and τ ∈ R>0 such that for all ~r ∈ R(m) we have
that c+~r · t ∈ P for all t ∈ [0, τ ]. An example of a H-closed
polytope is given in the Example 4.

Assume that for any γ > 0 and x0 we are able to com-
pute a H-closed polytope which is fully contained in Bγ(x0)
and contains x0. If this is the case, we can use Algorithm 1
to compute a dynamic scheduling strategy. The idea of the
algorithm is to build a H-closed polytope which contains
the initial state and is fully contained within S, and then
construct the strategy based on the modes safe at the ver-
tices of the polytope. The correctness of the algorithm is
established by the following proposition.

Proposition 4. If there exists an H-closed polytope and
it can be effectively computed then Algorithm 1 implements
a winning dynamic strategy for the scheduler.

Proof. Assume that there exists an H-closed polytope
and we have an algorithm to compute it. Observe that the
strategy is non-Zeno, because λc∗ ·∆c∗ on line 13 is bounded
from below by 1

|vert(P )| · minc∈vert(P ) ∆c for any point of P ,

and ∆c are positive by their construction and the definition
of the H-closed polytope. Next, we need to show that under
the computed strategy we never leave the convex polytope
P . For a state x which is of the form

∑
c∈vert(P ) λc · c, the

successor state will be x′ = (
∑
c∈vert(P ) λc · c) + λc∗ ·∆c∗ · ~r

where ~r is the rate picked by the environment. We can
rewrite x′ as (

∑
c∈vert(P )\{c∗} λc ·c)+λc∗ ·(c∗+~r ·∆c∗). Since

c∗ + ~r ·∆c∗ ∈ P , we get that x′ is a convex combination of
points in P and hence lies in P .

Constructing H-Closed Polytope. We will next show
how to implement line 2 of Algorithm 1. We give necessary
and sufficient conditions for existence of H-closed polytopes
in the following two lemmas. The first lemma shows that an
H-closed polytope exists if and only if for any hyperplane
(given by its normal vector ~v) there exists a mode m such
that all its rates stay at one side of the hyperplane.

Lemma 5. For a BMS H, a state x0 and γ > 0, there is a
H-closed polytope P ⊆ Bγ(x0) with x0 ∈ P if and only if for
every ~v there is a mode m such that ~v · ~r ≥ 0 for all ~r ∈ m.
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Figure 4: Constructing closed convex polytope

Proof. Let us fix a BMS H = (M,n,R). The proof is in
two parts. For⇒, assume that the system is schedulable but
there exists a vector ~v such that for all modes m ∈M there
is a rate ~rm ∈ m where ~v · ~rm < 0. It implies that if the
adversary fixes the rates ~rm whenever the scheduler chooses
m, then the system moves in the direction of vector −~v (i.e.
for all d a state x will be reached such that ~v · x < d), and
hence for any bounded safety set and non-Zeno strategy sys-
tem will leave the safety set. This contradicts with existence
of H-closed polytope implying winning scheduler strategy.

To prove the other direction, let R= {~r1, . . . , ~rN} be the
set of rates occurring in modes of the extreme-rate MMS of
H, i.e. R = {R′(m) : (M,n,R′) ∈ JExt(H)K,m ∈M}. We
claim the following to be the H-closed polytope:

P := {x0 +D ·
N∑
i=1

~ri · pi | pi ∈ [0, 1]}, (2)

whereD = γ/
∑N
i=1 ‖~ri‖. Notice that P is a convex polytope

since it is a convex hull of points x0+D ·
∑N
i=1 ~ri · pi where

pi ∈ {0, 1}. Also, due to our choice of D, P ⊆ Bγ(x0), and
x0 ∈ P . For the sake of contradiction we assume that for
every ~v there is a mode m such that all rates ~r of m satisfy
~v · ~r ≥ 0, but at least one corner c of P does not satisfy the
defining condition of H-closed polytope, i.e. for all modes i
there is a rate vector ~ri satisfying

c+ t · ~ri 6∈ P for all t > 0 (3)

Let us fix such corner c. By the supporting hyperplane the-
orem there is a vector ~v such that, for some d:

~v · c = d (4)

~v · x > d, for all x ∈ P \ {c} (5)

i.e. ~v is supporting P on c. Let us fix some mode m such
that for all rates ~r of m we have ~v · ~r ≥ 0. Notice that this
exists by the assumption. Let ~ri be a rate of m satisfying (3).

By the definition of P the point c, a corner of P , is of
the form x0 + D ·

∑N
j=1 ~rj · pj for some pj ∈ [0, 1] where

1 ≤ j ≤ N and ~rj ∈ R. We necessarily have pi = 1, because
if pi = 1 − δ for some δ > 0, then c + D · ε · ~ri ∈ P for
any ε ≤ δ and that will contradict with (3). Notice that for

all k ∈ [0, 1] the points yk = x0 + D ·
∑N
j=1 p

k
j · ~rj , where

pkj = pj if j 6= i and pkj = k otherwise, are all in P . Also
notice that point y1 = c and for each k ∈ [0, 1] we have that
yk = y0 + D · k · ~ri. In particular, c = y1 = y0 + D · ~ri. It

follows that c−D · ~ri = y0 ∈ P . W.l.o.g. we assume ~ri 6= ~0.
Hence, from (5) we get ~v · (c −D · ~ri) > d. By rearranging
we get ~v · c − D · ~v · ~ri > d, and because ~v · c = d, we get
D · ~v · ~ri < 0 which contradicts that ~v · ~ri ≥ 0.

Figures 4.(b)-(c) show how to constructH-closed polytope
from (2) for the BMS in Figure 4.(a), while Figure 4.(d)

Algorithm 2: Schedulability for Interior States.

Input: BMS H, x ∈ Rn and γ > 0
Output: H-closed polytope P contained in Bγ(x) s.t.

x ∈ P , No if there is no H-closed polytope.
1 foreach CMS H = (M,n,R) of JExt(H)K do
2 Check if there is a satisfying assignment for:∑

m∈M R(m) · tm = ~0∑
m∈M tm = 1 (6)

tm ≥ 0 for all m ∈M .

if no satisfying assignment exists then return NO
3 R := {~r1, ~r2, ..., ~rN} be the set of rate vectors of

JExt(H)K;
4 return the polytope given as convex hull of the points

x+ γ∑N
i=1 ‖~ri‖

·
∑N
i=1 ·pi~ri where pi ∈ {0, 1};

shows that for every corner of the constructed polytope there
is a mode that keeps the system inside the polytope.

The following lemma finally gives an algorithmically check-
able characterization of existence of H-closed polytope.

Lemma 6. Let H = (M,n,R) be a BMS. We have that
for every ~v there is a mode m such that ~v · ~r ≥ 0 for all
~r ∈ m if and only if H is safe.

Proof. In one direction, let us assume that (M,n,R) ∈
JExt(H)K is not safe, and let Q = {R(m) | m ∈ M}. Then
~0 is not a convex combination of points in Q, and so by
supporting hyperplane theorem applied to ~0 and the convex
hull of Q there is ~v and d > 0 such that ~v · R(m) ≥ d for
all m ∈M . Since R(m) ∈ R(m), this direction of the proof
is finished. In the other direction, let ~v be such that there
is ~r ∈ R(m) for all m ∈ M such that ~v · ~r < 0. Then by
convexity of R(m) there is ~rm ∈ vert(R(m)) with the same
properties, and we can create a CMS (M,n,R) ∈ JExt(H)K
by putting R(m) = ~rm. This CMS is not safe, because for
any strategy, for a sufficiently large time bound a point x
will be reached such that (−~v) · x is arbitrarily large, and
hence any convex polytope will be left eventually.

Combining Proposition 4 with Lemmas 5 and 6 we get the
following main result.

Theorem 7. For every BMS H and the starting state in
the interior of a convex and bounded safety set we have that
scheduler has a winning strategy if and only if H is safe.

Theorem 7 allows us to devise Algorithm 2 and at the same
time give its correctness. The reader may have noticed that
Theorem 7 bears a striking resemblance to Theorem 3 for



Algorithm 3: Schedulability For Arbitrary States

Input: BMS H, a safety set S given by inequalities

A~x ≤ ~b, and a starting state x0.
Output: Yes, if the scheduler wins, No otherwise.

1 Compute the sequence I = 〈I1, I2, . . . , I`〉;
2 Schedulable = ∅, UnSchedulable = ∅;
3 foreach I in I do
4 if I ′ ⊆ I and I ′ ∈ UnSchedulable then
5 UnSchedulable := UnSchedulable ∪ {I};
6 if ∃m ∈M with only internal rates then
7 Schedulable := Schedulable ∪ {(I,⊥)};
8 else
9 Construct HI ;

10 if HI is safe and PI is HI-closed polytope then
11 Schedulable := Schedulable ∪ {(I, PI)} ;
12 else UnSchedulable:=UnSchedulable∪{I};
13 if ∃I ∈ Schedulable and x0 |= S|I then return Yes;
14 else return No;

CMS, since the former boils down to checking safety of ex-
ponentially many CMS instances. Note, however, that the
proof here is much more delicate. While in the case of CMS
satisfiability of (1) gives immediately a periodic winning
strategy, for BMS this is not the case: even when every in-
stance in JExt(H)K is safe, we cannot immediately see which
modes should be used by the winning strategy; this requires
the introduction of H-closed polytopes.

3.2 General Case
In this section we present Algorithm 3 that analyses schedu-

lability of arbitrary starting states in S. Notice that a start-
ing state on the boundary of the safety polytope may lie
on various faces (planes, edges etc.) of different dimensions.
The scheduler may have a winning strategy using modes that
let the system stay on some lower dimension face, or there
may exists a winning strategy where scheduler first reaches a
face of higher dimension where it may have a winning strat-
egy. Before we describe steps of our algorithm, we need to
formalize a notion of (open) faces of a convex polytope, a
concept critical in Algorithm 3.

Let Ax ≤ b be the linear constraints specifying a con-
vex polytope S. We specify a face of S by a set I ⊆
{1, . . . , rows(A)}. We write x |= S|I , and we say that x
satisfies S|I , if and only if A1,jx(1) + · · ·An,jx(n) = bj for
all j ∈ I, and A1,jx(1) + · · ·An,jx(n) < bj for all j 6∈ I,
i.e. exactly the inequalities indexed by numbers from I are
satisfied tightly. Note that every point of S satisfies S|I for
exactly one I. Although there are potentially uncountably
many states in every face of S, the following Lemma implies
that it is sufficient to analyze only one state in every face.

Lemma 8. For a BMS, a convex polytope S, and for all
faces I of S, either none or all states satisfying S|I are
schedulable. Moreover, if I ′⊆I and no point satisfying S|I′
is schedulable, then no point satisfying S|I is schedulable.

Let I = 〈I1, I2, . . .〉 be the sequence of all faces such that
S|Ii is satisfied by some state, ordered such that if Ii ⊆ Ij ,
then i ≤ j. We call a mode m unusable for I if there is
x |= S|I and ~r ∈ R(m) such that x+ ~r · δ 6∈ S for all δ > 0.
The rate ~r satisfying this condition is called external. A
rate ~r is called internal if for any x such that x |= S|I there

is δ > 0 and j such that Ij ⊆ I and x + ~r · ε |= S|Ij for
all 0 < ε ≤ δ. For a BMS H and face I we define a BMS
HI = (M ′, n,R′) where M ′ contains all modes of M which
are not unusable for I, and R′(m) is the set of non-internal
rates of R(m).

Theorem 9. For every BMS H, a convex polytope safety
set S, and a starting state x0 ∈ S, Algorithm 3 decides
schedulability problem for H. Moreover, one can construct
a dynamic winning strategy using the set Schedulable.

Proof. (Sketch.) Let 〈I1, I2, . . .〉 be all sets such that
S|Ii is satisfied by some state, ordered such that if Ii ⊆ Ij ,
then i ≤ j. Algorithm 3 analyzes the sets Ii, determining
whether the points satisfying S|Ii are schedulable (in which
case we call Ii schedulable), or not. Let us assume that I
is the first element of the sequence 〈I1, I2 . . .〉 which has not
been analyzed yet. If there is I ′ such that I ′ ⊆ I and I ′ is
already marked as not schedulable, then by Lemma 8 one
can immediately mark I as non-schedulable. If all modes
are unusable, then no point x such that S|I is schedulable.
Notice that if there exists an internal rate to face Ij then it
must necessarily be the case that Ij is schedulable. If there
is a mode m which only has internal rates, there is a winning
strategy σ for the scheduler which starts by picking m and
a sufficiently small time interval t. This will make sure that
after one step a point is reached which is already known to
be schedulable and scheduler has a winning strategy.

If none of the previous cases match, the algorithm creates
a BMS HI and applies Theorem 7 to the system HI . If there
is a HI -closed polyhedron P , we know that I is schedula-
ble and give a winning scheduler’s strategy σx for any point
x |= S|I as follows. Let d > 0 be a number such that for
any y |= Ij where j > i we have ‖x, y‖ > d, i.e. d is cho-
sen so that all points of S contained in Bd(y) satisfy S|I′
for I ′ ⊆ I (this follows from the properties of the sequence
I1, I2, . . . and because S is a convex polytope). The strat-
egy σx works as follows. If all points in the history satisfy
S|I , σx mimics σHI ,x,d. Otherwise, once a point y 6|= S|I is
reached, the strategy σx starts mimicking σy. Note that the
strategy σy is indeed defined by our choice of d and poly-
topes stored in Schedulable set. Although the strategy we
obtain in this way may potentially be non-positional, it is a
mere technicality to turn it into a positional one.

If HI is not schedulable for any set and any point, then
it is easy to see that for no point satisfying S|I there is a
schedulable strategy. Indeed, for any strategy σ, as long
as σ picks the modes from M ′, the environment can play a
counter-strategy showing that HI is not schedulable. When
any mode from m ∈M \M ′ is used by σ, we have that m is
unusable and so the environment can pick a rate witnessing
m’s unusability: this will ensure reaching a point outside S.
Hence, we can mark I as unschedulable.

4. COMPLEXITY
In this section we analyze complexity of the schedulability

problem for BMS. We begin by showing that in general it
is co-NP-complete, however it can be solved in polynomial
time if the system has only two variables.

4.1 General Case

Proposition 10. The schedulability problem for BMS and
convex polytope safety sets is in co-NP.



Proof (Sketch). We show that when the answer to the
problem of schedulability of a point x is No, there is a falsifier
that consists of two components:

− a set I⊆{1, . . . , rows(A)} s.t. x |= S|I′ for I ′ ⊇ I, and

− a rate combination (~rm)m∈M such that there is a set of
modes External ⊆ M where every ~rm for m ∈ External
is external for I; and the rates ~rm for m 6∈ External are
neither external, nor internal, and there is a vector ~v
such that ~v · ~rm > 0 for all m 6∈ External.

Let us first show that the existence of this falsifier implies
that the answer to the problem is No. Indeed, as long as a
strategy of a scheduler keeps using modes m 6∈ External, the
environment can pick the rates ~rm, and a point outside of S
will be reached under any non-Zeno strategy, because S is
bounded. If the strategy of a scheduler picks any mode m ∈
External, the environment can win immediately by picking
the external rate ~rm and getting outside of S.

On the other hand, let us suppose that the answer to the
problem is No, and let I ′ be such that x |= S|I′ . Then
consider any minimal non-schedulable I ⊆ I ′. We put to
External all modes which are unusable, and for every such
mode, we pick a rate that witnesses it. Further, there is not
any mode with only internal modes and the BMS HI must
be non-schedulable (otherwise I would be schedulable, or
would not be minimal non-schedulable). By Proposition 7
there is an unsafe instance H = (M ′, n,R) ∈ JExt(HI)K.
Since M ′ contains all the modes whose indices are not in
External, we can pick the rate from this unsafe instance and
we are finished.

Proposition 11 (co-NP hardness). The schedulabil-
ity problem for MMS is co-NP hard.

Proof (Sketch). The proof for co-NP hardness uses a
reduction from the classical NP-complete problem 3-SAT.
For a SAT instance φ we construct a MMS Hφ such that
φ is satisfiable if and only if Hφ is not schedulable for any
starting state and bounded convex safety set. . Consider
a SAT instance φ with k clauses and n variables denoted
as x1, . . . , xn. The corresponding MMS Hφ = (M,n,R) is
such that its set of modes M = {m1, . . . ,mk} corresponds
to the clauses in φ, and variables are such that variable i
corresponds to variable xi of φ. For each variable xi we
define vectors ~pi and ~ni such that ~pi(i) = 1, ~ni(i) = −1,
and ~pi(j) = ~ni(j) = 0 if i 6= j. The rate-vector function
R is defined such that for each mode mj and for each SAT
variable xi we have that ~pi ∈ R(mj) if xi occurs positively in
clause j, and ~ni ∈ R(mj) if the variable xi occurs negatively
in clause j. The crucial property here is that there is no
vector that can have a positive dot product with both ~pi
and ~ni, which allows us to map unsafe rate combinations to
satisfying valuations and vice versa.

The following corollary is immediate.

Corollary 12 (co-NP hardness result for BMS).
The schedulability problem for BMS is co-NP hard.

4.2 BMS with two variables
For the special case of BMS with two variables, we show

that the schedulability problem can be solved efficiently.

Theorem 13. Schedulability problems for BMS with con-
vex polytope safety sets are in P for systems with 2 variables.

Algorithm 4: Decide if a two dimension BMS is safe.

Input: BMS H with two variables.
Output: Return Yes, if H is safe and No otherwise.

1 Set R to the set of extreme rate vectors of H;
2 foreach ~r⊥ ∈ R do
3 Set ~u to be a perpendicular vectors to ~r⊥;
4 foreach ~v ∈ {~u,−~u} do
5 if for each m ∈M there is ~r ∈ m s.t. ~v · ~r > 0

or there is p > 0 s.t. ~r = p~r⊥ then return No;
6 return Yes

The rest of the section is devoted to the proof of this the-
orem. The following lemma shows that to check whether a
set of rate vectors R = {~r1, ..., ~rk} is unsafe it is sufficient to
check properties of vectors ~u perpendicular to some vector
of R. This observation yields a polynomial time algorithm.

Lemma 14. Let R be a set of vectors. There is ~v such
that ~v · ~r > 0 for all ~r ∈ R if and only if there are ~u and
~r⊥ ∈ R satisfying ~u ·~r⊥ = 0 and for all ~r ∈ R either ~u ·~r > 0
or ~r = p · ~r⊥ for some p > 0.

Proof (Sketch). To obtain ~v we keep changing ~v until
it becomes perpendicular to some vector in R. On the other
hand, ~v is obtained from ~u by making a sufficiently small
change to ~u.

Example 6. Consider an unsafe set of rate vectors R =
{~r1, ~r2, ~r3, ~r4} shown in the following figure in the left side.

~r1

~r2

~v

~u

~r3

~r4

~r1~r2

~r3

All the rate vectors are on the right side of line x = 0 and
vector ~v has strictly positive dot product with all of them. As
it can be seen in the figure, all the rate vectors are on right-
hand side of the line passing through ~r1 and there exists ~u
perpendicular to ~r1 such that ~v′ · ~ri ≥ 0 for all ~ri ∈ R.
Observe that adding a rate vector ~r5 = −~r1 to R makes this
set of rate vectors safe, and none of rate vectors would satisfy
the conditions of Lemma 14.

However, the figure on the right side shows a safe set of
rate vectors. As is clear to see that no rate vector has the
others on its one side.

The following corollary implies that we can use Lemma 14
to check the safety of a BMS.

Corollary 15. A BMS H with two variables is not safe
if and only if there exists a rate vector ~r⊥ in one of the modes
of system and vector ~v perpendicular to it, such that for all
modes m ∈ H: (i) there exists ~r ∈ m such that ~v · ~r > 0; or
(ii) ~v · ~r = 0 and ~r = p · ~r⊥ for some p > 0.

Algorithm 4 checks whether all the combinations are safe
in polynomial time; it chooses a rate vector ~r⊥ at each step
and tries to find an unsafe combination using the result of
Corollary 15. Note that for any non-zero vector ~r⊥ in two di-
mensions there are only two vectors which we need to check.



Although there are infinitely many vectors ~v which satisfy
conditions of Corollary 15, the conditions we are checking
are preserved if we multiply ~v by a positive scalar.

5. DISCRETE SCHEDULABILITY
In this section we discuss the discrete schedulability prob-

lem, in which a scheduler can only make decisions at integer
multiplies of a specified clock period ∆ and the environment
has finitely many choices of rates. Formally, given a MMS
H, a closed convex polytope S as safety set, an initial state
x0 ∈ S, the discrete schedulability problem is to decide if
there exists a winning strategy of the scheduler where the
time delays are multiples of ∆.

Theorem 16. Discrete schedulability problem is complete
for EXPTIME.

Proof. EXPTIME-membership of the problems is shown
via discretization of the state space of H. Since the set S is
given as a bounded polytope, the size of the discretization
can be shown to be at most exponential in the size of H
and ∆, and since the safety games on a finite graph can be
solved in P, EXPTIME membership follows. The hardness
is shown by a reduction from the countdown games [9].

We turn the discrete schedulability problem to an opti-
mization problem, by asking to find supremum of all ∆ for
which the answer to the discrete schedulability problem is
yes. We prove the following, which also improves a result
of [2] where only an approximation algorithm was given.

Theorem 17. Given a MMS H, a closed convex polytope
S and an initial state x0, there is an exponential time al-
gorithm which outputs the maximal ∆ for which the answer
to the discrete schedulability problem is Yes. For a CMS the
algorithm can be made to run in polynomial space.

Proof (Sketch). We exploit the fact that as the clock
period ∆ increases, all the points of the discretization move
continuously towards infinity, except for the initial point.
This further implies that for ∆ to be maximal, there must
be a point of the discretization which lies on the boundary of
S, since otherwise we could increase ∆ by some small num-
ber, while preserving the existence of a safe scheduler. By
using a lower bound on ∆ from Section 3 (obtained as a by-
product of the construction of a dynamic strategy), there are
only exponentially many candidates for such points, which
gives us exponentially many candidates for maximal ∆ to
consider, and we can check each one by Theorem 16. For
the PSPACE bound we don’t enumerate the points, but
guess them nondeterministically in polynomial space, and
utilize [2, Theorem 10] instead of Theorem 16.

6. CONCLUSION
We investigated systems that comprise finitely many real-

valued variables whose values evolve linearly based on a rate
vector determined by strategies of the scheduler and the en-
vironment. We studied an important schedulability prob-
lem for these systems, with application to energy scheduling,
that asks whether scheduler can make sure that the values of
the variables never leave a given safety set. We showed that
when the safety set is a closed convex polytope, existence of
non-Zeno winning strategy for scheduler is decidable for any
arbitrary starting state. We also showed how to construct

such a winning strategy. On complexity side, we showed
that the schedulability problem is co-NP complete in gen-
eral, but for the special case where the system has only two
variables, the problem can be decided in polynomial time.
Future research includes schedulability problem with respect
to more expressive higher-level control objectives including
temporal-logic based specification and bounded-rate multi-
mode systems with reward functions.
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