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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.
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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

1. Unionn AUB={w : we Aorw € B}

2. Intersection: ANB={w : we Aandw € B}
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Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

1. Unionn AUB={w : we Aorw € B}

2. Intersection: ANB={w : we Aand w € B}

3. Complementation: A = {w : w ¢ A}

Ashutosh Trivedi -2 of 13
Ashutosh Trivedi Regular Languages Closure Properties



Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:

1. Unionn AUB={w : we Aorw € B}

2. Intersection: ANB={w : we Aand w € B}

3. Complementation: A = {w : w ¢ A}

4. Concatenation: AB = {wv : w € Aand v € B}
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Regular Languages: Properties

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:
1. Unionn AUB={w : we Aorw € B}
. Intersection: ANB={w : we Aandw € B}
. Complementation: A = {w : w ¢ A}
. Concatenation: AB = {wv : we€ Aand v € B}
. Closure (Kleene Closure, or Star):
A* ={wiwy ... wy : k> 0and w; € A}. In other words:

A* = UizoAi
where A? = (), Al = A, A2 = AA, and so on.
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Regular Languages: Properties

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:
1. Unionn AUB={w : we Aorw € B}
. Intersection: ANB={w : we Aandw € B}
. Complementation: A = {w : w ¢ A}
. Concatenation: AB = {wv : we€ Aand v € B}
. Closure (Kleene Closure, or Star):
A* ={wiwy ... wy : k> 0and w; € A}. In other words:

A* = UiZOAi

where A? = (), Al = A, A2 = AA, and so on.
Define the notion of a set being closed under an operation (say, N and x).

Q1 WO DN
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Regular Languages: Properties

Definition (Regular Languages)
A language is called regular if it is accepted by a finite state automaton.

Let A and B be languages (remember they are sets). We define the
following operations on them:
1. Uniont AUB={w : we Aorw € B}
Intersection: ANB={w : we Aand w € B}
Complementation: A = {w : w ¢ A}
Concatenation: AB = {wv : w € Aand v € B}
Closure (Kleene Closure, or Star):
A* ={wiwy ... wy : k> 0and w; € A}. In other words:

A* = UiZOAi
where A? = (), Al = A, A2 = AA, and so on.

Gl LD

Define the notion of a set being closed under an operation (say, N and x).

Theorem

The class of regular languages is closed under union, intersection,
complementation, concatenation, and Kleene closure.
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Closure under Union

Lemma
The class of regular languages is closed under union.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.

Prove that for regular languages L; and L, that L; U L, is regular.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Prove that for regular languages L; and L, that L; U L, is regular.

Let M1 = (Sl, E, (51, Sl,F1) and MZ — (Sz, E, (52,52,1:2) be DFA for L1
and L,.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.

Prove that for regular languages L; and L, that L; U L, is regular.

Let M1 = (51, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be DFA for L1
and L,.
DFA Construction: (the Product Construction)
We claim the DFA M = (S1 X S, %, 0, (51,52), F) where
0((s1,52),a) = (61(s1,4), 02(s2,a)) forall s; € Sy, 52 € Sz, and a € &,
F= (F1 X Sz) U (51 X Fz).
accepts Ly U Ly i.e. L(M) = L(M;) U L(M,).
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.

Prove that for regular languages L; and L, that L; U L, is regular.
Let M1 = (51, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be DFA for L1
and L,.
DFA Construction: (the Product Construction)
We claim the DFA M = (S1 X S, %, 0, (51,52), F) where
0((s1,52),a) = (61(s1,4), 02(s2,a)) forall s; € Sy, 52 € Sz, and a € &,
F = (F1 X Sz) U (51 X Fz).
accepts Ly U Ly i.e. L(M) = L(M;) U L(M,).
Proof of correctness:
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.

Prove that for regular languages L; and L, that L; U L, is regular.
Let M1 = (51, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be DFA for L1
and L,.
DFA Construction: (the Product Construction)
We claim the DFA M = (S1 X S, %, 0, (51,52), F) where
0((s1,52),a) = (61(s1,4), 02(s2,a)) forall s; € Sy, 52 € Sz, and a € &,
F= (F1 X Sz) U (51 X Fz).
accepts Ly U Ly i.e. L(M) = L(M;) U L(M,).
Proof of correctness: For every string w, we have

1L é((51752)7w) = (51(517 w)752(527w)) .
2. 6((s1,52),w) € Fiff 81(s1,w) € F or 65(s2, w) € F.
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Closure under Union

Lemma
The class of regular languages is closed under union.

Proof.
Prove that for regular languages L; and L, that L; U L, is regular.
Let M1 = (51, E, (51, 51, Fl) and MZ — (Sz, E, (52, S2, Fz) be DFA for L1
and L,.

DFA Construction: (the Product Construction)
We claim the DFA M = (S1 X S, %, 0, (51,52), F) where

0((s1,52),a) = (61(s1,4), 02(s2,a)) forall s; € Sy, 52 € Sz, and a € &,
IF= (F1 X Sz) U (51 X Fz).

accepts Ly U Ly i.e. L(M) = L(M;) U L(M,).
Proof of correctness: For every string w, we have

1L é((51752)7w) = (51(517 w)752(527w)) .
2. 6((s1,52),w) € Fiff 81(s1,w) € F or 65(s2, w) € F.

L1 UL, is regular since there is a DFA accepting this language.
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Closure under Union via RegEx

Lemma

The class of regular languages is closed under union.

Proof.

Prove for arbitrary regular languages L; and L, that L; UL is a
regular languages.

Let E; and E; be REGEX accepting L; and L.
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Closure under Union via RegEx

Lemma

The class of regular languages is closed under union.

Proof.

Prove for arbitrary regular languages L; and L, that L; UL is a
regular languages.

Let E; and E; be REGEX accepting L; and L.

REGEX Construction:

We claim the REGEX
E=E +E

accepts Ly U Ly, i.e. L(E; + Ep) = L(E1) U L(Ey).
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Closure under Union via RegEx

Lemma

The class of regular languages is closed under union.

Proof.

Prove for arbitrary regular languages L; and L, that L; UL is a
regular languages.

Let E; and E; be REGEX accepting L; and L.
REGEX Construction:
We claim the REGEX
E=E +E
accepts Ly U Ly, i.e. L(E; + Ep) = L(E1) U L(Ey).
Proof of correctness: trivial by definition of regular expressions.
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Closure under Union via RegEx

Lemma

The class of regular languages is closed under union.

Proof.

Prove for arbitrary regular languages L; and L, that L; UL is a
regular languages.

Let E; and E; be REGEX accepting L; and L.
REGEX Construction:
We claim the REGEX

E=E +E
accepts Ly U Ly, i.e. L(E; + Ep) = L(E1) U L(Ey).
Proof of correctness: trivial by definition of regular expressions.
L1 UL, is regular since there is a REGEX E; + E; accepting this
language.

O
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Closure under Complementation

Lemma
The class of regular languages is closed under complementation.

Proof.

Prove for arbitrary regular language L that L is a regular languages.
Let M = (S, %, 6,50, F) be a DFA accepting L.
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Closure under Complementation

Lemma
The class of regular languages is closed under complementation.

Proof.

Prove for arbitrary regular language L that L is a regular languages.
Let M = (S, %, 6,50, F) be a DFA accepting L.

DFA Construction:
We claim the DFA

M = (8,%,6,80,F') where FF = Q\ F

accepts L, i.e. LIM') = {w : w & L(M)}.
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Closure under Complementation

Lemma
The class of regular languages is closed under complementation.

Proof.
Prove for arbitrary regular language L that L is a regular languages.
Let M = (S, %, 6,50, F) be a DFA accepting L.

DFA Construction:
We claim the DFA

M/ = (572,5,50,1:/) WhereF/ = Q\F

accepts L, i.e. LIM') = {w : w & L(M)}.
Proof of correctness: For every string w, we have
1. 8(so, w) & Fiff §(so, w) € F'.
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Closure under Complementation

Lemma
The class of regular languages is closed under complementation.

Proof.

Prove for arbitrary regular language L that L is a regular languages.
Let M = (S, %, 6,50, F) be a DFA accepting L.

DFA Construction:
We claim the DFA

M/ = (572,5,50,1:/) WhereF/ = Q\F

accepts L, i.e. LIM') = {w : w & L(M)}.
Proof of correctness: For every string w, we have
1. 8(so, w) & Fiff §(so, w) € F'.
L is regular since there is a DFA accepting this language.
0
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Closure under Intersection

Lemma
The class of regular languages is closed under intersection.
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Closure under Intersection

Lemma
The class of regular languages is closed under intersection.

Proof.
DFA based via product construction,
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Closure under Intersection

Lemma
The class of regular languages is closed under intersection.

Proof.
DFA based via product construction,
Using De Morgan’s laws.
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Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.
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Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.

Proof.

Prove for arbitrary regular languages L; and L, that L;.L; is a regular
languages.

Let E; and E; be REGEX accepting L; and L.
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Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.

Proof.

Prove for arbitrary regular languages L; and L, that L;.L; is a regular
languages.

Let E; and E; be REGEX accepting L; and L.

REGEX Construction:

We claim the REGEX
E=E.E

accepts Ly.Ly, i.e. L(E1.Ey) = L(E;1).L(Ey).
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Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.

Proof.

Prove for arbitrary regular languages L; and L, that L;.L; is a regular
languages.

Let E; and E; be REGEX accepting L; and L.
REGEX Construction:
We claim the REGEX

E=E.E,
accepts Ly.Ly, i.e. L(E1.Ey) = L(E;1).L(Ey).

Proof of correctness: trivial by definition of regular expressions.
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Closure under Concatenation

Lemma

The class of regular languages is closed under concatenation.

Proof.

Prove for arbitrary regular languages L; and L, that L;.L; is a regular
languages.

Let E; and E; be REGEX accepting L; and L.
REGEX Construction:
We claim the REGEX
E=E.E
accepts Ly.Ly, i.e. L(E1.Ey) = L(E;1).L(Ey).
Proof of correctness: trivial by definition of regular expressions.
Li.L, is regular since there is a REGEX E;.E; accepting this language.

[
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Closure under Kleene Star Operation

Lemma
The class of regular languages is closed under Kleene star operation.

Proof.
Prove for arbitrary regular language L that L* is a regular languages.
Let E be REGEX accepting L.
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Closure under Kleene Star Operation

Lemma

The class of regular languages is closed under Kleene star operation.

Proof.
Prove for arbitrary regular language L that L* is a regular languages.
Let E be REGEX accepting L.

REGEX Construction:
We claim the REGEX
E/ — E*

accepts L, i.e. L(E*) = (L(E))*.
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Closure under Kleene Star Operation

Lemma

The class of regular languages is closed under Kleene star operation.

Proof.
Prove for arbitrary regular language L that L* is a regular languages.
Let E be REGEX accepting L.
REGEX Construction:
We claim the REGEX
E' =E*
accepts L, i.e. L(E*) = (L(E))*.
Proof of correctness: trivial by definition of regular expressions.
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Closure under Kleene Star Operation

Lemma

The class of regular languages is closed under Kleene star operation.

Proof.
Prove for arbitrary regular language L that L* is a regular languages.
Let E be REGEX accepting L.
REGEX Construction:
We claim the REGEX
E' =E*
accepts L, i.e. L(E*) = (L(E))*.
Proof of correctness: trivial by definition of regular expressions.
L* is regular since there is a REGEX E* accepting this language.

[
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Closure under Homomorphism

A homomorphism is just substitution of strings for letters.
Formally a homomorphism is a function /1 : ¥ — I'*.
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Closure under Homomorphism

A homomorphism is just substitution of strings for letters.
Formally a homomorphism is a function /1 : ¥ — I'*.
Homomorphism can be extended from letters to strings h:¥* —T*
in a straightforward manner:

5 € ifw=e
hlw) = {fl(w)h(a) ifw=uxa
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Closure under Homomorphism

A homomorphism is just substitution of strings for letters.
Formally a homomorphism is a function /1 : ¥ — I'*.

Homomorphism can be extended from letters to strings h:¥* —T*
in a straightforward manner:

5 € ifw=e
hlw) = {fl(w)h(a) ifw=uxa

We can apply homomorphism to languages as well, for a
homomorphism # and a language L C ¥* we define h(L) C I'* as

h(L) = {h(w) eT* : we L Cx*}.
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Closure under Homomorphism

A homomorphism is just substitution of strings for letters.
Formally a homomorphism is a function /1 : ¥ — I'*.

Homomorphism can be extended from letters to strings h:¥* —T*
in a straightforward manner:

5 € ifw=e
hlw) = {fl(w)h(a) ifw=uxa

We can apply homomorphism to languages as well, for a
homomorphism # and a language L C ¥* we define h(L) C I'* as

h(L) = {h(w) eT* : we L Cx*}.

We define inverse-homomorphism of a language L € I'* as

W L) = {we o* : h(w) € LCT*}.
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Closure under Homomorphism

A homomorphism is just substitution of strings for letters.
Formally a homomorphism is a function /1 : ¥ — I'*.

Homomorphism can be extended from letters to strings h:¥* —T*
in a straightforward manner:

5 € ifw=e
hlw) = {fl(w)h(a) ifw=uxa

We can apply homomorphism to languages as well, for a
homomorphism # and a language L C ¥* we define h(L) C I'* as
h(L) = {h(w) eT* : we L Cx*}.

We define inverse-homomorphism of a language L € I'* as

W L) = {we o* : h(w) € LCT*}.

Theorem

The class of regular languages is closed under homomorphism, and
inverse-homomorphism.
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Closure under Homomorphism

Lemma
The class of regular languages is closed under homomorphism.

Proof.

Prove for arbitrary regular language L and homomorphism £ that
h(L) is a regular languages. Let E be REGEX accepting L.
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Closure under Homomorphism

Lemma
The class of regular languages is closed under homomorphism.

Proof.

Prove for arbitrary regular language L and homomorphism £ that
h(L) is a regular languages. Let E be REGEX accepting L.

REGEX Construction: We claim the REGEX E;, defined inductively as

E,=F,+G, ifE=F+G
E;, = F;,.Gy, if E=F.G
E, = (Fp)* if E=F*

accepts h(L), i.e. L(E,) = h(L(E)).
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Closure under Homomorphism

Proof of correctness: Prove that L(E;) = h(L(E)).
if E = ¢, then

LHS = L(E,) =L(h(e)) = L(¢) = {}
RHS = h(L(E)) = h(L(e)) = h({e}) = {e}-

Similarly for E = §.
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Closure under Homomorphism

Proof of correctness: Prove that L(E;) = h(L(E)).
if E = ¢, then

LHS = L(E,) =L(h(e)) = L(¢) = {}
RHS = h(L(E)) = h(L(e)) = h({e}) = {e}-

Similarly for E = §.
if E = a, then

LHS = L(E,) = L(h(a)) = {h(a)}
RHS = h(L(E)) = h(L(@)) = h({a}) = {h(a)}.

if E=TF + G, then
L(WE) = L((F +G)) = L((F) + h(G)) = L(W(F)) U L(K(G))
h(L(E)) = h(L(F+ G)) = h(L(F)) Uh(L(G)).

From inductive hypothesis both of these expression are equal.
Other inductive cases are similar, and hence omitted.
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Closure under Inverse-Homomorphism

Lemma

The class of regular languages is closed under homomorphism.

Proof.
Let A = (S,T, 4,50, F) be a DFA accepting L and i : ¥ — I'* be an arbitrary
homomorphism. We show that the DFA h—1(A) = (S',%, ', s}, F') defined
below accepts h~(L).

§'=S,sy=s0,F =F

&' (s,a) = 6(s, h(a))
It is an easy induction over w that &' (s, w) = (s, h(w)). Now, since
accepting states of A and h~!(A) are the same, h~!(A) accepts w iff A
accepts h(w). O
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Practice Questions

1. Quotient Language. Fora € ¥ and L C ¥* we define

L/a = {w: wa€el}
a/L = {w :awelL}.
La = {wa:wel}.
al = {aw : wel}

2. min(L) is the set of strings w such that w € L and no proper prefix of
wisin L.

3. max(L) is the set of strings such that w € L and no proper extension
wx € L.

4. INIT(L) is the set of strings w such that for some x we have that
wx € L.

5. HALF(L) is the set of strings w such that for some string x of same size
as w we have that wx € L.
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