CS 208: Automata Theory and Logic

Closure Properties for Regular Languages

Ashutosh Trivedi

Department of Computer Science and Engineering, Indian Institute of Technology Bombay.

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- 1. Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- 2. Intersection: $A \cap B = \{w : w \in A \text{ and } w \in B\}$

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- 1. Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- 2. Intersection: $A \cap B = \{w : w \in A \text{ and } w \in B\}$
- 3. Complementation: $\overline{A} = \{w : w \notin A\}$

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- 1. Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- 2. Intersection: $A \cap B = \{w : w \in A \text{ and } w \in B\}$
- 3. Complementation: $\overline{A} = \{w : w \notin A\}$
- 4. Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- 1. Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- 2. Intersection: $A \cap B = \{w : w \in A \text{ and } w \in B\}$
- 3. Complementation: $\overline{A} = \{w : w \notin A\}$
- 4. Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- 5. Closure (Kleene Closure, or Star):

$$A^* = \{w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$$
 In other words:

$$A^* = \cup_{i>0} A^i$$

where $A^0 = \emptyset$, $A^1 = A$, $A^2 = AA$, and so on.

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- 1. Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- 2. Intersection: $A \cap B = \{w : w \in A \text{ and } w \in B\}$
- 3. Complementation: $\overline{A} = \{w : w \notin A\}$
- 4. Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- 5. Closure (Kleene Closure, or Star):

$$A^* = \{w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$$
 In other words:

$$A^* = \cup_{i \ge 0} A^i$$

where $A^0 = \emptyset$, $A^1 = A$, $A^2 = AA$, and so on.

Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Definition (Regular Languages)

A language is called regular if it is accepted by a finite state automaton.

Let *A* and *B* be languages (remember they are sets). We define the following operations on them:

- 1. Union: $A \cup B = \{w : w \in A \text{ or } w \in B\}$
- 2. Intersection: $A \cap B = \{w : w \in A \text{ and } w \in B\}$
- 3. Complementation: $\overline{A} = \{w : w \notin A\}$
- 4. Concatenation: $AB = \{wv : w \in A \text{ and } v \in B\}$
- 5. Closure (Kleene Closure, or Star):

$$A^* = \{w_1 w_2 \dots w_k : k \ge 0 \text{ and } w_i \in A\}.$$
 In other words:

$$A^* = \cup_{i>0} A^i$$

where $A^0 = \emptyset$, $A^1 = A$, $A^2 = AA$, and so on.

Define the notion of a set being closed under an operation (say, \mathbb{N} and \times).

Theorem

The class of regular languages is closed under union, intersection, complementation, concatenation, and Kleene closure.

Lemma

The class of regular languages is closed under union.

Lemma

The class of regular languages is closed under union.

Proof.

Prove that for regular languages L_1 and L_2 that $L_1 \cup L_2$ is regular.

Lemma

The class of regular languages is closed under union.

- − Prove that for regular languages L_1 and L_2 that $L_1 \cup L_2$ is regular.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be DFA for L_1 and L_2 .

Lemma

The class of regular languages is closed under union.

Proof.

- − Prove that for regular languages L_1 and L_2 that $L_1 \cup L_2$ is regular.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be DFA for L_1 and L_2 .
- DFA Construction: (the Product Construction)

We claim the DFA $M = (S_1 \times S_2, \Sigma, \delta, (s_1, s_2), F)$ where

- $-\delta((s_1,s_2),a) = (\delta_1(s_1,a),\delta_2(s_2,a)) \text{ for all } s_1 \in S_1, s_2 \in S_2, \text{ and } a \in \Sigma,$
- $F = (F_1 \times S_2) \cup (S_1 \times F_2).$
- accepts $L_1 \cup L_2$ i.e. $L(M) = L(M_1) \cup L(M_2)$.

Lemma

The class of regular languages is closed under union.

Proof.

- − Prove that for regular languages L_1 and L_2 that $L_1 \cup L_2$ is regular.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be DFA for L_1 and L_2 .
- DFA Construction: (the Product Construction)

We claim the DFA $M = (S_1 \times S_2, \Sigma, \delta, (s_1, s_2), F)$ where

- $\delta((s_1,s_2),a) = (\delta_1(s_1,a),\delta_2(s_2,a)) \text{ for all } s_1 \in S_1, s_2 \in S_2, \text{ and } a \in \Sigma,$
- $F = (F_1 \times S_2) \cup (S_1 \times F_2).$

accepts $L_1 \cup L_2$ i.e. $L(M) = L(M_1) \cup L(M_2)$.

– Proof of correctness:

Lemma

The class of regular languages is closed under union.

Proof.

- − Prove that for regular languages L_1 and L_2 that $L_1 \cup L_2$ is regular.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be DFA for L_1 and L_2 .
- DFA Construction: (the Product Construction)

We claim the DFA $M = (S_1 \times S_2, \Sigma, \delta, (s_1, s_2), F)$ where

- $\delta((s_1,s_2),a) = (\delta_1(s_1,a),\delta_2(s_2,a)) \text{ for all } s_1 \in S_1, s_2 \in S_2, \text{ and } a \in \Sigma,$
- $F = (F_1 \times S_2) \cup (S_1 \times F_2).$

accepts $L_1 \cup L_2$ i.e. $L(M) = L(M_1) \cup L(M_2)$.

- Proof of correctness: For every string w, we have
 - 1. $\hat{\delta}((s_1, s_2), w) = (\hat{\delta}_1(s_1, w), \hat{\delta}_2(s_2, w))$
 - 2. $\hat{\delta}((s_1, s_2), w) \in F \text{ iff } \hat{\delta}_1(s_1, w) \in F \text{ or } \hat{\delta}_2(s_2, w) \in F.$

Lemma

The class of regular languages is closed under union.

Proof.

- − Prove that for regular languages L_1 and L_2 that $L_1 \cup L_2$ is regular.
- Let $M_1 = (S_1, \Sigma, \delta_1, s_1, F_1)$ and $M_2 = (S_2, \Sigma, \delta_2, s_2, F_2)$ be DFA for L_1 and L_2 .
- DFA Construction: (the Product Construction)

We claim the DFA $M = (S_1 \times S_2, \Sigma, \delta, (s_1, s_2), F)$ where

- $\delta((s_1,s_2),a) = (\delta_1(s_1,a),\delta_2(s_2,a)) \text{ for all } s_1 \in S_1, s_2 \in S_2, \text{ and } a \in \Sigma,$
- $F = (F_1 \times S_2) \cup (S_1 \times F_2).$

accepts $L_1 \cup L_2$ i.e. $L(M) = L(M_1) \cup L(M_2)$.

- Proof of correctness: For every string w, we have
 - 1. $\hat{\delta}((s_1, s_2), w) = (\hat{\delta}_1(s_1, w), \hat{\delta}_2(s_2, w))$
 - 2. $\hat{\delta}((s_1, s_2), w) \in F \text{ iff } \hat{\delta_1}(s_1, w) \in F \text{ or } \hat{\delta_2}(s_2, w) \in F.$
- − $L_1 \cup L_2$ is regular since there is a DFA accepting this language.

Lemma

The class of regular languages is closed under union.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1 \cup L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .

Lemma

The class of regular languages is closed under union.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1 \cup L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .
- REGEX Construction:
 - We claim the REGEX

$$E = E_1 + E_2$$

accepts
$$L_1 \cup L_2$$
, i.e. $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.

Lemma

The class of regular languages is closed under union.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1 \cup L_2$ is a regular languages.
 - Let E_1 and E_2 be REGEX accepting L_1 and L_2 .
- REGEX Construction:
 - We claim the REGEX

$$E = E_1 + E_2$$

- accepts $L_1 \cup L_2$, i.e. $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.
- Proof of correctness: trivial by definition of regular expressions.

Lemma

The class of regular languages is closed under union.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1 \cup L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .
- REGEX Construction:
 - We claim the REGEX

$$E = E_1 + E_2$$

- accepts $L_1 \cup L_2$, i.e. $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.
- Proof of correctness: trivial by definition of regular expressions.
- − $L_1 \cup L_2$ is regular since there is a REGEX $E_1 + E_2$ accepting this language.

Lemma

The class of regular languages is closed under complementation.

- Prove for arbitrary regular language L that \overline{L} is a regular languages.
- Let $M = (S, \Sigma, \delta, s_0, F)$ be a DFA accepting L.

Lemma

The class of regular languages is closed under complementation.

Proof.

- Prove for arbitrary regular language *L* that \overline{L} is a regular languages.
 - Let $M = (S, \Sigma, \delta, s_0, F)$ be a DFA accepting L.
 - DFA Construction:

We claim the DFA

$$M' = (S, \Sigma, \delta, s_0, F')$$
 where $F' = Q \setminus F$

accepts \overline{L} , i.e. $L(M') = \{w : w \notin L(M)\}.$

Lemma

The class of regular languages is closed under complementation.

- Prove for arbitrary regular language L that \overline{L} is a regular languages.
 - Let $M = (S, \Sigma, \delta, s_0, F)$ be a DFA accepting L.
 - DFA Construction:
 - We claim the DFA

$$M' = (S, \Sigma, \delta, s_0, F')$$
 where $F' = Q \setminus F$

- accepts \overline{L} , i.e. $L(M') = \{w : w \notin L(M)\}.$
- Proof of correctness: For every string w, we have
 - 1. $\hat{\delta}(s_0, w) \not\in F \text{ iff } \hat{\delta}(s_0, w) \in F'$.

Lemma

The class of regular languages is closed under complementation.

- Prove for arbitrary regular language *L* that \overline{L} is a regular languages.
 - Let $M = (S, \Sigma, \delta, s_0, F)$ be a DFA accepting L.
 - DFA Construction:
 - We claim the DFA

$$M' = (S, \Sigma, \delta, s_0, F')$$
 where $F' = Q \setminus F$

- accepts \overline{L} , i.e. $L(M') = \{w : w \notin L(M)\}.$
- Proof of correctness: For every string *w*, we have
 - 1. $\hat{\delta}(s_0, w) \not\in F \text{ iff } \hat{\delta}(s_0, w) \in F'.$
- \overline{L} is regular since there is a DFA accepting this language.

Closure under Intersection

Lemma

The class of regular languages is closed under intersection.

Closure under Intersection

Lemma

The class of regular languages is closed under intersection.

Proof.

DFA based via product construction,

Closure under Intersection

Lemma

The class of regular languages is closed under intersection.

- DFA based via product construction,
- Using De Morgan's laws.

Lemma

The class of regular languages is closed under concatenation.

Lemma

The class of regular languages is closed under concatenation.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1.L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .

Lemma

The class of regular languages is closed under concatenation.

Proof.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1.L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .
- REGEX Construction:

We claim the REGEX

$$E = E_1.E_2$$

accepts $L_1.L_2$, i.e. $L(E_1.E_2) = L(E_1).L(E_2)$.

Lemma

The class of regular languages is closed under concatenation.

Proof.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1.L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .
- REGEX Construction:

We claim the REGEX

$$E = E_1.E_2$$

accepts $L_1.L_2$, i.e. $L(E_1.E_2) = L(E_1).L(E_2)$.

Proof of correctness: trivial by definition of regular expressions.

Lemma

The class of regular languages is closed under concatenation.

Proof.

- Prove for arbitrary regular languages L_1 and L_2 that $L_1.L_2$ is a regular languages.
- Let E_1 and E_2 be REGEX accepting L_1 and L_2 .
- REGEX Construction:

We claim the REGEX

$$E = E_1.E_2$$

accepts $L_1.L_2$, i.e. $L(E_1.E_2) = L(E_1).L(E_2)$.

- Proof of correctness: trivial by definition of regular expressions.
- $-L_1.L_2$ is regular since there is a REGEX $E_1.E_2$ accepting this language.

Lemma

The class of regular languages is closed under Kleene star operation.

- Prove for arbitrary regular language L that L^* is a regular languages.
- Let E be REGEX accepting L.

Lemma

The class of regular languages is closed under Kleene star operation.

Proof.

- Prove for arbitrary regular language L that L^* is a regular languages.
 - Let *E* be REGEX accepting *L*.
- REGEX Construction:
 - We claim the REGEX

$$E'=E^*$$

accepts *L*, i.e. $L(E^*) = (L(E))^*$.

Lemma

The class of regular languages is closed under Kleene star operation.

- Prove for arbitrary regular language L that L^* is a regular languages.
 - Let *E* be REGEX accepting *L*.
- REGEX Construction:
 - We claim the REGEX

$$E' = E^*$$

- accepts *L*, i.e. $L(E^*) = (L(E))^*$.
- Proof of correctness: trivial by definition of regular expressions.

Lemma

The class of regular languages is closed under Kleene star operation.

- Prove for arbitrary regular language L that L^* is a regular languages.
 - Let *E* be REGEX accepting *L*.
- REGEX Construction:
 - We claim the REGEX

$$E' = E^*$$

- accepts *L*, i.e. $L(E^*) = (L(E))^*$.
- Proof of correctness: trivial by definition of regular expressions.
- L^* is regular since there is a REGEX E^* accepting this language.

- A homomorphism is just substitution of strings for letters.
- Formally a homomorphism is a function $h: \Sigma \to \Gamma^*$.

- A homomorphism is just substitution of strings for letters.
- − Formally a homomorphism is a function $h: \Sigma \to \Gamma^*$.
- Homomorphism can be extended from letters to strings $\hat{h}: \Sigma^* \to \Gamma^*$ in a straightforward manner:

$$\hat{h}(w) = \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ \hat{h}(w).h(a) & \text{if } w = xa \end{cases}$$

- A homomorphism is just substitution of strings for letters.
- Formally a homomorphism is a function $h: \Sigma \to \Gamma^*$.
- Homomorphism can be extended from letters to strings $\hat{h}: \Sigma^* \to \Gamma^*$ in a straightforward manner:

$$\hat{h}(w) = \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ \hat{h}(w).h(a) & \text{if } w = xa \end{cases}$$

— We can apply homomorphism to languages as well, for a homomorphism h and a language $L\subseteq \Sigma^*$ we define $h(L)\subseteq \Gamma^*$ as

$$h(L) = \{\hat{h}(w) \in \Gamma^* \ : \ w \in L \subseteq \Sigma^*\}.$$

- A homomorphism is just substitution of strings for letters.
- − Formally a homomorphism is a function h : Σ → Γ *.
- Homomorphism can be extended from letters to strings $\hat{h}: \Sigma^* \to \Gamma^*$ in a straightforward manner:

$$\hat{h}(w) = \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ \hat{h}(w).h(a) & \text{if } w = xa \end{cases}$$

We can apply homomorphism to languages as well, for a homomorphism h and a language $L \subseteq \Sigma^*$ we define $h(L) \subseteq \Gamma^*$ as

$$h(L) = \{\hat{h}(w) \in \Gamma^* : w \in L \subseteq \Sigma^*\}.$$

– We define inverse-homomorphism of a language $L \in \Gamma^*$ as

$$h^{-1}(L) = \{ w \in \Sigma^* : \hat{h}(w) \in L \subseteq \Gamma^* \}.$$

- A homomorphism is just substitution of strings for letters.
- − Formally a homomorphism is a function $h: \Sigma \to \Gamma^*$.
- Homomorphism can be extended from letters to strings $\hat{h}: \Sigma^* \to \Gamma^*$ in a straightforward manner:

$$\hat{h}(w) = \begin{cases} \varepsilon & \text{if } w = \varepsilon \\ \hat{h}(w).h(a) & \text{if } w = xa \end{cases}$$

We can apply homomorphism to languages as well, for a homomorphism h and a language $L \subseteq \Sigma^*$ we define $h(L) \subseteq \Gamma^*$ as

$$h(L) = \{\hat{h}(w) \in \Gamma^* : w \in L \subseteq \Sigma^*\}.$$

– We define inverse-homomorphism of a language $L \in \Gamma^*$ as

$$h^{-1}(L) = \{ w \in \Sigma^* : \hat{h}(w) \in L \subseteq \Gamma^* \}.$$

Theorem

The class of regular languages is closed under homomorphism, and inverse-homomorphism.

Lemma

The class of regular languages is closed under homomorphism.

Proof.

Prove for arbitrary regular language L and homomorphism h that h(L) is a regular languages. Let E be REGEX accepting L.

Lemma

The class of regular languages is closed under homomorphism.

Proof.

- Prove for arbitrary regular language L and homomorphism h that h(L) is a regular languages. Let E be REGEX accepting L.
- REGEX Construction: We claim the REGEX E_h defined inductively as

$$E_h = \varepsilon \qquad \text{if } E = \varepsilon$$

$$E_h = \emptyset \qquad \text{if } E = \emptyset$$

$$E_h = h(a) \qquad \text{if } E = a$$

$$E_h = F_h + G_h \qquad \text{if } E = F + G$$

$$E_h = F_h \cdot G_h \qquad \text{if } E = F \cdot G$$

$$E_h = (F_h)^* \qquad \text{if } E = F^*$$

accepts h(L), i.e. $L(E_h) = h(L(E))$.

- Proof of correctness: Prove that $L(E_h) = h(L(E))$.
 - if $E = \varepsilon$, then

$$\begin{array}{lcl} LHS & = & L(E_h) = L(h(\varepsilon)) = L(\varepsilon) = \{\varepsilon\} \\ RHS & = & h(L(E)) = h(L(\varepsilon)) = h(\{\varepsilon\}) = \{\varepsilon\}. \end{array}$$

− Similarly for $E = \emptyset$.

- Proof of correctness: Prove that $L(E_h) = h(L(E))$.
 - if $E = \varepsilon$, then

LHS =
$$L(E_h) = L(h(\varepsilon)) = L(\varepsilon) = \{\varepsilon\}$$

RHS = $h(L(E)) = h(L(\varepsilon)) = h(\{\varepsilon\}) = \{\varepsilon\}.$

- Similarly for $E = \emptyset$.
- if E = a, then

LHS =
$$L(E_h) = L(h(a)) = \{h(a)\}$$

RHS = $h(L(E)) = h(L(a)) = h(\{a\}) = \{h(a)\}.$

– if E = F + G, then

$$L(h(E)) = L(h(F+G)) = L(h(F) + h(G)) = L(h(F)) \cup L(h(G))$$

 $h(L(E)) = h(L(F+G)) = h(L(F)) \cup h(L(G)).$

From inductive hypothesis both of these expression are equal.

- Other inductive cases are similar, and hence omitted.

Closure under Inverse-Homomorphism

Lemma

The class of regular languages is closed under homomorphism.

Proof.

Let $\mathcal{A}=(S,\Gamma,\delta,s_0,F)$ be a DFA accepting L and $h:\Sigma\to\Gamma^*$ be an arbitrary homomorphism. We show that the DFA $h^{-1}(\mathcal{A})=(S',\Sigma,\delta',s_0',F')$ defined below accepts $h^{-1}(L)$.

- $S' = S, s'_0 = s_0, F' = F$
- $-\delta'(s,a) = \hat{\delta}(s,h(a))$

It is an easy induction over w that $\hat{\delta}'(s,w) = \hat{\delta}(s,h(w))$. Now, since accepting states of \mathcal{A} and $h^{-1}(\mathcal{A})$ are the same, $h^{-1}(\mathcal{A})$ accepts w iff \mathcal{A} accepts h(w).

Practice Questions

1. Quotient Language. For $a \in \Sigma$ and $L \subseteq \Sigma^*$ we define

```
L/a = \{w : wa \in L\}.

a/L = \{w : aw \in L\}.

L.a = \{wa : w \in L\}.

a.L = \{aw : w \in L\}.
```

- 2. min(L) is the set of strings w such that $w \in L$ and no proper prefix of w is in L.
- 3. $\max(L)$ is the set of strings such that $w \in L$ and no proper extension $wx \in L$.
- 4. INIT(*L*) is the set of strings w such that for some x we have that $wx \in L$.
- 5. HALF(L) is the set of strings w such that for some string x of same size as w we have that $wx \in L$.