CSCI 3434: Theory of Computation

Lecture 3: Nondeterminism

Ashutosh Trivedi

0,1 0,1

1 /—\ 0,e /—\ 1 O
start —(S1 S2 S3 Sy
6 N _/

Department of Computer Science
UNIVERSITY OF COLORADO BOULDER

Ashutosh Trivedi - 1 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Recursive Definitions and Structural Induction

Ashutosh Trivedi - 2 of 28

~ AshutoshTrivedi Lecture3: Nondeterminism

Recursive Definitions

Ashutosh Trivedi - 3 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Recursive Definitions

recursion

£C.J

All Apps Images Videos Books More v Search tools

About 8,810,000 results (0.39 seconds)

Did you mean: recursion

Ashutosh Trivedi - 3 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Recursive Definitions

1N CRDER T0 UNDERSTAND
RECURSION

ONE MUST FIRST UNDERSTAND
RECURSION

Recursive Definitions

Definition (Recursive Definitions.)
1. Defining an object using recursion.

2. Defining an object in terms of itself.

Ashutosh Trivedi Lecture 3: Nondeterminism

Ashutosh Trivedi - 5 of 28

Recursive Definitions

Definition (Recursive Definitions.)
1. Defining an object using recursion.

2. Defining an object in terms of itself.

Expressions over + and x:

Base case: Any number of a variable is an expression.
Induction: If E and F are expressions then so are E + F, E x F, and (E).

Ashutosh Trivedi - 5 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Recursive Definitions

Definition (Recursive Definitions.)
1. Defining an object using recursion.

2. Defining an object in terms of itself.

Expressions over + and x:

Base case: Any number of a variable is an expression.
Induction: If E and F are expressions then so are E + F, E x F, and (E).

Set of Natural numbers N:

Base case: 0 € N.
Induction: If k € Nthenk+1 € N.

Ashutosh Trivedi - 5 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Recursive Definitions

Definition (Recursive Definitions.)

1. Defining an object using recursion.
2. Defining an object in terms of itself.

Expressions over + and x:

Base case: Any number of a variable is an expression.
Induction: If E and F are expressions then so are E + F, E x F, and (E).

Set of Natural numbers N:

Base case: 0 € N.
Induction: If k € Nthenk+1 € N.

Definitions of the factorial function and Fibonacci sequence
Definition of a singly-linked list or trees.

Ashutosh Trivedi - 5 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.

Ashutosh Trivedi Lecture 3: Nondeterminism

Ashutosh Trivedi - 6 of 28

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.

Ashutosh Trivedi - 6 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementsey, ..., e,

S is True for ey, ...e, = Sistrue for E

Ashutosh Trivedi - 6 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction
1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementsey, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Ashutosh Trivedi - 6 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementsey, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.

Ashutosh Trivedi - 6 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementse, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.
Every expression defined has an equal number of left and right
parenthesis.

Ashutosh Trivedi - 6 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementse, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.

Every expression defined has an equal number of left and right
parenthesis.

Every tree has one more node than the edges.

Ashutosh Trivedi - 6 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementse, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.
Every expression defined has an equal number of left and right
parenthesis.
Every tree has one more node than the edges.
Other examples

Ashutosh Trivedi - 6 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

Regular Languages: Nondeterminism

Ashutosh Trivedi - 7 of 28

~ AshutoshTrivedi Lecture3: Nondeterminism

What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,

Ashutosh Trivedi - 8 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
The set of all strings (aka, words) £* over an alphabet X can be
recursively defined as: as :

Base case: € € X" (empty string),
Induction: If w € ¥* then wa € ¥* foralla € X.

Ashutosh Trivedi - 8 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
The set of all strings (aka, words) £* over an alphabet X can be
recursively defined as: as :

Base case: € € X" (empty string),

Induction: If w € ¥* then wa € ¥* foralla € 3.
A language L over some alphabet X is a set of strings, i.e. L C ¥*.
Some examples:

Leven = {w € ¥* : wis of even length}

Lysp = {w € ¥* : wis of the form a"b™ for n,m > 0}

Lppn = {w € X" : wis of the form a"b" for n > 0}

Lorime = {w € &* : w has a prime number of 's}
Deterministic finite state automata define languages that require finite
resources (states) to recognize.

Ashutosh Trivedi - 8 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
The set of all strings (aka, words) £* over an alphabet X can be
recursively defined as: as :

Base case: € € X" (empty string),

Induction: If w € ¥* then wa € ¥* foralla € 3.
A language L over some alphabet X is a set of strings, i.e. L C ¥*.
Some examples:

Leven = {w € ¥* : wis of even length}

Lysp = {w € ¥* : wis of the form a"b™ for n,m > 0}

Lppn = {w € X" : wis of the form a"b" for n > 0}

Lorime = {w € &* : w has a prime number of 's}
Deterministic finite state automata define languages that require finite
resources (states) to recognize.

Definition (Regular Languages)

We call a language regular if it can be accepted by a deterministic finite
state automaton.

Ashutosh Trivedi - 8 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Why they are “Regular”

A number of widely different and equi-expressive formalisms
precisely capture the same class of languages:
Deterministic finite state automata
Nondeterministic finite state automata (also with e-transitions)
Kleene's regular expressions, also appeared as Type-3 languages in
Chomsky’s hierarchy [Cho59].
Monadic second-order logic definable languages [B60, Elg61, Tra62]
Certain Algebraic connection (acceptability via finite semi-group) [RS59]

Ashutosh Trivedi - 9 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Why they are “Regular”

A number of widely different and equi-expressive formalisms
precisely capture the same class of languages:
Deterministic finite state automata
Nondeterministic finite state automata (also with e-transitions)
Kleene's regular expressions, also appeared as Type-3 languages in
Chomsky’s hierarchy [Cho59].
Monadic second-order logic definable languages [B60, Elg61, Tra62]
Certain Algebraic connection (acceptability via finite semi-group) [RS59]

Today we show that:

Theorem (DFA=NFA=c-NFA)

A language is accepted by a deterministic finite automaton if and only if it is
accepted by a non-deterministic finite automaton.

Ashutosh Trivedi - 9 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Finite State Automata

0 1
1
start —>
0
Warren S. McCullough Walter Pitts

Ashutosh Trivedi - 10 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;

Sg € S is the start state; and
F C S is the set of accept states.

Ashutosh Trivedi - 11 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sg € S is the start state; and

F C S is the set of accept states.
For a function 6 : S x ¥ — S we define extended transition function

0 : S x ¥* — S using the following inductive definition:

Ashutosh Trivedi - 11 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sg € S is the start state; and

F C S is the set of accept states.
For a function 6 : S x ¥ — S we define extended transition function

0 : S x ¥* — S using the following inductive definition:

50, w) = q ifw=e
7%= 6(5(g,x),a) ifw=xast xeX*andae X.

Ashutosh Trivedi - 11 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, X, 4, so, F), where:
S is a finite set called the states;
¥ is a finite set called the alphabet;
0 :S x X — Sis the transition function;
So € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by a DFA A = (S, X, 4, 5o, F) is defined as:

L(A) € {w : §(w) € F}.

Ashutosh Trivedi - 12 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Computation or Run of a DFA

0 1

1
start — @
0

computation string computation string

start —> start —>|

OROROZ0,
OROROR0,

Ashutosh Trivedi - 13 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by a DFA A = (S, X%, 6, 5o, F) is defined as:

L(A) = {w : §(w) € F}.
Semantics using accepting computation:
A computation or a run of a DFA A = (S, %, 6, s, F) on a string

W = aody - .. a,_1 is the finite sequence
SOa alsl7 u27 AR 7a7l—13 S‘rl

where sy is the starting state, and §(s;_1,4;) = si+1.

A string w is accepted by a DFA A if the last state of the unique
computation of A on w is an accept state, i.e. s, € F.

Language of a DFA A

L(A) = {w : string w is accepted by DFA A}.
Proposition

Both semantics define the same language. Proof by induction.

Ashutosh Trivedi - 14 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

Nondeterministic Finite State Automata

Michael O. Rabin Dana Scott

Ashutosh Trivedi - 15 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Non-deterministic Finite State Automata

0,1 0,1

07

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 2°is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

Ashutosh Trivedi - 16 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

e-closure ECLOS

0,1 0,1

1,
start =) \>) - @

Ashutosh Trivedi - 17 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

e-closure ECLOS

0,1 0,1

L))

start —(S1 S2 S3 S4
N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

Ashutosh Trivedi - 17 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

e-closure ECLOS

0,1 0,1

L))

start —(S1 S2 S3 S4
N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

Ashutosh Trivedi - 17 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

e-closure ECLOS

0,1 0,1

L))

start —(S1 S2 S3 S4
N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.

Ashutosh Trivedi - 17 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

e-closure ECLOS

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.

ECLOS({s1,52}) = {51,52,53,54}

Ashutosh Trivedi - 17 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Non-deterministic Finite State Automata

0,1 0,1

0

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,9,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.

Ashutosh Trivedi - 18 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Non-deterministic Finite State Automata

0,1 0,1

0

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,9,5s0,F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
§:S x (XU {e}) — 25 is the transition function;
Sp € S is the start state; and
F C S is the set of accept states.
For a function § : S x ¥ — 2% we define extended transition function
6 : S x ¥* — 25 using the following inductive definition:

R EcrLos({q}) fw=e
o(q, w) = U Ecros(é(p,a)) fw=xast. xecX*andaecX.
ped(q.%)

Ashutosh Trivedi - 18 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Non-deterministic Finite State Automata

0,1 0,1

=) ——C)——()
start —($S1 S S3 Sy
6 N _/

A non-deterministic finite state automaton (NFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by an NFA A = (5,3, 6,50, F) is defined as:
L(A) € {w : §(w)NF +#0}.

Ashutosh Trivedi - 19 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Computation or Run of an NFA

0,1 0,1

0,

Start ag O
PR !
@ _

Gn

OR0)
ONORO)

OBONONCO

Ashutosh Trivedi Lecture 3: Nondeterminism

Ashutosh Trivedi - 20 of 28

Non-deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by an NFA A = (S, %, 4, 5o, F) is defined:

L(A) € {w : (w)NF#0}.

Semantics using accepting computation:
A computation or a run of a NFA on a string w = aoa; .. .a,_1 is a
finite sequence
50,71,81,72,...,¥k—1,5n
where sy is the starting state, and s;+1 € 6(s;_1, ;) and
rori..."rg—1 =4aopdy ...0,—1.
A string w is accepted by an NFA A if the last state of some
computation of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.
Proposition

Both semantics define the same language. Proof by induction.

Ashutosh ‘lrivedi - 21 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA
Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.

Ashutosh Trivedi - 22 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA

Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.

And, surprisingly perhaps:
Theorem (DFA=NFA)

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.

Ashutosh Trivedi - 22 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Computation of an NFA: An observation

0,1 0,1

0,

Start ag O
PR !
@ _

Gn

OR0)
ONORO)

OBONONCO

Ashutosh Trivedi Lecture 3: Nondeterminism

Ashutosh Trivedi - 23 of 28

c-free NFA = DFA

Let A = (S,%, 9,50, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s), F') where

S =25,
¥ =13,
8" : 2% x ¥ — 2% such that §'(P,a) = ,cp 6(s,a),
sy = {so}, and
F' C S issuchthat FF = {P : PNF # 0}.
Theorem (e-free NFA = DFA)
L(A) = L(Det(A)). By induction, hint &(so, w) = 8'({so}, w).

Ashutosh Trivedi - 24 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so}, w).

Ashutosh Trivedi - 25 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Ashutosh Trivedi - 25 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

0(so,xa) = U §(s,a), by definition of 4.
5€6(s0,x)

Ashutosh Trivedi - 25 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

(50, xa)

U §(s,a), by definition of 4.

5€6(s0,x)

U (s, a), from inductive hypothesis.

58’ ({s0},x)

Ashutosh Trivedi

Lecture 3: Nondeterminism

Ashutosh Trivedi - 25 of 28

Proof of correctness: L(.A)

= L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

(50, xa)

U §(s,a), by definition of 4.

5€6(s0,x)

U (s, a), from inductive hypothesis.

58’ ({s0},x)

8'(8'({s0},x),a), from definition &' (P,)

Ashutosh Trivedi

Lecture 3: Nondeterminism

Uésa

seP

Ashutosh Trivedi -

250f28

Proof of correctness: L(.A)

= L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

(50, xa)

U §(s,a), by definition of 4.

5€6(s0,x)

U (s, a), from inductive hypothesis.

58’ ({s0},x)

8'(8'({s0},x),a), from definition &' (P,)

&' ({s0}, xa), by definition of §'.

Ashutosh Trivedi

Lecture 3: Nondeterminism

Uésa

seP

Ashutosh Trivedi -

250f28

Equivalence of NFA and DFA

Exercise (In class)

Determinize the following automaton:

0,1
0,1 0,1

Ashutosh Trivedi - 26 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

Ashutosh Trivedi - 27 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

0,1 0,1

L))

start —(S1 S2 S3 S4
N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

Ashutosh Trivedi - 27 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

Ashutosh Trivedi - 27 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.

Ashutosh Trivedi - 27 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.

ECLOS({s1,52}) = {51,52,53,54}

Ashutosh Trivedi - 27 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

0,1 0,1

0, 1,e

Let A = (S,%, 9,50, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s), F') where
S/ — 25,
Y=y,
&' :2° x ¥ — 2° such that §'(P,a) = J,., ECLOS(3(s,a)),
so = ECcLOS({s0}), and
F C S issuchthat ' = {P : PNF # 0}.

Ashutosh Trivedi - 28 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

NFA with ¢ transitions = DFA

0,1 0,1

07 17

Let A = (S,3,9,s0, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s), F') where
S/ — 25,
Y=y,
&' :2° x ¥ — 2° such that §'(P,a) = J,., ECLOS(3(s,a)),
so = ECcLOS({s0}), and
F C S issuchthat ' = {P : PNF # 0}.

Theorem (NFA with e-transitions = DFA)
L(A) = L(Det(.A)). By induction, hint §(sg, w) = 8 ({so}, w).

Ashutosh Trivedi - 28 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism

[@ J.R. Biichi.
Weak second-order arithmetic and finite automata.
Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik,
6(1-6):66-92, 1960.

ﬁ Noam Chomsky.
On certain formal properties of grammars.
Information and Control, 2(2):137 — 167, 1959.

[C.C. Elgot.
Decision problems of finite automata design and related arithmetics.
In Transactions of the American Mathematical Society, 98(1):21-51, 1961.

ﬁ M. O. Rabin and D. Scott.
Finite automata and their decision problems.
IBM Journal of Research and Developmen, 3(2):114-125, 1959.

ﬁ B. A. Trakhtenbrot.
Finite automata and monadic second order logic.
Siberian Mathematical Journal, 3:101-131, 1962.

Ashutosh Trivedi - 28 of 28
Ashutosh Trivedi Lecture 3: Nondeterminism

	Recursive Definitions and Structural Induction
	Regular Languages: Nondeterminism

