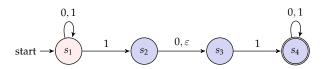
CSCI 3434: Theory of Computation

Lecture 3: Nondeterminism

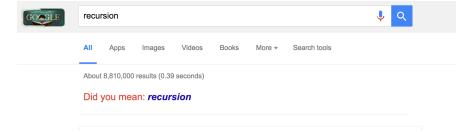
Ashutosh Trivedi



Department of Computer Science
UNIVERSITY OF COLORADO BOULDER

Recursive Definitions and Structural Induction

Regular Languages: Nondeterminism





- 1. Defining an object using recursion.
- 2. Defining an object in terms of itself.

- 1. Defining an object using recursion.
- 2. Defining an object in terms of itself.
 - Expressions over + and *:
 - Base case: Any number of a variable is an expression.
 - Induction: If *E* and *F* are expressions then so are E + F, E * F, and (E).

- 1. Defining an object using recursion.
- 2. Defining an object in terms of itself.
 - Expressions over + and *:
 - Base case: Any number of a variable is an expression.
 - Induction: If *E* and *F* are expressions then so are E + F, E * F, and (E).
 - Set of Natural numbers N:
 - − Base case: $0 \in \mathbb{N}$.
 - Induction: If k ∈ \mathbb{N} then $k + 1 \in \mathbb{N}$.

- 1. Defining an object using recursion.
- 2. Defining an object in terms of itself.
 - Expressions over + and *:
 - Base case: Any number of a variable is an expression.
 - Induction: If *E* and *F* are expressions then so are E + F, E * F, and (E).
 - Set of Natural numbers N:
 - Base case: 0 ∈ \mathbb{N} .
 - Induction: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$.
 - Definitions of the factorial function and Fibonacci sequence
 - Definition of a singly-linked list or trees.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - S is True for every element b_1, \ldots, b_m in the base case of the definition R.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - S is True for every element b_1, \ldots, b_m in the base case of the definition R.
 - For every element E constructed by the recursive definition from some elements e_1, \ldots, e_n

```
S is True for e_1, \ldots e_n \implies S is true for E
```

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - S is True for every element b_1, \ldots, b_m in the base case of the definition R.

 For every element E constructed by the recursive definition from some
 - elements e_1, \ldots, e_n

S is True for
$$e_1, \ldots e_n \implies S$$
 is true for *E*

4. Then we can conclude that: S is True for Every Element E defined by the recursive definition R.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - S is True for every element b_1, \ldots, b_m in the base case of the definition R. For every element E constructed by the recursive definition from some elements e_1, \ldots, e_n

S is True for
$$e_1, \ldots e_n \implies S$$
 is true for *E*

4. Then we can conclude that: S is True for Every Element E defined by the recursive definition R.

Examples:

For all $n \ge 0$ we have that $\sum_{i=0}^{n} i = n(n+1)/2$.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - S is True for every element b_1, \ldots, b_m in the base case of the definition R. For every element E constructed by the recursive definition from some elements e_1, \ldots, e_n

S is True for
$$e_1, \ldots e_n \implies S$$
 is true for *E*

4. Then we can conclude that: *S is True for Every Element E defined by the recursive definition R.*

Examples:

- − For all $n \ge 0$ we have that $\sum_{i=0}^{n} i = n(n+1)/2$.
- Every expression defined has an equal number of left and right parenthesis.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - *S* is True for every element b_1, \ldots, b_m in the base case of the definition *R*. For every element *E* constructed by the recursive definition from some elements e_1, \ldots, e_n

S is True for
$$e_1, \ldots e_n \implies S$$
 is true for *E*

4. Then we can conclude that: S is True for Every Element E defined by the recursive definition R.

Examples:

- − For all $n \ge 0$ we have that $\sum_{i=0}^{n} i = n(n+1)/2$.
- Every expression defined has an equal number of left and right parenthesis.
- Every tree has one more node than the edges.

Principle of Structural Induction

- 1. Let *R* be a recursive definition.
- 2. Let *S* be a statement about the elements defined by *R*.
- 3. If the following hypotheses hold:
 - S is True for every element b_1, \ldots, b_m in the base case of the definition R. For every element E constructed by the recursive definition from some elements e_1, \ldots, e_n

S is True for
$$e_1, \ldots e_n \implies S$$
 is true for *E*

4. Then we can conclude that: S is True for Every Element E defined by the recursive definition R.

Examples:

- − For all $n \ge 0$ we have that $\sum_{i=0}^{n} i = n(n+1)/2$.
- Every expression defined has an equal number of left and right parenthesis.
- Every tree has one more node than the edges.
- Other examples

Recursive Definitions and Structural Induction

Regular Languages: Nondeterminism

– An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters,

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters,
- The set of all strings (aka, words) Σ^* over an alphabet Σ can be recursively defined as: as:
 - − Base case: $\varepsilon \in \Sigma^*$ (empty string),
 - Induction: If $w ∈ Σ^*$ then $wa ∈ Σ^*$ for all a ∈ Σ.

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters,
- The set of all strings (aka, words) $Σ^*$ over an alphabet Σ can be recursively defined as: as:
 - − Base case: $\varepsilon \in \Sigma^*$ (empty string),
 - Induction: If $w \in \Sigma^*$ then $wa \in \Sigma^*$ for all $a \in \Sigma$.
- − A language *L* over some alphabet Σ is a set of strings, i.e. $L \subseteq \Sigma^*$.
- Some examples:
 - L_{even} = {w ∈ Σ* : w is of even length}
 - L_{a*b*} = { $w \in \Sigma^*$: w is of the form $a^n b^m$ for $n, m \ge 0$ }
 - $-L_{a^nb^n} = \{w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \ge 0\}$
 - L_{prime} = {w ∈ Σ* : w has a prime number of a's}
- Deterministic finite state automata define languages that require finite resources (states) to recognize.

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters,
- The set of all strings (aka, words) $Σ^*$ over an alphabet Σ can be recursively defined as: as:
 - − Base case: $\varepsilon \in \Sigma^*$ (empty string),
 - Induction: If $w \in \Sigma^*$ then $wa \in \Sigma^*$ for all $a \in \Sigma$.
- − A language *L* over some alphabet Σ is a set of strings, i.e. $L \subseteq \Sigma^*$.
- Some examples:
 - L_{even} = {w ∈ Σ* : w is of even length}
 - $-L_{a*b*}$ = { $w ∈ Σ^* : w$ is of the form $a^n b^m$ for n, m ≥ 0}
 - $-L_{a^nb^n} = \{w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \ge 0\}$
 - L_{prime} = {w ∈ Σ* : w has a prime number of a's}
- Deterministic finite state automata define languages that require finite resources (states) to recognize.

Definition (Regular Languages)

We call a language regular if it can be accepted by a deterministic finite state automaton.

Why they are "Regular"

- A number of widely different and equi-expressive formalisms precisely capture the same class of languages:
 - Deterministic finite state automata
 - Nondeterministic finite state automata (also with ε -transitions)
 - Kleene's regular expressions, also appeared as Type-3 languages in Chomsky's hierarchy [Cho59].
 - Monadic second-order logic definable languages [Bö0, Elg61, Tra62]
 - Certain Algebraic connection (acceptability via finite semi-group) [RS59]

Why they are "Regular"

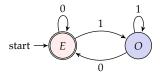
- A number of widely different and equi-expressive formalisms precisely capture the same class of languages:
 - Deterministic finite state automata
 - Nondeterministic finite state automata (also with ε -transitions)
 - Kleene's regular expressions, also appeared as Type-3 languages in Chomsky's hierarchy [Cho59].
 - Monadic second-order logic definable languages [Bö0, Elg61, Tra62]
 - Certain Algebraic connection (acceptability via finite semi-group) [RS59]

Today we show that:

Theorem (DFA=NFA= ε -NFA)

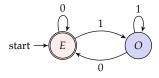
A language is accepted by a deterministic finite automaton if and only if it is accepted by a non-deterministic finite automaton.

Finite State Automata



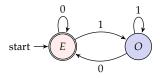
Warren S. McCullough

Walter Pitts



A finite state automaton is a tuple $A = (S, \Sigma, \delta, s_0, F)$, where:

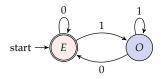
- − *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- δ : S × Σ → S is the transition function;
- s₀ ∈ S is the start state; and
- − $F \subseteq S$ is the set of accept states.



A finite state automaton is a tuple $A = (S, \Sigma, \delta, s_0, F)$, where:

- − *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- $-\delta: S \times \Sigma \to S$ is the transition function;
- $-s_0 \in S$ is the start state; and
- *F* ⊆ *S* is the set of accept states.

For a function $\delta: S \times \Sigma \to S$ we define extended transition function $\hat{\delta}: S \times \Sigma^* \to S$ using the following inductive definition:

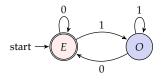


A finite state automaton is a tuple $A = (S, \Sigma, \delta, s_0, F)$, where:

- *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- δ : S × Σ → S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.

For a function $\delta: S \times \Sigma \to S$ we define extended transition function $\hat{\delta}: S \times \Sigma^* \to S$ using the following inductive definition:

$$\hat{\delta}(q, w) = \begin{cases} q & \text{if } w = \varepsilon \\ \delta(\hat{\delta}(q, x), a) & \text{if } w = xa \text{ s.t. } x \in \Sigma^* \text{ and } a \in \Sigma. \end{cases}$$



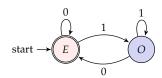
A finite state automaton is a tuple $A = (S, \Sigma, \delta, s_0, F)$, where:

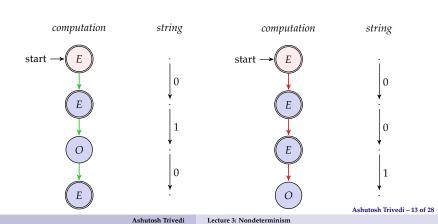
- *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- δ : S × Σ → S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.

The language L(A) accepted by a DFA $A = (S, \Sigma, \delta, s_0, F)$ is defined as:

$$L(\mathcal{A}) \stackrel{\text{def}}{=} \{ w : \hat{\delta}(w) \in F \}.$$

Computation or Run of a DFA





Semantics using extended transition function:

– The language L(A) accepted by a DFA $A = (S, \Sigma, \delta, s_0, F)$ is defined as:

$$L(\mathcal{A}) \stackrel{\text{\tiny def}}{=} \{ w \ : \ \hat{\delta}(w) \in F \}.$$

Semantics using accepting computation:

A computation or a run of a DFA $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ on a string $w = a_0 a_1 \dots a_{n-1}$ is the finite sequence

$$s_0, a_1 s_1, a_2, \ldots, a_{n-1}, s_n$$

where s_0 is the starting state, and $\delta(s_{i-1}, a_i) = s_{i+1}$.

- A string w is accepted by a DFA A if the last state of the unique computation of A on w is an accept state, i.e. $s_n \in F$.
- Language of a DFA A

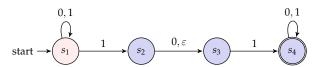
$$L(A) = \{w : \text{string } w \text{ is accepted by DFA } A\}.$$

Proposition

Both semantics define the same language.

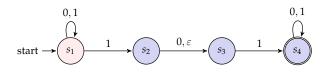
Proof by induction.

Nondeterministic Finite State Automata



Dana Scott

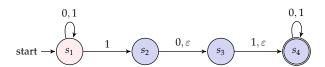
Non-deterministic Finite State Automata



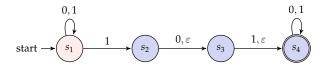
A non-deterministic finite state automaton (NFA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$, where:

- − *S* is a finite set called the states;
- $-\Sigma$ is a finite set called the alphabet;
- $-\delta: S \times (\Sigma \cup \{\varepsilon\}) \to 2^S$ is the transition function;
- s₀ ∈ S is the start state; and
- − $F \subseteq S$ is the set of accept states.

ε -closure ECLOS

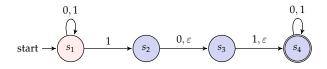


ε -closure ECLOS



- ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

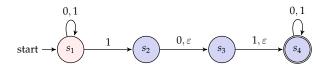
ε -closure ECLOS



– ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

$$ECLOS(s_2) = \{s_2, s_3, s_4\}$$
 and $ECLOS(s_3) = \{s_3, s_4\}$

ε -closure ECLOS

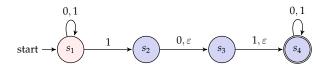


- ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

$$ECLOS(s_2) = \{s_2, s_3, s_4\}$$
 and $ECLOS(s_3) = \{s_3, s_4\}$

− ECLOS(R) = $\cup_{s \in R}$ ECLOS(R). E.g.

ε -closure ECLOS

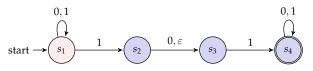


- ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

$$ECLOS(s_2) = \{s_2, s_3, s_4\}$$
 and $ECLOS(s_3) = \{s_3, s_4\}$

− ECLOS(
$$R$$
) = $\cup_{s \in R}$ ECLOS(R). E.g.

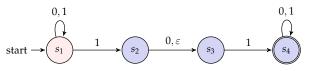
$$ECLOS({s_1, s_2}) = {s_1, s_2, s_3, s_4}$$



A non-deterministic finite state automaton (NFA) is a tuple

$$\mathcal{A} = (S, \Sigma, \delta, s_0, F)$$
, where:

- − *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- $-\delta$: S × (Σ ∪ { ε }) \rightarrow 2^S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.



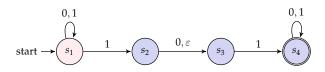
A non-deterministic finite state automaton (NFA) is a tuple

$$\mathcal{A} = (S, \Sigma, \delta, s_0, F)$$
, where:

- − *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- $-\delta$: S × (Σ ∪ { ε }) \rightarrow 2^S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.

For a function $\delta: S \times \Sigma \to 2^S$ we define extended transition function $\hat{\delta}: S \times \Sigma^* \to 2^S$ using the following inductive definition:

$$\hat{\delta}(q,w) = \begin{cases} \mathsf{ECLOS}(\{q\}) & \text{if } w = \varepsilon \\ \bigcup\limits_{p \in \hat{\delta}(q,x)} \mathsf{ECLOS}(\delta(p,a)) & \text{if } w = xa \text{ s.t. } x \in \Sigma^* \text{ and } a \in \Sigma. \end{cases}$$



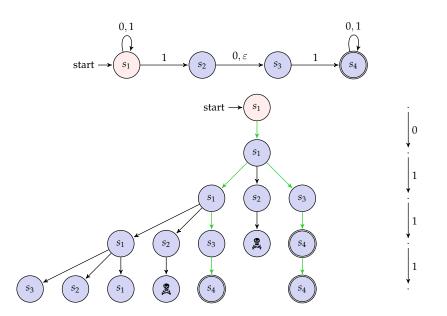
A non-deterministic finite state automaton (NFA) is a tuple $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$, where:

- − *S* is a finite set called the states;
- Σ is a finite set called the alphabet;
- $-\delta$: S × (Σ ∪ { ε }) \rightarrow 2^S is the transition function;
- s₀ ∈ S is the start state; and
- *F* ⊆ *S* is the set of accept states.

The language L(A) accepted by an NFA $A = (S, \Sigma, \delta, s_0, F)$ is defined as:

$$L(\mathcal{A}) \stackrel{\text{\tiny def}}{=} \{ w \ : \ \hat{\delta}(w) \cap F \neq \emptyset \}.$$

Computation or Run of an NFA



Semantics using extended transition function:

− The language L(A) accepted by an NFA $A = (S, \Sigma, \delta, s_0, F)$ is defined:

$$L(\mathcal{A}) \stackrel{\text{def}}{=} \{ w : \hat{\delta}(w) \cap F \neq \emptyset \}.$$

Semantics using accepting computation:

- A computation or a run of a NFA on a string $w = a_0 a_1 \dots a_{n-1}$ is a finite sequence

$$s_0, r_1, s_1, r_2, \ldots, r_{k-1}, s_n$$

where s_0 is the starting state, and $s_{i+1} \in \delta(s_{i-1}, r_i)$ and

- $r_0r_1\ldots r_{k-1}=a_0a_1\ldots a_{n-1}.$
- A string w is accepted by an NFA A if the last state of some computation of A on w is an accept state $s_n \in F$.
- Language of an NFA ${\cal A}$

$$L(A) = \{w : \text{ string } w \text{ is accepted by NFA } A\}.$$

Proposition

Both semantics define the same language.

Proof by induction.

Why study NFA?

NFA are often more convenient to design than DFA, e.g.:

- $\{w : w \text{ contains } 1 \text{ in the third last position} \}.$
- $\{w :: w \text{ is a multiple of 2 or a multiple of 3}\}.$
- Union and intersection of two DFAs as an NFA
- Exponentially succinct than DFA
 - Consider the language of strings having *n*-th symbol from the end is 1.
 - DFA has to remember last n symbols, and
 - hence any DFA needs at least 2^n states to accept this language.

Why study NFA?

NFA are often more convenient to design than DFA, e.g.:

- $\{ w : w \text{ contains } 1 \text{ in the third last position} \}.$
- $\{w :: w \text{ is a multiple of 2 or a multiple of 3}\}.$
- Union and intersection of two DFAs as an NFA
- Exponentially succinct than DFA
 - Consider the language of strings having *n*-th symbol from the end is 1.
 - DFA has to remember last n symbols, and
 - hence any DFA needs at least 2^n states to accept this language.

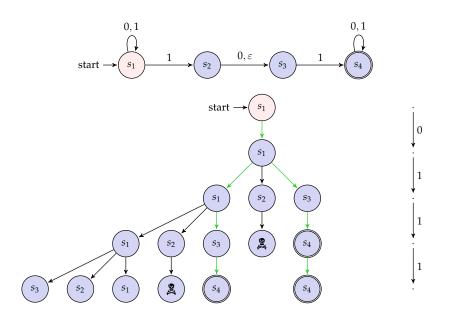
And, surprisingly perhaps:

Theorem (DFA=NFA)

Every non-deterministic finite automaton has an equivalent (accepting the same language) deterministic finite automaton.

Subset construction.

Computation of an NFA: An observation



ε -free NFA = DFA

Let $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ be an ε -free NFA. Consider the DFA $Det(\mathcal{A}) = (S', \Sigma', \delta', s_0', F')$ where

- $-S'=2^{S}$,
- $-\Sigma'=\Sigma,$
- $-\delta': 2^S \times \Sigma \to 2^S$ such that $\delta'(P, a) = \bigcup_{s \in P} \delta(s, a)$,
- $-s'_0 = \{s_0\}$, and
- $-F' \subseteq S'$ is such that $F' = \{P : P \cap F \neq \emptyset\}.$

Theorem (ε -free NFA = DFA)

$$L(A) = L(Det(A)).$$

By induction, hint $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$.

The proof follows from the observation that $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$.

The proof follows from the observation that $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$. We prove it by induction on the length of w.

– Base case: Let w be ε . The base case follows immediately from the definition of extended transition functions:

$$\hat{\delta}(s_0, \varepsilon) = s_0 \text{ and } \hat{\delta}'(\{s_0\}, \varepsilon) = \{s_0\}.$$

The proof follows from the observation that $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$. We prove it by induction on the length of w.

Base case: Let w be ε . The base case follows immediately from the definition of extended transition functions:

$$\hat{\delta}(s_0, \varepsilon) = s_0 \text{ and } \hat{\delta}'(\{s_0\}, \varepsilon) = \{s_0\}.$$

− Induction Step: Let w = xa where $x \in \Sigma^*$ and $a \in \Sigma$. Now observe,

$$\hat{\delta}(s_0, xa) = \bigcup_{s \in \hat{\delta}(s_0, x)} \delta(s, a), \text{by definition of } \hat{\delta}.$$

The proof follows from the observation that $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$. We prove it by induction on the length of w.

– Base case: Let w be ε . The base case follows immediately from the definition of extended transition functions:

$$\hat{\delta}(s_0, \varepsilon) = s_0 \text{ and } \hat{\delta}'(\{s_0\}, \varepsilon) = \{s_0\}.$$

− Induction Step: Let w = xa where $x \in \Sigma^*$ and $a \in \Sigma$. Now observe,

$$\begin{split} \hat{\delta}(s_0,xa) &= \bigcup_{s \in \hat{\delta}(s_0,x)} \delta(s,a), \text{by definition of } \hat{\delta}. \\ &= \bigcup_{s \in \hat{\delta}'(\{s_0\},x)} \delta(s,a), \text{from inductive hypothesis.} \end{split}$$

The proof follows from the observation that $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$. We prove it by induction on the length of w.

– Base case: Let w be ε . The base case follows immediately from the definition of extended transition functions:

$$\hat{\delta}(s_0, \varepsilon) = s_0 \text{ and } \hat{\delta}'(\{s_0\}, \varepsilon) = \{s_0\}.$$

− Induction Step: Let w = xa where $x \in \Sigma^*$ and $a \in \Sigma$. Now observe,

$$\begin{split} \hat{\delta}(s_0,xa) &= \bigcup_{s \in \hat{\delta}(s_0,x)} \delta(s,a), \text{by definition of } \hat{\delta}. \\ &= \bigcup_{s \in \hat{\delta}'(\{s_0\},x)} \delta(s,a), \text{from inductive hypothesis.} \\ &= \delta'(\hat{\delta}'(\{s_0\},x),a), \text{ from definition } \delta'(P,a) = \bigcup_{s \in P} \delta(s,a). \end{split}$$

The proof follows from the observation that $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$. We prove it by induction on the length of w.

– Base case: Let w be ε . The base case follows immediately from the definition of extended transition functions:

$$\hat{\delta}(s_0, \varepsilon) = s_0 \text{ and } \hat{\delta}'(\{s_0\}, \varepsilon) = \{s_0\}.$$

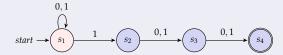
- Induction Step: Let w = xa where $x \in \Sigma^*$ and $a \in \Sigma$. Now observe,

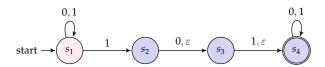
$$\begin{split} \hat{\delta}(s_0,xa) &= \bigcup_{s \in \hat{\delta}(s_0,x)} \delta(s,a), \text{by definition of } \hat{\delta}. \\ &= \bigcup_{s \in \hat{\delta}'(\{s_0\},x)} \delta(s,a), \text{from inductive hypothesis.} \\ &= \delta'(\hat{\delta}'(\{s_0\},x),a), \text{ from definition } \delta'(P,a) = \bigcup_{s \in P} \delta(s,a). \\ &= \hat{\delta}'(\{s_0\},xa), \text{ by definition of } \hat{\delta}'. \end{split}$$

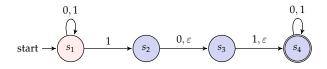
Equivalence of NFA and DFA

Exercise (In class)

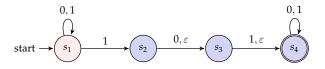
Determinize the following automaton:





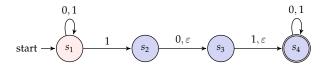


– ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.



– ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

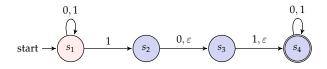
$$ECLOS(s_2) = \{s_2, s_3, s_4\}$$
 and $ECLOS(s_3) = \{s_3, s_4\}$



– ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

$$ECLOS(s_2) = \{s_2, s_3, s_4\}$$
 and $ECLOS(s_3) = \{s_3, s_4\}$

− ECLOS(R) = $\cup_{s \in R}$ ECLOS(R). E.g.

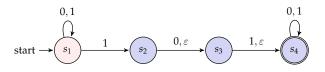


- ε-closure ECLOS(s) of a state s is the set of states that can be reached from s (including itself) via ε-transitions. E.g.

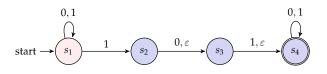
$$ECLOS(s_2) = \{s_2, s_3, s_4\}$$
 and $ECLOS(s_3) = \{s_3, s_4\}$

− ECLOS(
$$R$$
) = $\cup_{s \in R}$ ECLOS(R). E.g.

$$ECLOS({s_1, s_2}) = {s_1, s_2, s_3, s_4}$$



- Let $A = (S, \Sigma, \delta, s_0, F)$ be an ε -free NFA. Consider the DFA $Det(A) = (S', \Sigma', \delta', s_0', F')$ where
 - $-S'=2^{S}$,
 - $\Sigma' = \Sigma,$
 - $-\delta': 2^S \times \Sigma \to 2^S$ such that $\delta'(P, a) = \bigcup_{s \in P} \text{ECLOS}(\delta(s, a))$,
 - $s'_0 = ECLOS(\{s_0\})$, and
 - $-F' \subseteq S'$ is such that $F' = \{P : P \cap F \neq \emptyset\}.$



- Let $\mathcal{A} = (S, \Sigma, \delta, s_0, F)$ be an *ε*-free NFA. Consider the DFA $Det(\mathcal{A}) = (S', \Sigma', \delta', s_0', F')$ where
 - $S' = 2^{S}$,
 - $\Sigma' = \Sigma',$
 - $-\delta': 2^S \times \Sigma \to 2^S$ such that $\delta'(P, a) = \bigcup_{s \in P} \text{ECLOS}(\delta(s, a)),$
 - $s'_0 = ECLOS(\{s_0\})$, and
 - $-F' \subseteq S'$ is such that $F' = \{P : P \cap F \neq \emptyset\}.$

Theorem (NFA with ε -transitions = DFA)

$$L(A) = L(Det(A)).$$

By induction, hint $\hat{\delta}(s_0, w) = \hat{\delta}'(\{s_0\}, w)$.

Weak second-order arithmetic and finite automata.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 6(1-6):66-92, 1960.

Noam Chomsky.

On certain formal properties of grammars.

Information and Control, 2(2):137 – 167, 1959.

C. C. Elgot.

Decision problems of finite automata design and related arithmetics. *In Transactions of the American Mathematical Society*, 98(1):21–51, 1961.

M. O. Rabin and D. Scott.

Finite automata and their decision problems. IBM Journal of Research and Developmen, 3(2):114–125, 1959.

B. A. Trakhtenbrot.

Finite automata and monadic second order logic.

Siberian Mathematical Journal, 3:101–131, 1962.