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Recursive Definitions
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RECURSION




Recursive Definitions

Definition (Recursive Definitions.)
1. Defining an object using recursion.

2. Defining an object in terms of itself.
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Recursive Definitions

Definition (Recursive Definitions.)
1. Defining an object using recursion.

2. Defining an object in terms of itself.

Expressions over + and x:

Base case: Any number of a variable is an expression.
Induction: If E and F are expressions then so are E + F, E x F, and (E).
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Recursive Definitions

Definition (Recursive Definitions.)
1. Defining an object using recursion.

2. Defining an object in terms of itself.

Expressions over + and x:

Base case: Any number of a variable is an expression.
Induction: If E and F are expressions then so are E + F, E x F, and (E).

Set of Natural numbers N:

Base case: 0 € N.
Induction: If k € Nthenk+1 € N.
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Recursive Definitions

Definition (Recursive Definitions.)

1. Defining an object using recursion.
2. Defining an object in terms of itself.

Expressions over + and x:

Base case: Any number of a variable is an expression.
Induction: If E and F are expressions then so are E + F, E x F, and (E).

Set of Natural numbers N:

Base case: 0 € N.
Induction: If k € Nthenk+1 € N.

Definitions of the factorial function and Fibonacci sequence
Definition of a singly-linked list or trees.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementsey, ..., e,

S is True for ey, ...e, = Sistrue for E
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Structural Induction

Principle of Structural Induction
1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementsey, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementsey, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.
2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementse, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.
Every expression defined has an equal number of left and right
parenthesis.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementse, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.

Every expression defined has an equal number of left and right
parenthesis.

Every tree has one more node than the edges.
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Structural Induction

Principle of Structural Induction

1. Let R be a recursive definition.

2. Let S be a statement about the elements defined by R.
3. If the following hypotheses hold:

S is True for every element by, . . ., by, in the base case of the definition R.
For every element E constructed by the recursive definition from some
elementse, ..., e,

S is True for ey, ...e, = Sistrue for E

4. Then we can conclude that:
S is True for Every Element E defined by the recursive definition R.

Examples:
Foralln > 0 wehave that Y./ i =n(n+1)/2.
Every expression defined has an equal number of left and right
parenthesis.
Every tree has one more node than the edges.
Other examples
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Regular Languages: Nondeterminism
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What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
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What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
The set of all strings (aka, words) £* over an alphabet X can be
recursively defined as: as :

Base case: € € X" (empty string),
Induction: If w € ¥* then wa € ¥* foralla € X.

Ashutosh Trivedi - 8 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism



What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
The set of all strings (aka, words) £* over an alphabet X can be
recursively defined as: as :

Base case: € € X" (empty string),

Induction: If w € ¥* then wa € ¥* foralla € 3.
A language L over some alphabet X is a set of strings, i.e. L C ¥*.
Some examples:

Leven = {w € ¥* : wis of even length}

Lysp = {w € ¥* : wis of the form a"b™ for n,m > 0}

Lppn = {w € X" : wis of the form a"b" for n > 0}

Lorime = {w € &* : w has a prime number of 's}
Deterministic finite state automata define languages that require finite
resources (states) to recognize.
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What are Regular Languages?

An alphabet ¥ = {a, b, c} is a finite set of letters,
The set of all strings (aka, words) £* over an alphabet X can be
recursively defined as: as :

Base case: € € X" (empty string),

Induction: If w € ¥* then wa € ¥* foralla € 3.
A language L over some alphabet X is a set of strings, i.e. L C ¥*.
Some examples:

Leven = {w € ¥* : wis of even length}

Lysp = {w € ¥* : wis of the form a"b™ for n,m > 0}

Lppn = {w € X" : wis of the form a"b" for n > 0}

Lorime = {w € &* : w has a prime number of 's}
Deterministic finite state automata define languages that require finite
resources (states) to recognize.

Definition (Regular Languages)

We call a language regular if it can be accepted by a deterministic finite
state automaton.
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Why they are “Regular”

A number of widely different and equi-expressive formalisms
precisely capture the same class of languages:
Deterministic finite state automata
Nondeterministic finite state automata (also with e-transitions)
Kleene's regular expressions, also appeared as Type-3 languages in
Chomsky’s hierarchy [Cho59].
Monadic second-order logic definable languages [B60, Elg61, Tra62]
Certain Algebraic connection (acceptability via finite semi-group) [RS59]
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Why they are “Regular”

A number of widely different and equi-expressive formalisms
precisely capture the same class of languages:
Deterministic finite state automata
Nondeterministic finite state automata (also with e-transitions)
Kleene's regular expressions, also appeared as Type-3 languages in
Chomsky’s hierarchy [Cho59].
Monadic second-order logic definable languages [B60, Elg61, Tra62]
Certain Algebraic connection (acceptability via finite semi-group) [RS59]

Today we show that:

Theorem (DFA=NFA=c-NFA)

A language is accepted by a deterministic finite automaton if and only if it is
accepted by a non-deterministic finite automaton.
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Finite State Automata
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1
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0
Warren S. McCullough Walter Pitts
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;

Sg € S is the start state; and
F C S is the set of accept states.
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sg € S is the start state; and

F C S is the set of accept states.
For a function 6 : S x ¥ — S we define extended transition function

0 : S x ¥* — S using the following inductive definition:
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, %, 4, so, F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
0 : S x X — Sis the transition function;
Sg € S is the start state; and

F C S is the set of accept states.
For a function 6 : S x ¥ — S we define extended transition function

0 : S x ¥* — S using the following inductive definition:

50, w) = q ifw=e
7%= 6(5(g,x),a) ifw=xast xeX*andae X.
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Deterministic Finite State Automata (DFA)

0 1

1
0
A finite state automaton is a tuple A = (S, X, 4, so, F), where:
S is a finite set called the states;
¥ is a finite set called the alphabet;
0 :S x X — Sis the transition function;
So € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by a DFA A = (S, X, 4, 5o, F) is defined as:

L(A) € {w : §(w) € F}.
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Computation or Run of a DFA
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Deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by a DFA A = (S, X%, 6, 5o, F) is defined as:

L(A) = {w : §(w) € F}.
Semantics using accepting computation:
A computation or a run of a DFA A = (S, %, 6, s, F) on a string

W = aody - .. a,_1 is the finite sequence
SOa alsl7 u27 AR 7a7l—13 S‘rl

where sy is the starting state, and §(s;_1,4;) = si+1.

A string w is accepted by a DFA A if the last state of the unique
computation of A on w is an accept state, i.e. s, € F.

Language of a DFA A

L(A) = {w : string w is accepted by DFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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Nondeterministic Finite State Automata

Michael O. Rabin Dana Scott
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Non-deterministic Finite State Automata

0,1 0,1

07

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,6,5s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 2°is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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e-closure ECLOS
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e-closure ECLOS

0,1 0,1
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N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.
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e-closure ECLOS
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e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}
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e-closure ECLOS

0,1 0,1

L))

start —( S1 S2 S3 S4
N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.
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e-closure ECLOS

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.

ECLOS({s1,52}) = {51,52,53,54}
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Non-deterministic Finite State Automata

0,1 0,1

0

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,9,5s0,F), where:

S is a finite set called the states;

Y is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
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Non-deterministic Finite State Automata

0,1 0,1

0

A non-deterministic finite state automaton (NFA) is a tuple
A= (5,%,9,5s0,F), where:
S is a finite set called the states;
Y is a finite set called the alphabet;
§:S x (XU {e}) — 25 is the transition function;
Sp € S is the start state; and
F C S is the set of accept states.
For a function § : S x ¥ — 2% we define extended transition function
6 : S x ¥* — 25 using the following inductive definition:

R EcrLos({q}) fw=e
o(q, w) = U Ecros(é(p,a)) fw=xast. xecX*andaecX.
ped(q.%)
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Non-deterministic Finite State Automata
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A non-deterministic finite state automaton (NFA) is a tuple
A= (S5,%,6,s0,F), where:

S is a finite set called the states;

¥ is a finite set called the alphabet;

§:S x (XU {e}) — 25 is the transition function;

Sp € S is the start state; and

F C S is the set of accept states.
The language L(.A) accepted by an NFA A = (5,3, 6,50, F) is defined as:
L(A) € {w : §(w)NF +#0}.
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Computation or Run of an NFA
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Non-deterministic Finite State Automata

Semantics using extended transition function:
The language L(.A) accepted by an NFA A = (S, %, 4, 5o, F) is defined:

L(A) € {w : (w)NF#0}.

Semantics using accepting computation:
A computation or a run of a NFA on a string w = aoa; .. .a,_1 is a
finite sequence
50,71,81,72,...,¥k—1,5n
where sy is the starting state, and s;+1 € 6(s;_1, ;) and
rori..."rg—1 =4aopdy ...0,—1.
A string w is accepted by an NFA A if the last state of some
computation of A on w is an accept state s, € F.
Language of an NFA A

L(A) = {w : string w is accepted by NFA A}.
Proposition

Both semantics define the same language. Proof by induction.
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Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA
Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.
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Why study NFA?

NFA are often more convenient to design than DFA, e.g.:
{w : w contains 1 in the third last position}.
{w :: wisamultiple of 2 or a multiple of 3}.
Union and intersection of two DFAs as an NFA

Exponentially succinct than DFA

Consider the language of strings having n-th symbol from the end is 1.
DFA has to remember last n symbols, and
hence any DFA needs at least 2" states to accept this language.

And, surprisingly perhaps:
Theorem (DFA=NFA)

Every non-deterministic finite automaton has an equivalent (accepting the same
language) deterministic finite automaton. Subset construction.
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Computation of an NFA: An observation
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c-free NFA = DFA

Let A = (S,%, 9,50, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s), F') where

S =25,
¥ =13,
8" : 2% x ¥ — 2% such that §'(P,a) = ,cp 6(s,a),
sy = {so}, and
F' C S issuchthat FF = {P : PNF # 0}.
Theorem (e-free NFA = DFA)
L(A) = L(Det(A)). By induction, hint &(so, w) = 8'({so}, w).
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so}, w).
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

0(so,xa) = U §(s,a), by definition of 4.
5€6(s0,x)
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Proof of correctness: L(A) = L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

(50, xa)

U §(s,a), by definition of 4.

5€6(s0,x)

U (s, a), from inductive hypothesis.

58’ ({s0},x)

Ashutosh Trivedi
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Proof of correctness: L(.A)

= L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

(50, xa)

U §(s,a), by definition of 4.

5€6(s0,x)

U (s, a), from inductive hypothesis.

58’ ({s0},x)

8'(8'({s0},x),a), from definition &' (P, )
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Proof of correctness: L(.A)

= L(Det(A)).

The proof follows from the observation that 5(s0,w) = 8'({so},w). We
prove it by induction on the length of w.

Base case: Let w be €. The base case follows immediately from the
definition of extended transition functions:

8(50,8) =5y and 8/({50},8) = {So}.

Induction Step: Let w = xa where x € ¥* and a € ¥. Now observe,

(50, xa)

U §(s,a), by definition of 4.

5€6(s0,x)

U (s, a), from inductive hypothesis.

58’ ({s0},x)

8'(8'({s0},x),a), from definition &' (P, )

&' ({s0}, xa), by definition of §'.
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Equivalence of NFA and DFA

Exercise (In class)

Determinize the following automaton:

0,1
0,1 0,1
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NFA with ¢ transitions = DFA
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NFA with ¢ transitions = DFA

0,1 0,1

L))

start —( S1 S2 S3 S4
N N

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.
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NFA with ¢ transitions = DFA

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

Ashutosh Trivedi - 27 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism



NFA with ¢ transitions = DFA
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0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.
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NFA with ¢ transitions = DFA

0,1 0,1

0 1,

e-closure ECLOS(s) of a state s is the set of states that can be reached
from s (including itself) via e-transitions. E.g.

EcLOS(sp) = {s2,53,54} and ECLOS(s3) = {s3,54}

ECLOS(R) = UserECLOS(R). E.g.

ECLOS({s1,52}) = {51,52,53,54}
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NFA with ¢ transitions = DFA
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0, 1,e

Let A = (S,%, 9,50, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s), F') where
S/ — 25,
Y=y,
&' :2° x ¥ — 2° such that §'(P,a) = J,., ECLOS(3(s,a)),
so = ECcLOS({s0}), and
F C S issuchthat ' = {P : PNF # 0}.

Ashutosh Trivedi - 28 of 28

Ashutosh Trivedi Lecture 3: Nondeterminism



NFA with ¢ transitions = DFA

0,1 0,1

07 17

Let A = (S,3,9,s0, F) be an e-free NFA. Consider the DFA
Det(A) = (S',%',0,s), F') where
S/ — 25,
Y=y,
&' :2° x ¥ — 2° such that §'(P,a) = J,., ECLOS(3(s,a)),
so = ECcLOS({s0}), and
F C S issuchthat ' = {P : PNF # 0}.

Theorem (NFA with e-transitions = DFA)
L(A) = L(Det(.A)). By induction, hint §(sg, w) = 8 ({so}, w).
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