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Alphabet, Strings, and Languages

* An alphabet ¥ = {a, b, c} is a finite set of letters/symbols.

* A string over an alphabet X is finite sequence of symbols, e.g.
* sequences cab, baa, and aaa are some strings overX = {a, b, c}
* sequences€,0,1,00,and 01 are some strings over X = {0, 1}

e X* is the set of all strings over X, e.g. aabbaa € X7,

* Naturally, A language L is a collection/set of strings over some
alphabet, i.e. L € X" e.g.,
* Lopen ={w €ZX® : wisofevenlength}
* Lignpny ={w € X" : wis of the form a™b" for n = 0}



Programs to Accept Languages

* We say that a program accepts a language, if for every string input, it
returns yes, if the string is in the language and no otherwise.

* Let’s write programs to accept languages Lgyen and Lygnpn,.

* Let’s consider more fancy languages:
* Language of all three colorable graphs
* Language of all prime numbers
* Language of all sorted arrays
e Language of all true theorems in a given logic

e Can we write programs to accept all the languages?
* Decidable and Undecidable Languages



Existence of undecidable languages.

Proof.

1. Set of all programs over some instruction:
« P={¢0,1,00,01,10,11, ...} over binaryalphabetZ = {0,1}.

2. Set of all strings over alphabetX = {0, 1}:
. §$=1{¢0,1,00,01,10,11, ...}

3. Set of all languages over alphabet £ = {0, 1} are 2° e,g,
- L, = {0,1}, L, ={00,11,11,10}, Ly =@

4. From Cantor’s theorem, we know that [2°| > |S].

5. There must be some languages for which one can not write acceptor
programs, i.e. undecidable languages.



Programming Exercise-|

String Matching Problem MATCH (A, B)

Input: Lists of strings A = (s4, Sy, ...,Sy,)and B = (ty, t,, ..., t,;) of equal length.
Output: if there is a sequence of combiningelements that produces same
string for both lists. NO, otherwise.

Formally, decide whether there exists a finite sequence (of any length)
1< il,iz,...,im <n

such that
t.
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Programming Exercise-|

Example 1:
Input: A = (110, ,0110Yand B = (110110,00,110).
Output:
Since sequence 2, 3, 1 gives the same strings
$28351 = 0110110 and t2t3t1 = 110110110
Example 2:

A=(0011,11,1101)and B = (101,011,110).

Example 3:
A=(100,,1)and B = (1, ,0).



Finite State Automata



Coin

Finite State Automata

No_coin _ Not_ready
Ready_dispence

* Introducedfirst by two neuro-psychologists Warren S. McCullough and
Walter Pittsin 1943 as a model for human brain.

* Finite automata can naturally model microprocessors and even software
programs working on variables with bounded domain

* Capture so-called regular languages that occur in many different fields
(regular expression, monadic second-order logic, algebra)

* Nice theoretical properties

* Applicationsin digital circuit/protocol verification, compilers, pattern
recognition, etc.




Calculemus!

* Let us observe our mental process while we compute the following:

Recognize language of strings of an even length.

Recognize language of binary strings with an even number of 0’s.
Recognize language of binary strings with an odd number of O’s.
Recognize language of strings containingyour identikey.

Recognize language of binary (decimal) strings multiple of 2.
Recognize language of binary (decimal) strings multiple of 3.
Recognize language of binary strings with equal number of 0’s and 1’s.
Recognize language of binary strings of the form 01"

Recognize language of binary strings with a prime number of 1’s



Finite State Automata: Examples

1. Automaton accepting strings of even length:

0,1

0,1



Finite State Automata: Examples

2. Automaton accepting strings with an even number of 1’s:



Finite State Automata: Examples

3. Automaton accepting binary strings characterizing an even number:



Finite State Automata: Definition

A finite state automaton is a tuple
(S,%, 9,5y, F), where:
 Sisafinite set called the states,
0 * Y is a finite set called the alphabet,
e §:S5 XX - Sisthe transition function,
* S € Sisthe startstate, and
e F C Sisthe set of accept states.

Example: The automaton in the figure above can be represented as (S,%, §, sy, F), where
- S={E0} X ={01}, so=E, F = {E},
* and transition function ¢ is such that

« 6(E,0) =E,
« §(E,1) =0, and
« 6(0,0) =0,

. 5(0,1) = E.



State Diagram

Let’s draw the state diagram of the following automaton (S, %, 0, s¢, F):
S = {s1,52,53}
« ¥ =1{0,1},
e 0 is givenin atabularformbelow:

S1 S1 S2
S2 S3 S2
S3 S» S2

e 51 is theinitial state, and
e [ = {52}.

Which language does it accept?



Semantics (Meaning) of Finite State Automata

A finite state automaton (DFA) is a tuple
(S,%, 9,5y, F), where:
 Sisafinite set called the states,
* XY isa finite set called the alphabet,
e §:S5 XX - Sisthe transition function,
* S € Sisthe startstate, and
e F C Sisthe set of accept states.

* A computation or a run of a DFA on a string w = aya, ... a,,_4 is the finite sequence
S0,A1,S1, 0, -, Ay_1,Sp
where s0 is the starting state,and §(s;_1,a;) = S;;+1-
* Arun is accepting if the last state of the unique computation is an accept state,i.e. s, € F.
* The Language of a DFA 4
L(A) = {w :the unique run of A on w is accepting}.
e Alanguage is called regular if it is accepted by a finite state automata.



Examples

* Recognize language of strings of an even length.

* Recognize language of binary strings with an even number of 0’s.

* Recognize language of binary strings with an odd number of 0’s.

* Recognize language of strings containingyour identikey.

e Recognize language of binary (decimal) strings multiple of 2.

» Recognize language of binary (decimal) strings multiple of 3.

« Recognize language of binary strings with equal number of 0’s and 1’s. 3¢
* Recognize language of binary strings of the form 01" ®

* Recognize language of binary strings with a prime number of 1's  §¢
* Recognize language of binary strings that end with a 0.

* Recognize language of binary strings that begin with a 1.



Properties of Regular Languages

* Let A and B be languages (remember they are sets). We define the
following operations on them:
* UniontAUB ={w: weAorw € B}
* Concatenation:AB ={wv: w € Aand v € B}
* Closure (Kleene Closure, or Star):
A" ={wyw,..w,: k=>0and w; € A}
Or, A* =U;sg A; where 4 = 0,A; = A,A, = AA, and so on.

* Define the notion of a set being closed under an operation (say,
N and X).

Theorem. Regular languages are closed under union, intersection, concatenation, and Kleene star.



