
CSCI	3434:	Theory	of	
Computation

Lecture	02:	Regular	Languages	and	Finite	Automata

Ashutosh	Trivedi	(ashutosh.trivedi@colorado.edu)
Department	of	Computer	Science,	University	of	Colorado	Boulder

Alphabet,	Strings,	and	Languages

• An	alphabet Σ = {𝑎, 𝑏, 𝑐}		is	a	finite	set	of	letters/symbols.
• A	string	over	an	alphabet Σ is	finite	sequence	of	symbols,	e.g.	
• sequences	𝑐𝑎𝑏, 𝑏𝑎𝑎, and		𝑎𝑎𝑎 are	some	strings	over	Σ = {𝑎, 𝑏, 𝑐}
• sequences	𝜖, 0, 1, 00,	and	01 are	some	strings	over	Σ = {0,1}

• Σ∗	is	the	set	of	all	strings	over	Σ,	e.g.	𝑎𝑎𝑏𝑏𝑎𝑎 ∈ Σ∗,	
• Naturally,	A	language 𝐿 is	a	collection/set	of	strings	over	some	
alphabet,	i.e.		𝐿 ⊆ Σ∗ e.g.,	
• 𝐿4546 	= {𝑤 ∈ Σ∗ 		 ∶ 	𝑤	is of even length}	
• 𝐿 9:;: 		 = {𝑤 ∈ Σ∗			: 	𝑤	is of the form 𝑎6𝑏6	for 𝑛 ≥ 0}	

Programs	to	Accept	Languages

• We	say	that	a	program	accepts a	language,	if	for	every	string	input,	it	
returns	yes,	if	the	string	is	in	the	language	and	no otherwise.	
• Let’s	write	programs	to	accept	languages		𝐿4546 and	𝐿 9:;: .
• Let’s	consider	more	fancy	languages:
• Language	of	all	three	colorable	graphs
• Language	of	all	prime	numbers
• Language	of	all	sorted	arrays
• Language	of	all	true	theorems	in	a	given	logic	

• Can	we	write	programs	to	accept	all	the	languages?	
• Decidable	and	Undecidable	Languages

Existence	of	undecidable	languages.

Proof.	
1. Set	of	all	programs	over	some	instruction:	

• 𝑃 = {𝜖, 0, 1, 00, 01, 10, 11,… }	over	binary	alphabet	Σ = 	 {0, 1}.	
2. Set	of	all	strings	over	alphabet	Σ = 	 0, 1 :

• 𝑆 = {𝜖, 0, 1, 00, 01, 10, 11,… }	
3. Set	of	all	languages	over	alphabet	Σ =	 0, 1 are	2D e,g,	

• 𝐿E 	= 	 0, 1 , 	 𝐿F 	= 00, 11, 11, 10 , 	 𝐿G 	= ∅	
4. From	Cantor’s	theorem,	we	know	that	 2D > 𝑆 .
5. There	must	be	some	languages	for	which	one	can	not	write	acceptor	

programs,	i.e.	undecidable	languages.

Programming	Exercise-I

String	Matching	Problem	𝑀𝐴𝑇𝐶𝐻(𝐴,𝐵)	

Input:	Lists	of	strings	𝐴 = 𝑠E, 𝑠F,… , 𝑠6 	and	𝐵	 = 	 𝑡E, 𝑡F, … , 𝑡6 	of	equal	length.
Output:		YES if	there	is	a	sequence	of	combining	elements	that	produces	same	
string	for	both	lists.	NO,	otherwise.

Formally,	decide	whether	there	exists	a	finite	sequence	(of	any	length)
1 ≤ 𝑖E, 𝑖F, … , 𝑖V ≤ 𝑛	

such	that	
	𝑠WX𝑠WY … 𝑠Z[= 	 𝑡WX𝑡WY 	… 𝑡W:.	

Programming	Exercise-I

Example	1:
Input:	𝐴 = 110,0011,0110 	and	𝐵 = 110110,00,110 .
Output:		YES.

Since	sequence	2,	3,	1	gives	the	same	strings
𝑠F𝑠G𝑠E = 	00110110110 and	𝑡F𝑡G𝑡E = 	00110110110

Example	2:
𝐴 = 0011,11,1101 	and	𝐵 = 101,011,110 .

Example	3:
𝐴 = 100,0,1 	and	𝐵 = 1,100,0 .

Finite	State	Automata	

Finite	State	Automata Coin

𝑆 𝐶

Not_ready
Ready_dispence

No_coin

• Introduced	first	by	two	neuro-psychologists	Warren	S.	McCullough	and	
Walter	Pitts	in	1943	as	a	model	for	human	brain.	

• Finite	automata	can	naturally	model	microprocessors and	even	software	
programs	working	on	variables	with	bounded	domain	

• Capture	so-called	regular	languages	that	occur	in	many	different	fields	
(regular	expression,	monadic	second-order	logic,	algebra)	

• Nice	theoretical	properties	
• Applications	in	digital	circuit/protocol	verification,	 compilers,	pattern	
recognition,	etc.	

Calculemus!	

• Let	us	observe	our	mental	process	while	we	compute	the	following:
• Recognize	language	of	strings	of	an	even	length.
• Recognize	language	of	binary	strings	with	an	even	number	of	0’s.
• Recognize	language	of	binary	strings	with	an	odd	number	of	0’s.	
• Recognize	language	of	strings	containing	your	identikey.
• Recognize	language	of	binary	(decimal)	strings	multiple	of	2.	
• Recognize	language	of	binary	(decimal)	strings	multiple	of	3.	
• Recognize	language	of	binary	strings	with	equal	number	of	0’s	and	1’s.	
• Recognize	language	of		binary	strings	of	the	form	0616
• Recognize	language	of	binary	strings	with	a	prime	number	of	1’s	

Finite	State	Automata:	Examples

1.	Automaton	accepting	strings	of	even	length:

𝐸 𝑂

0,1

0,1

Finite	State	Automata:	Examples

2.	Automaton	accepting	strings	with	an	even	number	of	1’s:

𝐸 𝑂

1

1

0
0

Finite	State	Automata:	Examples

3.	Automaton	accepting	binary	strings	characterizing	an	even	number:

𝐸 𝑂

1

0

1
0

Finite	State	Automata:	Definition

0

A	finite	state	automaton	is	a	tuple	
(𝑆,Σ, 𝛿, 𝑠_,𝐹),	where:	

• 𝑆	is	a	finite	set	called	the	states,	
• Σ is	a	finite	set	called	the	alphabet,
• 𝛿 ∶ 𝑆	×	Σ → 𝑆	is	the	transition	function,
• 𝑠_ ∈ 𝑆	is	the	start	state, and
• 𝐹 ⊆ 𝑆 is	the	set	of	accept	states.	

Example:	The	automaton	in	the	figure	above	can	be	represented	as	(𝑆,Σ, 𝛿, 𝑠_,𝐹),	where	
• 𝑆	 = 	 {𝐸, 𝑂}, 	Σ	 = 	{0,1}, 	 𝑠_ = 𝐸, 𝐹	 = 	{𝐸},	
• and	transition	function	𝛿 is	such	that	

• 𝛿(𝐸, 0) 	 = 𝐸,	
• 𝛿(𝐸, 1) 	 = 𝑂,	and	
• 𝛿(𝑂, 0) 	= 𝑂,	
• 𝛿(𝑂, 1) 	= 	𝐸.	

𝐸 𝑂

1

1

0

State	Diagram

Let’s	draw	the	state	diagram	of	the	following	automaton	(𝑆, Σ, 𝛿, 𝑠E, 𝐹):	
• 𝑆	 =	 {𝑠E, 𝑠F, 𝑠G}
• Σ = {0,1},	
• 𝛿	is	given	in	a	tabular	form	below:	

• 𝑠E	is	the	initial	state,	and	
• 𝐹 = {𝑠F}.

𝑆 0 1
𝑠E 𝑠E 𝑠F
𝑠F 𝑠G 𝑠F
𝑠G 𝑠F 𝑠F

Which	language	does	it	accept?

Semantics	(Meaning)	of	Finite	State	Automata
A	finite	state	automaton	(DFA)	 is	a	tuple	
(𝑆,Σ, 𝛿, 𝑠_,𝐹),	where:	

• 𝑆	is	a	finite	set	called	the	states,	
• Σ is	a	finite	set	called	the	alphabet,
• 𝛿 ∶ 𝑆	×	Σ → 𝑆	is	the	transition	function,
• 𝑠_ ∈ 𝑆	is	the	start	state, and
• 𝐹 ⊆ 𝑆 is	the	set	of	accept	states.	

𝐸 𝑂

1

1

00

• A	computation or	a	run of	a	DFA	on	a	string	𝑤 = 𝑎_𝑎E… 𝑎6cE	is	the	finite	sequence	
	𝑠_, 𝑎E, 𝑠E , 𝑎F,… , 𝑎6cE, 𝑠6	

where	𝑠0 is	the	starting	state,	and	𝛿(𝑠WcE,𝑎W) 	= 	 𝑠WdE .	
• A	run	is	accepting if	the	last	state	of	the	unique computation is	an	accept	state,	i.e.	𝑠6 	 ∈ 	𝐹.	
• The Language of	a	DFA	𝐴	

𝐿(𝐴) 	 = 	{𝑤 ∶	the	unique	 run	of	𝐴	on	𝑤	is	accepting}.	
• A	language	is	called	regular if	it	is	accepted	by	a	finite	state	automata.

Examples

• Recognize	language	of	strings	of	an	even	length.
• Recognize	language	of	binary	strings	with	an	even	number	of	0’s.
• Recognize	language	of	binary	strings	with	an	odd	number	of	0’s.	
• Recognize	language	of	strings	containing	your	identikey.
• Recognize	language	of	binary	(decimal)	strings	multiple	of	2.	
• Recognize	language	of	binary	(decimal)	strings	multiple	of	3.	
• Recognize	language	of	binary	strings	with	equal	number	of	0’s	and	1’s.	
• Recognize	language	of		binary	strings	of	the	form	0616
• Recognize	language	of	binary	strings	with	a	prime	number	of	1’s	
• Recognize	language	of	binary	strings	that	end	with	a	0.
• Recognize	language	of	binary	strings	that	begin	with	a	1.

Properties	of	Regular	Languages

• Let	A	and	B	be	languages (remember	they	are	sets).	We	define	the	
following	operations	on	them:	
• Union:	𝐴 ∪ 𝐵 = {𝑤 ∶ 	𝑤 ∈ 𝐴	or	𝑤 ∈ 𝐵}	
• Concatenation:	𝐴𝐵 = {𝑤𝑣 ∶ 	𝑤 ∈ 𝐴	and	𝑣 ∈ 𝐵}	
• Closure (Kleene Closure,	or	Star):

A∗ 	= {𝑤E𝑤F…𝑤h ∶ 	𝑘 ≥ 0	and	𝑤W 	 ∈ 𝐴}.	
Or,		𝐴∗ =	∪Wj_ 𝐴W	where	𝐴_ 	= ∅, 𝐴E 	= 𝐴, 𝐴F 	= 𝐴𝐴,	and	so	on.	

• Define	the	notion	of	a	set	being	closed	under	an	operation	(say,	
ℕ	and	×).	

Theorem.	Regular	languages	are	closed	under	union,	 intersection,	concatenation,	and	Kleene star.

