
CSCI	3434:	Theory	of	
Computation

Lecture	01:	Introduction

Ashutosh	Trivedi	(ashutosh.trivedi@colorado.edu)
Department	of	Computer	Science,	University	of	Colorado	Boulder

Logistics

• Web-page	http://www.cs.colorado.edu/~astr3586/courses/csci3434.html
• Instructor	and	grading	assistant

o Ashutosh	Trivedi	(ashutosh.trivedi@colorado.edu)
o Krithika Balan (krithika.balan@colorado.edu)

• Lectures
o Tuesday	(2:00pm	– 3:15pm)
o Thursday	(2:00pm	– 3:15pm)

• Office	hours
oMonday	(10:00am	– 11:00am)	or	by	appointment

• Venue
o Class	meeting	location:	ECCR	155
o Office	location:	ECCS	121C

Logistics	(Contd.)

• Requisite
o Discrete	Structures	(CSCI	2824)	
http://www.cs.colorado.edu/~yuvo9296/courses/csci2824/index.html

o Algorithms	(CSCI	3104)
• Textbook

oMichael	Sipser.	Introduction	to	the	Theory	of	Computation,	PWS	Publishing	
Company.	

o 2nd or	3rd edition
• Other	supplemental	materials

o Online	notes	and	readings	distributed	by	instructor
• Moodle	(CSCI3434-F16)

Logistics:	Grading

Find	 this	week’s	assignment	on	
Moodle	on	prerequisites!

Theory	of	Computation

What	are	the	fundamental	capabilities	 and	limitations	 of	computers?

Theory	of	Computation

Mechanical	
computer	

“Antikythera”		(2	BC)	

Electro-mechanical	
Computer	

“Bombe” (1938)

First	Electronic	
general-purpose	computer

“ENIAC”				 (1946) Datacenters	
Google	 (Now)

Theory	of	Computation

What	are	the	fundamental	capabilities	 and	limitations	 of	computation?
• What	do	we	mean	by	computation?	
• What	is	a	problem?		
• Are	all	problems	computable?
• What	is	an	“efficient”	computation?
• Are	some	problems	inherently	more	difficult	than	others?

Theory	of	Computation

What	are	the	fundamental	capabilities	 and	limitations	 of	computers?
• How	do	we	model	“computational	machines”?
• Are	all	computational	machines	equally	powerful?	
• Why	to	study	computationally	less	powerful	models?
• Why	a	practically-oriented	computer-programmer	should	learn	theory	of	
computation?

Theory	of	Computation
Automata	Theory

o Formalization	of	the	notion	 of	problems	via formal	
languages

o Formalization	of	the	notion	 of	computation	using	"abstract	
computing	 devices"	called automata

o Understanding	a	hierarchy	of	classes	of	problems	or	formal	
languages	(regular,	 context-free,	context-sensitive,	decidable,	
and	undecidable)

o Understanding	a	hierarchy	of	classes	of	automata	(finite	
automata,	pushdown	 automata,	and	Turing	machines)

o Understanding	applications	to	pattern	matching,	parsing,	
and	programming	 languages

Computability	Theory

Complexity	Theory

Theory	of	Computation
Automata	Theory

Computability	Theory
o Understanding	Church-Turing	thesis	(Turing	machines	as	a	

notion	of	"general-purpose	 computers")
o Understanding	 the	concept	of reduction ,	i.e.,	solving	a	

problem	using	a	solution	 (abstract	device)	for	a	different	
problem

o Understanding	 the	concept	of undecidability ,	i.e.,	when	a	
problem	can	not	be	solved	using	computers

Complexity	Theory

Theory	of	Computation
Automata	Theory

Computability	Theory

Complexity	Theory
o Complexity	classes :	how	to	classify	decidable	problems	

based	on	their	time	and	space	requirements
o Complexity	classes	P		and	NP	
o When	a	problem	 is	called intractable (NP-completeness)
o Using	reductions	 to	prove	problems	 intractable
o Space-complexity	classes	L	and	NL,	PSPACE,	and	so	on

Theory	of	Computation:	Schedule

• Week	1	– Week	7	:	Automata	Theory	(In-Class	Quiz	I)
• Week	7	– Week	11:	Computability	Theory	(In-Class	Quiz	II)
• Week	11	– Week	16:	Complexity	Theory	(In-Class	Quiz	III)
• Week	16:	Special	Topic

Part	I:	Automata	Theory	

Introduction	to	Automata	Theory

What’s	an	automaton?
1. A	moving	mechanical	device	made	in	imitation	of	a	human	being.	
2. A	machine that	performs	a	function according	to	a	predetermined	set	of	

coded	instructions.	

Introduction	to	Automata	Theory

• Finite	instruction	machine	with	finite	memory	(Finite	State	Automata)

S C

No_coin

coin

Not_ready

Ready_dispense

start

Introduction	to	Automata	Theory

• Finite	instruction	machine	with	unbounded	memory (Turing	machine)	

P C

b/a,	
move_right

b/a,	move_right

a/b,	move_left

a/b,	move_left

start

a b b a b b b ….....

Finite	State	Automata

• Introduced	first	by	two	neuro-psychologists	Warren	S.	McCullough	
and	Walter	Pitts	in	1943	as	a	model	for	human	brain!	

• Finite	automata	can	naturally	model	microprocessors and	even	
software	programs	working	on	variables	with	bounded	domain	

• Capture	so-called	regular	sets of	sequences	that	occur	in	many	
different	fields	(logic,	algebra,	regular	Expressions)	

• Nice	theoretical	properties	
• Applications	in	digital	circuit/protocol	verification,	compilers,	
pattern	recognition,	and	so	on.

S C

No_coin

coin

Not_ready

Ready_dispense

start

Turing	Machines

• Introduced	by	Alan	Turing	as	a	simple	model	capable	of	
expressing	any	imaginable	computation	

• Turing	machines	are	widely	accepted	as	a	synonyms	for	
algorithmic	computability	(Church-Turing	thesis)	

• Using	these	conceptual	machines	Turing	showed	that	
first-order	 logic	validity	problem	is	non-computable.	

• I.e.	there	exists	some	problems	for	which	you	can	never	write	a	
program	no	matter	how	hard	you	try!	

P C

b/a,	
move_right

a/b,	move_left

a/b,	move_left

start

a b b a b b b ….....

Discrete	Mathematics:	Review

Discrete	Mathematics:	Review

• A	set is	a	collection	of	objects,	e.g.	
• 𝐴 = 𝑎, 𝑏, 𝑐, 𝑑 and	𝐵 = 𝑏, 𝑑
• Empty	set	∅ = {} (why	it	is	not	same	as	{∅})
• ℕ = 0, 1, 2, 3,… and	ℤ = {… ,−2,−1, 0, 1, 2,… }
• ℚ	is	the	set	of	rational	numbers.	
• ℝ	is	the	set	of	real	numbers.

• 𝑎 ∈ 𝐴 :	element of	a	set,	belongs	to,	or	contains
• Subset of	𝐴 ⊆ ℕ, or	proper	subset	of	𝐴 ⊂ ℕ
• Notions	of	set	union,	intersection,	difference,	and	disjoint
• Power	set	2: of	a	set	𝐴
• Partition	of	a	set	

Discrete	Mathematics:	Review	(Contd.)

• A	ordered	pair	is	a	pair	 𝑎, 𝑏 of	elements	with	natural	order
• Similarly	we	define	𝑛-tuples,	triplets,	and	so	on
• Cartesian	product	A×𝐵 of	two	sets	is	the	set	of	orderd pairs	

A×𝐵 = 𝑎, 𝑏 ∶ 𝑎 ∈ 𝐴	𝑎𝑛𝑑	𝑏 ∈ 𝐵 	
• Binary	relation	𝑅 on	two	sets	𝐴	𝑎𝑛𝑑	𝐵	𝑖𝑠	𝑎	𝑠𝑢𝑏𝑠𝑒𝑡	𝑜𝑓	A×𝐵	
• A function (or	mapping)	𝑓 from	set	𝐴 to	𝐵 is	a	binary	relation	s.t.

for	all	𝑎 ∈ 𝐴	we	have	that	(𝑎,𝑏) ∈ 𝑓	and	(𝑎,𝑏′) ∈ 𝑓	implies	that	𝑏	 = 	𝑏ʹ.	
• We	often	write	𝑓(𝑎)	for	the	unique	element	b	such	that	 𝑎, 𝑏 ∈ 𝑓.	

Discrete	Mathematics:	Review	(Contd.)

• Function	𝑓: 𝐴 → 𝐵	is	one-to-one if	for	any	two	distinct	elements	
𝑎, 𝑏 ∈ 𝐴	we	have	that	𝑓 𝑎 ≠ 𝑓(𝑏).	
• Function	𝑓: 𝐴 → 𝐵 is	onto if	for	every	element	𝑏 ∈ 𝐵 there	is	an	
element	𝑎 ∈ 𝐴	such	that	𝑓(𝑎) = 𝑏.	
• Function	𝑓: 𝐴 → 𝐵	is	called	bijection if	it	is	both	one-to-one	and	onto.
• Recall	definitions	of	
• Reflexive,	Symmetric,	and	Transitive relations,	
• and	Equivalence relation.	

Cardinality	of	a	Set

• Cardinality |𝑆|	of	a	set	𝑆,	e.g.	|𝐴| 	= 	4	and	 ℕ 	is	an	infinite	
number.	
• Two	sets	have	same	cardinality	if	there	is	a	bijection between	them.	
• A	set	is	countably infinite	(or	denumerable)	if	it	has	same	
cardinality	as	ℕ.	
• A	set	is	countable if	it	is	either	finite or	countably infinite.	
• A	transfinite	number	is	a	cardinality of	some	infinite	set.	

Theorem:	Cardinality

Theorem	
1. The	set	of	integers	is	countably infinite.	(idea:	interlacing)	
2. The	union	of	a	finite	number	of	countably infinite	sets	is	countably infinite	

as	well.	(idea:	dove-tailing)	
3. The	union	of	a	countably infinite	number	of	countably infinite	sets	is	

countably infinite.	
4. The	set	of	rational	numbers	 is	countably infinite.	
5. The	power	set	of	the	set	of	natural	numbers	has	a	greater	cardinality	than	

itself.	(idea:	contradiction,	diagonalization)	

Cantor’s	Theorem

Theorem.	If	a	set	𝑆	is	of	any	infinite	cardinality	then its	power	set	
	2Q	has	a	greater	cardinality,	i.e.	|2Q|	>	| 𝑆	|.	

(hint:	happy,	sad	sets).

Corollary.	There	is	an	infinite	series	of	infinite	cardinals.

“Most	admirable	flower	of		mathematical	intellect”	--Hilbert

Existence	of	Problems	with	No	Program

• An	alphabet Σ = {𝑎, 𝑏, 𝑐}		is	a	finite	set	of	letters,	
• A	language is	a	set	of	strings	over	some	alphabet	
• Σ∗	is	the	set	of	all	strings	over	Σ,	e.g.	𝑎𝑎𝑏𝑏𝑎𝑎 ∈ Σ∗,	
• A	language L	over	Σ	is	then	a	subset	of	Σ∗,	e.g.,	
• 𝐿UVUW 	= {𝑤 ∈ Σ∗ 		 ∶ 	𝑤	𝑖𝑠	𝑜𝑓	𝑒𝑣𝑒𝑛	𝑙𝑒𝑛𝑔𝑡ℎ}	
• 𝐿]^_^ 		 = {𝑤 ∈ Σ∗			: 	𝑤	𝑖𝑠	𝑜𝑓	𝑡ℎ𝑒	𝑓𝑜𝑟𝑚	𝑎W𝑏W	𝑓𝑜𝑟	𝑛 ≥ 0}	

• We	say	that	a	language L is	decidable if	there	exists	a	program	𝑃d
such	that	for	every	member	of	𝐿 program	𝑃d returns	“true”,	and	for	
every	non-member	it	returns	“false”.	

Existence	of	Problems	with	No	Program

Theorem.	There	exists	some	undecidable	formal	languages.

Proof.	
1. The	number	of	programs	are	countably infinite,	why?	
2. Consider	the	set	of	languages	over	alphabet	{0, 1}.	
3. Notice	that	the	set	of	all	strings	over	 0, 1 is	countably infinite.	
4.	Set	of	all	languages	over	 0, 1 	is	the	power-set	of	the	set	of	all	strings	
5.	From	Cantor’s	theorem,	 it	must	be	the	case	that	for	some	languages	there	is	no	
recognizing	program.

