
Subgraph Sparsification
and Nearly Optimal Ultrasparsifiers

Alexandra Kolla
∗

School of Mathematics
Institute for Advanced Study

Princeton, NJ 08540
akolla@math.ias.edu

Yury Makarychev
Toyota Technological Institute

at Chicago
Chicago, IL 60637
yury@ttic.edu

Amin Saberi
†

Management Science and
Engineering Department

Stanford University
Stanford, CA 94305

saberi@stanford.edu

Shang-Hua Teng
‡

Dept of Computer Science
University of Southern

California
Los Angeles, CA 90089
shanghua@usc.edu

ABSTRACT
We consider a variation of the spectral sparsification prob-
lem where we are required to keep a subgraph of the origi-
nal graph. Formally, given a union of two weighted graphs
G and W and an integer k, we are asked to find a k-edge
weighted graph Wk such that G + Wk is a good spectral
sparsifer of G + W . We will refer to this problem as the
subgraph (spectral) sparsification. We present a nontrivial
condition on G and W such that a good sparsifier exists and
give a polynomial-time algorithm to find the sparsifer.

As a significant application of our technique, we show that
for each positive integer k, every n-vertex weighted graph
has an (n− 1 + k)-edge spectral sparsifier with relative con-

dition number at most n
k

log n Õ(log log n) where Õ() hides
lower order terms. Our bound nearly settles a question left
open by Spielman and Teng about ultrasparsifiers, which is
a key component in their nearly linear-time algorithms for
solving diagonally dominant symmetric linear systems.

We also present another application of our technique to
spectral optimization in which the goal is to maximize the
algebraic connectivity of a graph (e.g. turn it into an ex-
pander) with a limited number of edges.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algorithms

∗Research supported by NSF grant CCF-0832797.
†Research supported by AHPCRC and NSF
‡Research supported by NSF grant CCF-0635102.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’10, June 5–8, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-4503-0050-6/10/06 ...$10.00.

General Terms
Algorithms, Theory

Keywords
Graph sparsification, ultrasparsifiers, graph Laplacian, ap-
proximation algorithm

1. INTRODUCTION
Sparsification is an important technique for designing ef-

ficient graph algorithms, especially for dense graphs. Infor-
mally, a graph G̃ is a sparsifer of G if they are similar in
a particular measure (which is important to the application

that one has in mind), and that G̃ has linear or nearly linear
number of edges. Various notions of graph approximation
and sparsification have been considered in the literature. For
example, Chew’s [6] spanners (for shortest path planning)
have the property that the distance between every pair of
vertices in G̃ is approximately the same as in G. Benczur
and Karger’s [4] cut-sparsifiers (for cuts and flows) have the
property that the weight of the boundary of every set of
vertices is approximately the same in G as in G̃.

In this paper, we will mainly be interested in the spectral
notion of graph similarity introduced by Spielman and Teng
[18], [20]: we say that a weighted undirected graph H is a
κ-approximation of another G if for all x ∈ RV ,

xTLGx ≤ xTLG̃x ≤ κxTLGx (1)

where for a weighted undirected graph G, LG is the Lapla-
cian matrix of G defined as the following: For each i, LG(i, i)
is equal to the sum of weights of all edges incident to vertex
i and for i 6= j, LG(i, j) = −wi,j , where wi,j is the weight
on edge (i, j).

In [18, 20], the following spectral sparsification problem is
considered. Given a weighted graph G = (V, E, w), an inte-

ger m̃ ≤ |E|, and κ ≥ 1, find a graph G̃ = {V, Ẽ, w̃} such

that |Ẽ| ≤ m̃ and G̃ is a κ-approximation of G. We will re-
fer to this problem and its corresponding optimization prob-
lem as the Spectral Sparsification. Spielman and Teng
showed that every weighted graph has a nearly linear-sized

spectral sparsifier and gave a nearly linear-time algorithm
for computing such a sparsifier. Recently, Batson, Spiel-
man, and Srivastava [3] gave a beautiful, polynomial-time
construction to produce a linear-sized spectral sparsifier.

In this paper, we introduce a variation of the spectral spar-
sification problem which we will refer to as the Subgraph
Sparsification. In our version, we are given two weighted
graphs G and W , an integer k and κ ≥ 1. The goal is to
find a k-edge weighted graph Wk such that (G+Wk) is a κ-
approximation of (G+W). The challenge in the new version
of the sparsification problem is that we have to respect part
of the graph, i.e., G, and only modify part of graph given in
W .

As the main technical contribution of the paper, we give a
nontrivial condition about G and W such that a good sparsi-
fier exists. Our proof critically uses the intuition of Batson,
Spielman, and Srivastava [3], that uses potential functions
that guide an incremental process for selecting the edges of
the sparisifier. We will refer to that as as the BSS process.
We have enhanced their approach with new understanding
about subspace sparsification and spectral approximation.

Our challenge, at high level, is the following. The BSS
process uses two carefully chosen barriers (see Section 2) so
that at each step, all eigenvalues can be kept far enough
from these barriers. They have Θ(n) edges to select. So
they consider the entire n-dimensional space and have step
size Θ(1/n) on these barriers.

On the other hand, we can only add k edges, where k can
be arbitrarily smaller than n. The addition of each edge
can only increase smallest eigenvalue to the second small-
est eigenvalue. Therefore the addition of k edges can only
improve the subspace defined by the k smallest eigenvalue.
Now, the critical part of the argument is that to build a
good sparsifier, we need to ensure that the addition of the
edges does not increase the high spectra by too much. So
in our incremental process, we need to keep track of two
subspaces, a fixed one defined by the k smallest eigenvalues
and a floating one defined by the higher spectra.

We developed an analysis for performing spectral analysis
in the projection of a sequence of two subspaces, which might
be interesting on its own right. Our analysis also provide a
nice example for using majorization.

Our ability to conduct sparsification on a subgraph en-
ables us to obtain improved results for a few problems on
spectral optimization. The first application that we con-
sider is the problem of finding ultrasparsifiers as defined in
Spielman and Teng [18]. For parameters κ ≥ 1 and k ≥ 1,
a weighted undirected graph U is a (κ, k)-ultrasparsifier of
another graph G, if U has at most n − 1 + k edges, and G
is a κ-approximation of U . Ultrasparsifiers are essential in
the application of the preconditioning techniques for solv-
ing linear systems [18, 20]. It has been shown in [18] that

every weighted undirected graph G has a (n
k

logO(1) n, k) ul-
trasparsifiers, for any k.

As an application of our subgraph sparsification technique,
we will show that for every positive integer k, every n-vertex
weighted graph has a (n

k
log n Õ(log log n), k)-ultrasparsifier.

Our bound almost settles the previous question about ultra-
sparsifiers left open by Spielman and Teng.

At high level, our solution to ultrasparsification is quite
simple, once we have our subgraph sparsification result. Given
a weighted graphG, we first construct a low-stretch spanning
tree [2, 7, 1] T of G. We then apply an elegant result of Spiel-

man and Woo [21] which states that the sum of the relative
condition numbers of LG and LT is equal to the total stretch
to embed G onto T . We will also use Spielman–Woo’s tail
distribution bound on the number of relative eigenvalues of
LG and LT that are larger than a given parameter.

Algorithmically, we start with the best available [1] low-
stretch spanning tree T of G whose total stretch is
n log n Õ(log log n). We then consider the subgraph spar-
sification problem defined by T and W = k

n log nÕ(log log n)
G.

We apply the structure theorem of Spielman and Woo [21]
to show that (T, W) satisfy our condition for subgraph spar-
sification and apply our result to show that there exists a
k-edge weighted graph Wk whose edges are in W such that
T +Wk is a spectral approximation of T +W . It is then not
hard to prove that T + Wk is an a (n

k
log n Õ(log log n), k)-

ultrasparsifier.
As another application of our technique on subgraph spar-

sification, we consider the following spectral optimization
problem studied in [5]: Given a graph G and a parameter
k, we are asked to find k edges amongst a set of candidate
edges to add to G so as to maximize its algebraic connec-
tivity. Algebraic connectivity has emerged as an important
parameter for measuring the robustness and stability of a
network and is an essential factor in the performance of var-
ious search, routing and information diffusion algorithms.

The spectral optimization considered in this paper is known
to be NP-hard [15] and no approximation guarantee for it
was known prior to our work. We give an SDP-based ap-
proximation algorithm for the problem. Our techniques for
subgraph sparsification enable us to develop a novel round-
ing scheme in order to find a combinatorial solution. Since
the integrality gap of the SDP is unbounded, our analysis in-
volves adding a separate upper bound, which is roughly the
k-th largest eigenvalue of the Laplacian of G to approximate
the optimum solution.

2. PRELIMINARIES
Matrix Notation and Definitions. We write A � 0

to denote that symmetric matrix A is positive semidefinite;
similarly, we write A � B to denote that matrix A − B is
positive semidefinite.

We denote the (non-normalized) Laplacian matrix of a
graph G by LG. Recall that LG is the matrix with LG(i, i)
equal to the sum of weights of all edges incident to vertex
i, and LG(i, j) = −wij where wij is the weight of the edge
(i, j). For brevity, we write G1 � G2 to denote LG1 � LG2 .

For an n × n matrix A, let λmin(A) ≡ λ1(A) ≤ λ2(A) ≤
· · · ≤ λn(A) ≡ λmax(A) be the set of eigenvalues in the
increasing order.

We denote the column space of a matrix A (which is equal
to the image or range of the corresponding linear operator)
by Im A. We denote the kernel or nullspace of A by ker A.
Let A† be the pseudoinverse of A. If A is symmetric, A† is
also symmetric and AA† = A†A = PIm(A), where PIm(A) is

the orthogonal projection on Im(A). Let A • B ≡ tr AT B
be the Frobenius product of matrices A and B. We de-
fine the condition number of a non-singular matrix A as
κ = ‖A‖‖A−1‖, which is equal to λmax(A)/λmin(A) if A is
a positive definite matrix. For positive definite matrices A
and B with Im A = Im B, we define the relative condition

number as

κ(A, B) = max
x/∈ker B

xT Ax

xT Bx
· max

x/∈ker A

xT Bx

xT Ax
.

Ultrasparsifiers. We say that a graph is k–ultrasparse
if it has at most n − 1 + k edges. We note that a spanning
tree is 0–ultrasparse. A (κ, k)-ultrasparsifier of a graph G =
(V, E, w) is a k–ultrasparse subgraph of G such that U �
G � κ · U [18].

3. MATRIX SPARSIFIERS
In this section, we prove an analog of the sparsification

theorem of Batson, Spielman, and Srivastava [3].

Definition 3.1 (Graph Patch). Let G be a (weighted)
graph. A graph W on the vertices of G is a (k, T, λ∗)-patch
for G if the following properties hold1,

1. λk+1(LGL†G+W) ≡ λk+1((L†G+W)1/2LG(L†G+W)1/2) ≥
λ∗;

2. tr(LWL†G+W) ≤ T .

We prove that for every patch, there exists a “patch spar-
sifier” supported on O(k) edges. Specifically, we prove the
following theorem.

Claim 3.2. Let W = (V, EW , {we}e∈EW) be a (k, T, λ∗)-
patch for G with edge weights we and N ≥ 8k. Then there
is a weighted graph Wk = (V, EWk , {w̃e}e∈EWk

) with edge
weights w̃e such that

1. Wk has at most N edges; EWk ⊆ EW .

2. c1 min(N/T, 1)λ∗LG+W � LG+Wk � c2LG+W , for some
absolute constants c1 and c2.

3.
P

e∈EWk
w̃k ≤ min(1, N/T)

P
e∈EW

we.

We say that Wk is a patch sparsifier of W with respect to
G.

The claim will follow immediately from the following the-
orem, which is is of independent interest. We will also show
another (related) application of this theorem in Section 5.

Theorem 3.3. Suppose we are given a positive definite
n × n matrix X and a sequence of matrices Yi = viv

T
i (i =

1, . . . , m) with

X +

mX
i=1

Yi = M∗,

and λmax(M
∗) ≤ 1. Additionally, suppose each matrix Yi

has cost costi ≥ 0 and
Pm

i=1 costi = 1. Let λ∗ = λk+1(X),
and T = dtr(M∗−X)e. Then for every N > 8k there exists
a set of weights wi with |{wi : wi 6= 0}| = N such that the
matrix M = X +

Pm
i=1 wiYi satisfies,

c1 min(N/T, 1) · λ∗ · λmin(M∗) ≤ λmin(M) ≤ λmax(M) ≤ c2,

where c1 and c2 are some absolute constants, and

mX
i=1

wicosti ≤ min(1, N/T).

1λk+1(LGL†G+W) = λk+1((L†G+W)1/2LG(L†G+W)1/2) since
λi(AB) = λi(BA) for every two square matrices A and B

Proof Overview. Our proof closely follows the approach
of Batson, Spielman, and Srivastava [3]. We construct ma-
trix M in N steps; at each step we choose an index i and
weight wi and add wiYi to the sum X +

Pm
i=1 wiYi. Recall

that Batson, Spielman, and Srivastava define two “barriers”
l and u and maintain the property that all eigenvalues of M
lie between l and u. At each step, they increase l and u and
update matrix M so that this property still holds. Finally,
the ratio between u and l becomes very close to 1, which
means that λmin(M) is very close to λmax(M). During this
process, they keep track not only of the smallest and largest
eigenvalues of M but of all n eigenvalues to avoid accumula-
tion of eigenvalues in neighborhoods of l and u. To this end,
they define two potential functions, the lower potential func-
tion Φl(M) =

Pn
i=1

1
λi(M)−l

and the upper potential func-

tion Φu(M) =
Pn

i=1
1

u−λi(M)
, and then ensure that Φl(M)

and Φu(M) do not increase over time. That guarantees that
all eigenvalues of M stay far away from l and u.

In our proof, however, we cannot keep an eye on all eigen-
values. After each step, only one eigenvalue increases, and
thus we need θ(n) steps to increase all eigenvalues partici-
pating in the definition of Φl(M). But our goal is to “patch”
X in roughly k steps. So we focus our attention only on k
smallest and T largest eigenvalues.

Let S be the eigenspace of X corresponding to k smallest
eigenvalues, and PS be the projection onto S. We define the
lower potential function as follows,

Φl(A) = tr(PS(A− lI)PS)† =

kX
i=1

1

λi(A|S)− l
,

where A|S denotes the restriction of A to the space S (A|S
is a k × k matrix). Note that the space S is fixed, and the
eigenvector corresponding to the smallest eigenvalue will not
necessarily lie in S after a few steps. We want to ensure that
after N steps,

mX
i=1

wiYi

��
S
� c min(N/T, 1)

mX
i=1

Yi

��
S

= c min(N/T, 1)(M∗−X)
��
S
,

or in other words, λmin((Z(
Pm

i=1 wiYi)Z)
��
S
) ≥ c min(N/T, 1),

where Z =
�
(PS(M∗ −X)PS)†

�1/2
. To this end, we show

how to update M and l so that Φl(Z(
Pm

i=1 wiYi)Z) does
not increase, and l equals c min(N/T, 1) after N steps. It
remains to lower bound λmin(M) in the entire space. We
know that all eigenvalues of X (and therefore, of M) in S⊥

are at least λ∗. We show that that together with an upper
bound on λmax(M) implies that λmin(M) ≥ c1 min(N/T, 1) ·
λ∗λmin(M∗) (the product of the lower bounds on λmin in
spaces S and S⊥ divided by the upper bound on λmax).

Similarly, we amend the definition of the upper potential
function. Since we need to bound λmax in the entire space,
we cannot restrict Φu(M) to a fixed subspace. For a ma-
trix A, we consider the eigenspace of A corresponding to
its largest T eigenvalues. Denote it by LA(A); denote the
projection onto L(A) by PL(A). Then

Φu(A) = tr(PL(A)(uI −A)−1PL(A)) = tr(PL(A)(uI −A)PL(A))
†

=

NX
i=n−T+1

1

u− λi(A)
.

Note that both definitions of Φu(A) — in terms of regu-
lar inverse and in terms of pseudoinverse — are equivalent

since L(A) is an invariant subspace of A. However, Φl(A)
is not equal to tr(PS(A− lI)−1PS) in general since S is not
necessarily an invariant subspace of A.

Our algorithm and analysis are similar to those of Batson,
Spielman, and Srivastava [3]. However, several complica-
tions arise because we are controlling eigenvalues in different
subspaces and, moreover, one of these subspaces, L(A), is
not fixed.

Let us summarize the proof. We construct the matrix M

iteratively in N steps. Let A(q) be the matrix and w
(q)
i be

the weights after q steps. We define an auxiliary matrix B(q)

as Z(A(q) −X)Z. We have,

A(q) = X +
X

i

w
(q)
i Yi;

B(q) =
X

i

w
(q)
i ZYiZ = Z(A(q) −X)Z.

We will ensure that the following properties hold after each
step (for some values of constants l0, δL, u0, δU , εL, εU ,
which we will specify later).

1. Φl0(B
(0)) ≤ εL and Φu0(A(0)) ≤ εU .

2. Each matrix A(q) and B(q) is obtained by a rank-one
update of the previous one:

A(q+1) = A(q) + tYi,

B(q+1) = B(q) + tZYiZ

for some i.

3. Lower and upper potentials do not increase. Namely,
for every q = 0, 1, . . . , N ,

Φu0+(q+1)δU (A(q+1)) ≤ Φu0+qδU (A(q)) ≤ εU and

Φl+(q+1)δL
(B(q+1)) ≤ Φl0+qδL(B(q)) ≤ εL.

4. At each step q, λmin(B(q)
��
S
) > l ≡ l0 + qδL and

λmax(A
(q)) < u ≡ u0 + qδU . In particular, this condi-

tion ensures that all terms in the definitions of upper
and lower potentials are positive.

5. At each step q, the total cost is at at most q/ max(N, T):P
w

(q)
i costi ≤ q/ max(N, T).

We present the complete proof in Sections 3.2 and 3.3. In
Section 3.2, we first find conditions under which we can up-
date A(q) and u (Lemma 3.10), and B(q) and l (Lemma 3.11).
Then we show that both conditions can be simultaneously
satisfied (Lemma 3.12). In Section 3.1, we prove several the-
orems that we need later to deal with a non-fixed subspace
L(A). Finally, in Section 3.3, we combine all pieces of the
proof together.

3.1 Some Basic Facts about Matrices

3.1.1 Sherman–Morrison Formula
We use the Sherman–Morrison Formula, which describes

the behavior of the inverse of a matrix under rank-one up-
dates. We first state the formula for regular inverse [8],
and then we show that a similar expression holds for the
pseudoinverse.

Lemma 3.4 (Sherman–Morrison Formula). If A is
a nonsingular n × n matrix and Y = vvT is a rank-one
update, then

(A + Y)−1 = A−1 − A−1Y A−1

1 + A−1 • Y

Lemma 3.5. If A is a symmetric (possibly singular) n×n
matrix, Y = vvT is a rank-one update, then

(A + PY P)† = A† − A†Y A†

1 + A† • Y
,

where P is the orthogonal projection on Im(A).

Proof. Let v̄ = Pv and Ȳ = PY P = v̄v̄T . Note that
A†Y A† = A†Ȳ A†, since PA† = P , and

A† • Ȳ = tr A†Ȳ = tr A†(PY P) = tr(PA†P)Y = A† • Y.

We need to verify that

(A+Ȳ)

�
A† − A†Ȳ A†

1 + A† • Ȳ

�
=

�
A† − A†Ȳ A†

1 + A† • Ȳ

�
(A+Ȳ) = P.

Since A is a symmetric matrix, AA† = A†A = P . Since
P 2 = P , PȲ P = Ȳ and Ȳ A†Ȳ = v̄v̄T Av̄v̄T = v̄(A• Ȳ)v̄T =
(A • Ȳ)Ȳ . We calculate,

(A + Ȳ)

�
A† − A†Ȳ A†

1 + A† • Ȳ

�
=

AA† + Ȳ A† − P̄ (Y A† + Ȳ A†Ȳ A†)

1 + A† • Ȳ

= P + Ȳ A† − (1 + A† • Ȳ)Ȳ A†

1 + A† • Ȳ

= P + Ȳ A† − Ȳ A† = P.

Similarly, (A† − A†Ȳ A†

1+A†•Ȳ
)(A + Ȳ) = P .

3.1.2 Majorization

Lemma 3.6 (Majorization). For every positive semi-
definite matrix A, every projection matrix P , and every r ∈
{1, . . . , n}

nX
i=n−r+1

λi(A) ≥
nX

i=n−r+1

λi(PAP). (2)

In particular, λmax(A) ≥ λmax(PAP).

Proof. Let e1, . . . , en be an orthonormal eigenbasis of A
so that ei has eigenvalue λi(A). Similarly, let ẽ1, . . . , ẽn be
an orthonormal eigenbasis of PAP so that ẽi has eigenvalue
λi(PAP). Write

ẽi =

nX
j=1

〈ej , ẽi〉ej .

Note that if λi(PAP) 6= 0 then ẽi ∈ Im(PAP) ⊆ Im(P) and
P ẽi = ẽi. Then

λi(PAP) = ẽT
i PAP ẽi = ẽiAẽi =

nX
j=1

〈ej , ẽi〉2λj(A).

If λi(PAP) = 0 then trivially

λi(PAP) = 0 ≤
nX

j=1

〈ej , ẽi〉2λj(A).

Therefore,

nX
i=n−r+1

λi(PAP) ≤
nX

i=n−r+1

nX
j=1

〈ej , ẽi〉2λj(A)

=

nX
j=1

nX

i=n−r+1

〈ej , ẽi〉2
!

λj(A).

That is,
Pn

i=n−r+1 λj(PAP) is at most the sum of λj(A)

with weights
Pn

i=n−r+1〈ej , ẽi〉2. The total weight of all
λ1(A), . . . , λn(A) is r:

nX
i=n−r+1

nX
j=1

〈ej , ẽi〉2

| {z }
‖ẽi‖2

=

nX
i=n−r+1

‖ẽi‖2 = r.

The weight of each λj(A) in the sum is at most 1:

nX
i=n−r+1

〈ej , ẽi〉2 ≤
nX

i=1

〈ej , ẽi〉2 = 1.

Therefore, the sum does not exceed the sum of the r largest
eigenvalues

Pn
i=n−r+1 λr(A).

Corollary 3.7. For every positive semidefinite matrix
A, every projection matrix P and u > λmax(A), the following
inequality holds.

Φu(PAP) =

nX
i=n−T+1

1

u− λi(PAP)

≤
nX

i=n−T+1

1

u− λi(A)
= Φu(A)

Proof. The statement follows from the Karamata Ma-
jorization Inequality. The inequality claims that for every
two non-increasing sequences that satisfy (2) and for every
increasing convex function f ,

nX
i=n−k+1

f(λi(A)) ≥
nX

i=n−k+1

f(λi(PAP)).

Plugging in f(x) = 1
u−x

(defined on (0, u)), we obtain the
desired inequality.

Lemma 3.8. Let A be a positive semidefinite matrix such
that A � In. Assume Tr(A) ≤ r ∈ N. Then for every

positive semidefinite matrix M , A •M ≤
PN

i=N−r+1 λi(M).

Proof. By von Neumann’s inequality [14],

A •M = tr(AM) ≤
nX

i=1

λi(A)λi(M).

Since
Pn

i=1 λi(A) ≤ r and all λi(A) ≤ 1, we can easily
see that the above product achieves its maximum when the
largest r eigenvalues of A are 1 and the rest are 0. In this
case, we have,

A •M ≤
nX

i=1

λi(A)λi(M) =

nX
i=n−r+1

λi(M).

As a corollary we get the following result.

Corollary 3.9. Let X, M∗ and T be as in Theorem 3.3.
Then for any positive semidefinite matrix U , we have U •
(M∗ −X) ≤

Pn
i=n−T+1 λi(U).

3.2 Barrier Shifts
In this section, we analyze how we can update matrices

A(q) and B(q), and increment barriers l and r so that the
upper and lower potentials do not increase. Let us think of
Φu(A) as a function of an n2 dimensional vector (consisting
of entries of A). Then in the first approximation Φu+δU (A+
tY) ≈ Φu+δU (A)+ tY •U , where U is the gradient of Φu+δU

at A (U is an n × n matrix). Thus the potential function
does not increase, Φu+δU (A + tY) ≤ Φu(A), roughly when
tY • U

Φu(A)−Φu+δU (A)
≤ 1.

Similarly, Φl+δL(B + tY) ≤ Φl(B), roughly when tY •
L

Φl+δL
(B)−Φl(B)

≥ 1, where L is the gradient of Φl+δL at B.

Following [3], we make these statements precise (we need
to take into account lower order terms). We define matrices
UA and LB ,

UA =
((u + δU)I −A)−2

Φu(A)− Φu+δU (A)
+ ((u + δU)I −A)−1;

LB =
(PS(B − (l + δL)I)PS)†2

Φl+δL(B)− Φl(B)
− (PS(B − (l + δL)I)PS)†

Lemma 3.10 (Upper Barrier Shift). Suppose
λmax(A) < u and Y = vvT is a rank-one update. If UA•Y ≤
1
t

then Φu+δU (A+tY) ≤ Φu(A) and λmax(A+tY) < u+δU .

Proof. Let u′ = u + δU and P = PL(A+tY). By the
Sherman–Morrison formula (Lemma 3.4), we can write the
updated potential as:

Φu+δU (A + tY) = tr P (u′I −A− tY)−1P

= tr P

�
(u′I −A)−1 +

t(u′I −A)−1Y (u′I −A)−1

1− t(u′I −A)−1 • Y

�
P

= tr P (u′I −A)−1P + tr
tP (u′I −A)−1Y (u′I −A)−1P

1− t(u′I −A)−1 • Y

≤ Φu+δU (PAP) +
t(u′I −A)−2 • Y

1− t(u′I −A)−1 • Y

≤ Φu+δU (A) +
t(u′I −A)−2 • Y

1− t(u′I −A)−1 • Y

= Φu(A)− (Φu(A)− Φu+δU (A)) +
(u′I −A)−2 • Y

1/t− (u′I −A)−1 • Y
.

Here, we used Corollary 3.7 for the inequality on line 4.
Substituting UA •Y ≤ 1/t gives Φu+δU (A+ tY) ≤ Φu(A).

The statement about λmax follows from continuity of eigen-
values.

Lemma 3.11 (Lower Barrier Shift). Suppose
λmin(B|S) > l + δL and Y = vvT is a rank-one update. If
LB•Y ≥ 1/t then Φl+δL(B+tY) ≤ Φl(B) and λmin((B + tY)|S)
> l + δL.

Proof. We proceed as in the proof for the upper poten-
tial. Let l′ = l+ δL and P = PS . By the Sherman–Morrison
formula for the pseudoinverse (Lemma 3.5), we have:

Φl+δL(B + tY)

= tr(P (B + tY − l′I)P)† = tr(P (B − l′I)P + tPY P)†

= tr(P (B − l′I)P)† − t tr((P (B − l′I)P)†Y (P (B − l′I)P)†)

1 + t(P (B − l′I)P)† • Y

= Φl(B) + (Φl+δL(B)− Φl(B))− t(P (B − l′I)P)†2 • Y

1 + t(P (B − l′I)P)† • Y

Note that matrix UA is positive semidefinite. Rearranging
shows that Φl+δL(B + Y) ≤ Φl(B) when LA(π) ≥ 1/t. It
is immediate that λmin(PS(A + tππT)PS) > l + δL since
λmin(PSAPS) > l + δL.

Now we prove that we can choose Yi and t so that condi-
tions of both lemmas are satisfied.

Lemma 3.12. (Both Barriers) If Φu(A) ≤ εU and Φl(B) ≤
εL and εU , εL, δU , δL satisfy

0 ≤ 1

δU
+ εU + max(N, T) ≤ 1

δL
− εL,

and X, Yi, costi, Z, T and N as in Theorem 3.3, M∗ −X
is non-singular on S, then there exists i and positive t for
which

LB • (ZYiZ) ≥ 1/t ≥ UA • Yi, and (3)

costi · t ≤ 1/ max(N, T). (4)

We will use the following lemma

Lemma 3.13.
Pm

i=1 UA • Yi ≤ 1
δU

+ εU and
Pm

i=1 LB •
(ZYiZ) ≥ 1

δL
− εL.

Proof. 1. We use Corollary 3.9 to bound the Frobenius
product of Yi with each of the two summands in the defini-
tion of UA (note that they are positive semidefinite), we getPm

i=1 UA • Yi equals

UA •
mX

i=1

Yi = UA • (M∗ −X)

=
((u + δU)I −A)−2

Φu(A)− Φu+δU (A)
• (M∗ −X)

+ ((u + δU)I −A)−1 • (M∗ −X)

≤
nX

i=n−T+1

λi

�
((u + δU)I −A)−2

Φu(A)− Φu+δU (A)

�

+

nX
i=n−T+1

λi

�
((u + δU)I −A)−1�

=

Pn
i=n−T+1

1
(u+δU−λi(A))2

Φu(A)− Φu+δU (A)

+

nX
i=n−T+1

1

(u + δU)− λi(A)

Note that the first term is at most 1/δU , since

nX
i=n−T+1

1

(u + δU − λi(A))2

≤
nX

i=n−T+1

1

(u− λi(A))(u + δU − λi(A))

=
1

δU

nX
i=n−T+1

�
1

u− λi(A)
− 1

(u + δU)− λi(A)

�

=
Φu(A)− Φu+δU (A)

δU

and the second term equals Φu+δU (A). Thus
Pm

i=1 UA•Yi ≤
εU + 1/δU .

For the second part, let P be the projection on Im(M∗ −
X). Since (M∗ − X) is non-singular on S, PPS = PS . We
have,

mX
i=1

LB • ZYiZ = LB •
mX

i=1

ZYiZ

= LB • Z(M∗ −X)Z = LB • P

= tr

�
(PS(B − (l + δL)I)PS)†2

Φl+δL(B)− Φl(B)
− (PS(B − (l + δL)I)PS)†

�

=

Pk
i=1 (λi(B|S)− (l + δL))−2

Φl+δL(B)− Φl(B)
−

kX
i=1

1

λi(B|S)− (l + δL)

≥ 1/δL − εL,

where the last line follows from Claim 3.6 in [3].

Proof Of Lemma 3.12. For the previous lemma, we get:

mX
i=1

(UA • Yi + max(N, T)costi) ≤
1

δU
+ εU + max(N, T)

≤ LB • (ZYiZ).

Thus for some i, UA • Yi + max(N, T)costi ≤ LB • (ZYiZ).
Letting t = (LB • (ZYiZ))−1, we satisfy (3) and (4).

3.3 Proof of Theorem 3.3
Now we are ready to prove Theorem 3.3. We assume that

M∗ − X is non-singular on S (which we can ensure by an
arbitrary small perturbation).

We start with A(0) = X, B(0) = 0 and all weights w
(0)
i =

0. We define parameters as follows,

δL = 1/(2max(N, T)), εL = 1/(4δL), l0 = −4kδL,

δU = 4δL, εU = 1/(4δL), u0 = 4TδL + 1,

so as to satisfy conditions of Lemma 3.12,

Φu(A(0)) = Φu(X) =

TX
i=1

1

u0 − λn+1−i(X)
≤ T/(u0−1) = εU ,

Φl(B
(0)) =

kX
i=1

1

0− l0
= −k/l0 = εL,

1/δU + εU + max(N, T) =
3

2
max(N, T) = 1/δL − εL.

Then we iteratively apply Lemma 3.12. At iteration q, we
find an index i and a positive t such that LB(q)(ZYiZ) ≥
1/t ≥ UA(q)(Yi), costi · t ≤ 1/ max(N, T), and increment

the weight of matrix Yi by t: w
(q+1)
i = w

(q)
i + t; update

l = l + δL and u = u + δU . The total cost increases by at
most 1/ max(N, T). Finally, after N iterations we obtain

matrices A(N) and B(N) with

λmax(A
(N)) ≤ u0 + NδU = 2(N + T)/ max(N, T) + 1 ≡ θmax

λmin(B(N)
��
S
) ≥ l0 + NδL = (N/2− 2k)/ max(N, T) ≡ θmin.

Now consider an arbitrary unit vector v. Let v = vS + vS⊥ ,
where vS ∈ S and vS⊥ ⊥ S. Since B(N) � θminPS and
vS ∈ S,

vT
S A(N)vS

= vT
S (X + (PS(M∗ −X)PS)1/2B(N)(PS(M∗ −X)PS)1/2)vS

≥ vT
S (X+(PS(M∗−X)PS)1/2θminPS(PS(M∗−X)PS)1/2)vS

= θminvT
S M∗vS + (1− θmin)vT

S XvS ≥ θminλmin(M∗)‖vS‖2.

On the other hand, vT
S⊥A(N)vS⊥ ≤ θmax‖vS⊥‖. Thus from

the triangle inequality for the norm induced by A(N), we get

(vT A(N)v)1/2 ≥ θ
1/2
minλmin(M)1/2‖vS‖ − θ1/2

max‖vS⊥‖

≥ θ
1/2
minλmin(M)1/2 − (θ1/2

max + θ
1/2
minλmin(M)1/2)‖vS⊥‖.

Since S is an eigenspace of X corresponding to k smallest
eigenvalues,

(vT A(N)v)1/2 ≥ (vT Xv)1/2 ≥ (vT
S⊥XvS⊥)1/2 ≥ λ∗

1/2‖vS⊥‖.

One of the two bounds above for (vT A(N)v)1/2 increases and
the other decreases as ‖vS⊥‖ increases. They are equal when

‖vS⊥‖ =
θ
1/2
minλmin(M∗)1/2

λ∗1/2 + θ
1/2
max + θ

1/2
minλmin(M∗)1/2

.

Therefore,

(vT A(N)v)1/2 ≥ θ
1/2
minλ∗1/2λmin(M∗)1/2

λ∗1/2 + θ
1/2
max + θ

1/2
minλmin(M∗)1/2

.

We conclude that λmin(A(N)) = minv:‖v‖=1 vT A(N)v is at
least

θminλ∗λmin(M∗)�
λ∗1/2 + θ

1/2
max + θ

1/2
minλmin(M∗)1/2

�2 .

Plugging in the values of parameters, we get the statement
of the theorem for M = A(N). The total cost is at most
N/ max(N, T) = min(1, N/T).

Finally, we prove Claim 3.2.

Proof Claim 3.2. Let V = Im(LG+W) = ker(LG+W)⊥.
Let Le be the Laplacian of the edge e. Define

X =
�
(L†G+W)1/2LG(L†G+W)1/2

� ���
V

,

Ye = we

�
(L†G+W)1/2Le(L†G+W)1/2

� ���
V

,

coste = we/

�X
d∈EW

wd

�
.

Since LG+
Pm

e∈EW
weLe = LG+W , we have X+

P
e∈EW

Ye =

I. By the definition of the (k, T, λ∗)-patch, tr(I − X) ≤ T
and λ∗ ≤ λk+1(X). We apply Theorem 3.3 to matrices X,
Ye and M∗ = I. We obtain a set of weights ρe — supported
on at most N edges — such that

c1 min(N/T, 1) · λ∗ ≤ λmin

�
X +

X
e∈EW

ρeYe

�

≤ λmax

�
X +

X
e∈EW

ρeYe

�
≤ c2,

Let w̃e = ρewe. Weights w̃i define subgraph Wk with at
most N edges. It follows that

c1 min(N/T, 1)λ∗LG+W � LG+Wk � c2LG+W .

The total weight of edges of Wk isX
e∈EW

ρewe = (
X

e∈EW

ρecoste)
X

d∈EW

wd ≤ min(1, N/T)
X

d∈EW

wd.

4. CONSTRUCTING NEARLY-OPTIMAL
ULTRASPARSIFIERS

We now apply our subgraph sparsification to build ul-
trasparsifiers. Recall that a weighted graph U is a (κ, k)-
ultrasparsifier of another graph G if U � G � κ · U and U
has only n− 1 + k edges, where n is the number of vertices
in U and G. The main result of this section is the following
theorem.

Theorem 4.1. For any integer k > 0, every graph has an
(n

k
log n Õ(log log n), k)–ultrasparsifier.

Our basic idea to build a good ultrasparsifier U is quite
simple. Without loss of generality, we can assume that G is
connected and has O(n) edges. Otherwise given a graph G,
we can first find a linear size sparsifier using [3], for each of
its connected components, and build a good ultrasparsifier
for each component. Because U is only k edges away from
a tree, our construction starts with good tree T . As it will
be much more clear below, the quality of a tree is measured
by its stretch, as introduced by Alon, Karp, Peleg and West
[2].

Suppose T is a spanning tree of G = (V, E, w). For any
edge e ∈ E, let e1, · · · , ek be the edges on the unique path
in T connecting the endpoints of e. The stretch of e w.r.t.
T is given by stT (e) = w(e)(

Pk
i=1

1
w(ei)

). The stretch of

the graph G with respect to T is defined by stT (G) =P
e∈E stT (e). Our construction will start with a spanning

tree with the lowest possible stretch. By [1], we can in poly-
nomial time grow a spanning tree T with

stT (G) = O(n log n log log n(log log log n)3).

Remark 4.2. For the sake of simplicity of the presenta-
tion, we will show the construction of ultrasparsifiers with
Θ(k) edges. We note that by choosing the appropriate con-
stants, the number of edges can be made exactly k.

Let κ = c1 · stT (G)/k for a sufficiently large constant c1.

Our job is to choose Θ(k) more weighted edges W̃ and set

U = T + W̃ such that c2 · U � G � κ · U , for a constant
c2. To this end, let W = (1/(c3κ)) · G, for some constant
c3. Then, G = c3κ · W � c3κ · (W + T). Also, because
T � G, we have T + W � (1 + 1/(c3κ))G � c4 · G, for a
constant c4. Therefore, if we can find a Θ(k)–edge subgraph

W̃ of W such that T + W̃ � Θ(1) · (T + W), we can then

build a n − 1 + Θ(k) edge graph U = T + W̃ satisfying
c2 ·U � G � κ ·U (if we choose our constants ci’s carefully).

To apply our subgraph sparsification results to construct
W̃ , we use the following structure result of Spielman and
Woo ([21]: Theorem 2.1 and Corollary 2.2).

Lemma 4.3 (Theorem 2.1 in [21]).

1. Tr(L†T
1/2LGL†T

1/2
) = stT (G).

2. For every t > 0, the number of eigenvalues of
(L†T)1/2LG(L†T)1/2 greater than t is at most stT (G)/t.

We now use Lemma 4.3 to prove the following lemma,
from which Theorem 4.1 follows directly.

Lemma 4.4. W is a (k, O(k), Θ(1))–patch for T .

Proof. Let λi = λi((L†T+W)1/2LT (L†T+W)1/2) be the i-
th eigenvalue, and yi be the corresponding eigenvector. Let

xi = L
1/2
T+W yi. Then,

λi = λi((L†T+W)1/2LT (L†T+W)1/2) =
xT

i LT xi

xT
i LT xi + xT

i LW xi

=
xT

i LT xi

xT
i LT xi + xT

i LGxi/(c3κ)
,

implying

xT
i LGxi

xT
i LT xi

=
1− λi

λi
c3κ =

�
1− λi

λi

�
c3c1

stT (G)

k
=

stT (G)
k

c1c3

λi
1−λi

It follows from the definition of λi that 0 ≤ λi < 1. Hence,
(1−λi−1)/λi−1 ≥ (1−λi)/λi. By Courant—Fischer theorem

and the property 2 of Lemma 4.3, we have k ≤ k
c1c3

λk+1
1−λk+1

.

Therefore, λk+1 ≥ c1c3
1+c1c3

= Θ(1). We also have,

tr
�
(L†T+W)1/2LW (L†T+W)1/2

�
≤ tr

�
(L†T)1/2LW (L†T)1/2

�
=

1

c3κ
tr
�
(L†T)1/2LG(L†T)1/2

�
≤ k

c3c1stT (G)
stT (G)

=
k

c3c1
= Θ(k).

We proved that W is a (k, O(k), Θ(1))–patch for T .

It is easy to see that the parameters of the ultrasparsifiers
we obtained are optimal, up to Õ(log n).

5. MAXIMIZING ALGEBRAIC CONNEC-
TIVITY BY ADDING FEW EDGES

In this section, we present an approximation algorithm
for the following problem: given a graph G = (V, Ebase),
a set of candidate edges Ecand, and a parameter k, add at
most k candidate edges to G so as to maximize its alge-
braic connectivity. In other words, find a subset E ⊂ Ecand

that maximizes λ2(LG+E). The problem was introduced by
Ghosh and Boyd [5], who presented a heuristic for it. It is
known that the problem is NP-hard [15]. But prior to this
work, no approximation algorithm was known for it.

We use two upper bounds for the cost of the combinato-
rial solution in order to prove an approximation guarantee:
one upper bound is the SDP value, λSDP , and the other
is λk+2(LG) (see Lemma 5.1). Note that neither of these
two bounds are good approximations for the value of the
optimum solution by themselves. For instance, if G con-
sists of n isolated vertices, (V, Ecand) is an expander, and
k < n, then the value of the combinatorial solution is 0 but
λSDP ∼ k/n. But the combination of these two bounds lead
to a good upper bound for the optimum solution λOPT .

For clarity and simplicity of exposition, we assume here
that (V, Ebase) and (V, Ecand) are bounded degree graphs
with the maximum degree ∆. Our algorithm uses a natural
semidefinite relaxation that was also used by Ghosh and
Boyd [5]. We introduce a variable we (the weight of the edge
e) for each candidate edge e ∈ Ecand; add constraints that
all edge weights are between 0 and 1, and the total weight is
at most k. Then we require that λ2(LG +

P
e weLe) ≥ λSDP

(where Le is the Laplacian of the edge e). We do that by
adding an SDP constraint LG +

P
e weLe � λSDP P(1,...,1)⊥ ,

where P(1,...,1)⊥ is the projection on the space orthogonal to
(1, . . . , 1). We get the following SDP relaxation.

maximize: λSDP ,

subject to: LG +
X

e∈Ecand

weLe � λSDP · P(1,...,1)⊥ ,

X
e∈Ecand

we ≤ k,

0 ≤ we ≤ 1 for every e ∈ Ecand.

We solve the semidefinite program and obtain the solution
{we}e∈Ecand . The total weight of all edges is k, however,
the number of edges involved, or the support of the solution
could be significantly higher than k.

We use our algorithm to sparsify the SDP solution us-
ing Theorem 3.3. More precisely, we apply Theorem 3.3
with X = LG/(4∆) and Ye = wiLe/(4∆) restricted to the
space (1, . . . , 1)⊥, N = 8k, T = tr(

P
e weLe)/(4∆) ≤ k

and costi = wi (we divide LG and Le by 4∆ to ensure that
λmax(X +

P
e Yi) ≤ 1). We get a set of weights ρe supported

on at most 8k edges s.t.

1

4∆
λ2(LG +

X
e

ρeweLe) = λmin(X +
X

e

ρeYe)

≥ cλk+2(X)λmin(X +
X

e

Ye) ≥ c
1

(4∆)2
λk+2(LG)λSDP .

That is, we obtain a combinatorial weighted solution w̃e =
ρiwi whose value is at least cλk+2(LG)λSDP /(4∆) (if k +
2 > n, the value is at least cλSDP). We next show that
λSDP ≥ λOPT and λk+2(G) ≥ λOPT . Therefore, the value
of the solution is at least cλ2

OPT /∆.

Lemma 5.1. The value of the optimal solution, λOPT , is
at most λk+2(LG).

Proof. Consider the optimal solution E. Let LE be the
Laplacian of the graph formed by E. Note that rank(LE) ≤
|E| ≤ k, therefore, dimkerLE ≥ n− k. Let S be the k + 1-
dimensional space spanned by the eigenvectors of LG corre-
sponding to λ2(LG), . . . , λk+2(LG). Since dim S+dimker E >
n, spaces S and kerLE have a non-trivial intersection. Choose
a unit vector v ∈ ker S ∩ LE . We have

v(LG + LE)vT ≤ λk+2(LG) + 0 = λk+2(LG).

Also v is orthogonal to the vector (1, . . . , 1)⊥. Therefore,

λOPT = λ2(LG + LE) ≤ λk+2(LG).

The edges in the support of w̃e, E = {w̃e : w̃e 6= 0}, form
a non-weighted combinatorial solution. Since λmax(LX +P

e w̃eLe) = O(∆), all weights w̃e are bounded by O(∆),
and thus the algebraic connectivity of G + E is at least
cλk+2(LG)λSDP /∆2.

Theorem 5.2. There is a polynomial time approximation
algorithm that finds a solution of value at least cλ2

OPT /∆
supported on at most 8k edges with total weight at most k.
If k ≥ n the algorithm finds a constant factor approximation.

We present two corollaries for special instances of the prob-
lem.

Corollary 5.3. If it is possible to make G an expander
by adding k edges (and thus λOPT ∼ ∆), then the algorithm
finds a constant factor approximation.

Note that if the graph formed by candidate edges is an ex-
pander then the value of the following SDP solution we =
k/|Ecand| for each edge e ∈ Ecand is Ω(k/n), thus λSDP ≥
ck/n.

Corollary 5.4. If the graph formed by candidate edges
is an expander, then the approximation algorithm from The-
orem 5.2 finds a solution of value at least c k

n∆
λOPT .

Remark 5.5. It is possible to get rid of the dependence
on ∆ in Theorem 5.2 and Corollary 5.4 and obtain approx-
imation guarantees of c min(λOPT , λ2

OPT) and ck
n

λOPT re-
spectively. We omit the details in this extended abstract.

Acknowledgments
This research was conducted in part while the authors were
visiting Microsoft Research New England (and the second
author was a postdoctoral researcher at MSR-NE). We would
like to thank Microsoft Research for their hospitality.

We are grateful to Dan Spielman for his insightful help in
our work on ultrasparsifers.

6. REFERENCES
[1] I. Abraham, Y. Bartal, and O. Neiman. Nearly tight

low stretch spanning trees. In Proceedings of the 49th
annual Symposium on Foundations of Computer
Science, pp. 781–790, 2008.

[2] N. Alon, R. Karp, D. Peleg, and D. West. A
Graph-Theoretic Game and its Application to the
k-Server Problem, In SIAM J. Comput. vol. 24-1,
pp. 78–100, 1995.

[3] J. Batson, D. A. Spielman, and N. Srivastava.
Twice-Ramanujan Sparsifiers. In Proceedings of the
50th annual Symposium on Foundations of Computer
Science, pp. 255–262, 2009.

[4] A. A. Benczur and D. R. Karger. Approximating s− t
minimum cuts in O(n2) time. In Proceedings of the
28th annual Symposium on the Theory of Computing
pp. 47–55, 1996.

[5] A. Ghosh and S. Boyd. Growing well–connected
graphs. In Proceedings of the 45th conference on
Decision and Control, 2006.

[6] P. Chew. There is a planar graph almost as good as
the complete graph. In Proceedings of the second
annual symposium on Computational geometry,
pp. 169–177, ACM, 1986.

[7] M. Elkin, Y. Emek, D. A. Spielman and S. Teng.
Lower-stretch spanning trees In Proceedings of the
37th annual ACM symposium on Theory of
Computing, pp. 494–503, 2005.

[8] G. H. Golub and C. F. Van Loan. Matrix
Computations, 3rd. Edition. The Johns Hopkins
University Press, Baltimore, MD, 1996.

[9] A. Ghosh. Designing Well-Connected Networks, Ph.D.
Dissertation, Stanford University, 2006.

[10] A. Ghosh, S. Boyd, and A. Saberi. Minimizing
Effective Resistance of a Graph. In SIAM Review,
problems and techniques section, 50(1):37-66, 2008.

[11] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan
graphs. In Combinatorica, 8(3):261–277, 1988.

[12] D. G. Luenberger. A Combined Penalty Function and
Gradient Projection Method for Nonlinear
Programming.

[13] G. A. Margulis. Explicit group theoretical
constructions of combinatorial schemes and their
application to the design of expanders and
concentrators. In Problems of Information
Transmission, 24(1):39–46, July 1988.

[14] L. Mirsky. A trace inequality of John von Neumann.
Monats. Math. 79(4):303–306, 1975.

[15] D. Mosk–Aoyama. Maximum algebraic connectivity
augmentation is NP-hard. Operations Research
Letters, vol. 36(6), Nov. 2008, 677–679.

[16] D. A. Spielman. Personal Communication.

[17] D. A. Spielman and N. Srivastava. Graph
sparsification by effective resistances. In Proceedings of
the 40th ACM Symposium on Theory of Computing,
pp. 563–568, 2008. Full version available at
http://arXiv.org/abs/0803.0929.

[18] D. A. Spielman, and S. Teng. Nearly-linear time
algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the 36th
annual ACM Symposium on Theory of Computing,
pp. 81–90, 2004.

[19] D. A. Spielman and S. Teng. Nearly-linear time
algorithms for preconditioning and solving symmetric,
diagonally dominant linear systems. CoRR,
abs/cs/0607105, 2008. Available at
http://www.arxiv.org/abs/cs.NA/0607105.

[20] D. A. Spielman and S. Teng. Spectral sparsification of
graphs. CoRR, abs/0808.4134, 2008. Available at
http://arxiv.org/abs/0808.4134.

[21] D. A. Spielman and J. O. Woo. A note on
preconditioning with low stretch spanning trees.
http://arxiv.org/abs/0903.2816.

