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Abstract

In this paper, we study the average case complexity of the Unique Games problem. We propose
a natural semi-random model, in which a unique game instance is generated in several steps. First an
adversary selects a completely satisfiable instance of Unique Games, then she chooses an ε–fraction
of all edges, and finally replaces (“corrupts”) the constraints corresponding to these edges with new
constraints. If all steps are adversarial, the adversary can obtain any (1− ε) satisfiable instance, so then
the problem is as hard as in the worst case. In our semi-random model, one of the steps is random,
and all other steps are adversarial. We show that known algorithms for unique games (in particular, all
algorithms that use the standard SDP relaxation) fail to solve semi-random instances of Unique Games.

We present an algorithm that with high probability finds a solution satisfying a (1− δ) fraction of all
constraints in semi-random instances (we require that the average degree of the graph is Ω̃(log k)). To
this end, we consider a new non-standard SDP program for Unique Games, which is not a relaxation for
the problem, and show how to analyze it. We present a new rounding scheme that simultaneously uses
SDP and LP solutions, which we believe is of independent interest.

Our result holds only for ε less than some absolute constant. We prove that if ε ≥ 1/2, then the
problem is hard in one of the models, that is, no polynomial–time algorithm can distinguish between the
following two cases: (i) the instance is a (1 − ε) satisfiable semi–random instance and (ii) the instance
is at most δ satisfiable (for every δ > 0); the result assumes the 2–to–2 conjecture.

Finally, we study semi-random instances of Unique Games that are at most (1 − ε) satisfiable. We
present an algorithm that with high probability, distinguishes between the case when the instance is a
semi-random instance and the case when the instance is an (arbitrary) (1 − δ) satisfiable instance if
ε > cδ (for some absolute constant c).



1 Introduction

In this paper, we study the average case complexity of the Unique Games problem in a semi-random model.
In the Unique Games problem, we are given a graph G = (V,E) (denote n = |V |), a set of labels [k] =
{0, . . . , k − 1} and a set of permutations πuv on [k], one permutation for every edge (u, v). Our goal is to
assign a label (or state) xu ∈ [k] to every vertex u so as to maximize the number of satisfied constraints of
the form xv = πuv(xu). The value of the solution is the number of satisfied constraints.

The problem is conjectured to be very hard in the worst case. The Unique Games Conjecture (UGC) of
Khot [17] states that for every positive ε, δ and sufficiently large k, it is NP-hard to distinguish between the
case where at least a 1− ε fraction of constraints is satisfiable, and the case where at most a δ fraction of all
constraints is satisfiable.

One reason which makes UGC particularly intriguing is its numerous implications. The conjecture, if
true, implies that the currently best known approximation algorithms for many important computational
problems have optimal approximation ratios. Indeed, since its origin, UGC has been successfully used to
prove often optimal hardness of approximation results for several important NP-hard problems such as MAX
CUT [18], Vertex Cover [19], Maximum Acyclic Subgraph [14], Max k-CSP [23, 15, 25], which are not
known to follow from standard complexity assumptions.

Arguably, a seemingly strong reason for belief in UGC is the failure of several attempts to design ef-
ficient algorithms for Unique Games using current state-of-the-art techniques, even though a large amount
of research activity in recent years has focused on the design of such algorithms. One direction of research
has concentrated on developing polynomial-time approximation algorithms for arbitrary instances of unique
games. The first algorithm was presented by Khot in his original paper on the Unique Games Conjec-
ture [17], and then several algorithms were developed in papers by Trevisan [26], Gupta and Talwar [10],
Charikar, Makarychev and Makarychev [8], Chlamtac, Makarychev, and Makarychev [9]. Another direc-
tion of research has been to study subexponential approximation algorithms for Unique Games. The work
was initiated by Kolla [21] and Arora, Impagliazzo, Matthews and Steurer [4] who proposed subexponen-
tial algorithms for certain families of graphs. Then, in a recent paper, Arora, Barak and Steurer [3] gave a
subexponential algorithm for arbitrary instances of Unique Games.

These papers, however, do not disprove the Unique Games Conjecture. Moreover, Khot and Vishnoi [20]
showed that it is impossible to disprove the Conjecture by using the standard semidefinite programming re-
laxation for Unique Games, the technique used in the best currently known polynomial-time approximation
algorithms for general instances of Unique Games. Additionally, Khot, Kindler, Mossel, and O’Donnell [18]
proved that the approximation guarantees obtained in [8] cannot be improved if UGC is true (except possibly
for lower order terms).

All that suggests that Unique Games is a very hard problem. Unlike many other problems, however,
we do not know any specific families of hard instances of Unique Games. In contrast, we do know many
specific hard instances of other problems. Many such instances come from cryptography; for example, it is
hard to invert a one-way function f on a random input, it is hard to factor the product z = xy of two large
prime numbers x and y. Consequently, it is hard to satisfy SAT formulas that encode statements “f(x) = y”
and “xy = z”. There are even more natural families of hard instances of optimization problems; e.g.

• 3-SAT: Feige’s 3-SAT Conjecture [11] states that no randomized polynomial time algorithm can dis-
tinguish random instances of 3-SAT (with a certain clause to variable ratio) from 1 − ε satisfiable
instances of 3-SAT (with non-negligible probability).

• Linear Equations in Z/2Z: Alekhnovich’s Conjecture [1] implies that given a random (1 − ε)
satisfiable instance of a system of linear equations in Z/2Z, no randomized polynomial time algorithm
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can find a solution that satisfies a 1/2 + δ fraction of equations (for certain values of parameters ε and
δ).

• Maximum Clique Problem: It is widely believed [16] that no randomized polynomial time algorithm
can find a clique of size (1 + ε) log2 n in a G(n, 1/2) graph with a planted clique of size m = n1/2−δ

(for every constant ε, δ > 0).

No such results are known or conjectured for Unique Games. In order to better understand Unique
Games, we need to identify, which instances of the problem are easy and which are potentially hard. That
motivated the study of specific families of Unique Games. Barak, Hardt, Haviv, Rao, Regev and Steurer [6]
showed that unique game instances obtained by parallel repetition are “easy” (we say that a family of 1− ε
satisfiable instances is easy if there is a randomized polynomial-time algorithm that satisfies a constant
fraction of constraints) . Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi [5] showed that unique games on
spectral expanders are easy (see also Makarychev and Makarychev [22], and Arora, Impagliazzo, Matthews
and Steurer [4]).

In this paper, we investigate the hardness of semi-random (semi-adversarial) instances of Unique Games.
In a semi-random model, an instance is generated in several steps; at each step, choices are either made
adversarially or randomly. Semi-random models were introduced by Blum and Spencer [7] (who considered
semi-random instances of the k-coloring problem) and then studied by Feige and Kilian [12], and Feige and
Krauthgamer [13].

In this paper, we propose and study a model, in which a 1 − ε satisfiable unique game instance is
generated as follows:

1. Graph Selection Step. Choose the constraint graph G = (V,E) with n vertices and m edges.

2. Initial Instance Selection Step. Choose a set of constraints {πuv}(u,v)∈E so that the obtained instance
is completely satisfiable.

3. Edge Selection Step. Choose a set of edges Eε of size εm = ε|E|.

4. Edge Corruption Step. Replace the constraint for every edge in Eε with a new constraint.

Note that if an adversary performs all four steps, she can obtain an arbitrary 1 − ε satisfiable instance, so,
in this fully–adversarial case, the problem is as hard as in the worst case. The four most challenging semi-
random cases are when choices at one out of the four steps are made randomly, and all other choices are
made adversarially. The first case — when the graph G is random and, in particular, is an expander — was
studied by Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi [5], who showed that this case is easy.

We present algorithms for the other three cases that with high probability (w.h.p.) satisfy a 1−δ fraction
of constraints (if the average degree of G is at least Ω̃(log k) and ε is less than some absolute constant).

Theorem 1.1. For every k ≥ k0, ε0 > 0 and δ > C max(ε0, log k/
√
k) (where C and k0 are absolute con-

stants), there exists a randomized polynomial time algorithm that given a semi-random instance of Unique
Games with ε = ε0 (generated in one of the three models; see Section 2.3 for details) on a graph G with
average degree at least Ω̃(log k)δ−3, finds a solution of value at least 1− δ with probability1 1− o(1).

1The probability is over both the random choices that we make when we generate the semi-random instance, and the random
choices that the algorithm does. That is, the probability that the model generates a semi-random instance I, such that the algorithm
finds a solution of I of value at least 1− δ with probability 1− o(1), is 1− o(1).
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The theorem follows from Theorems 3.1, 4.1, and 6.1, in which we analyze each model separately, and
establish more precise bounds on the parameters for each model.

In our opinion, this is a very surprising result since the adversary has a lot of control over the semi-
random instance. Moreover, our results suggest that the Unique Games problem is different in nature than
several NP-hard problems like SAT, which are thought to be hard on average.

We want to point out that previously known approximation algorithms for Unique Games cannot find
good solutions of semi-random instances. Also techniques developed for analyzing semi-random instances
of other problems such as local analysis, statistical analysis, spectral gap methods, standard semidefinite
programming techniques seem to be inadequate to deal with semi-random instances of Unique Games. To
illustrate this point, consider the following example. Suppose that the set of corrupted edges is chosen at
random, and all other steps are adversarial (“the random edges, adversarial constraints case”). The adversary
generates a semi-random instance as follows. It first prepares two instances I1 and I2 of Unique Games.
The first instance I1 is the Khot–Vishnoi instance [20] on a graph G with the label set [k] = {0, . . . , k− 1}
and permutations {π1

uv} whose SDP value is ε′ < ε/2 but which is only k−Ω(ε′) satisfiable. The second
instance I2 is a completely satisfiable instance on the same graph G with the label set {k, . . . , 2k − 1} and
permutations π2

uv = id. She combines these instances together: the combined instance is an instance on
the graph G with the label set [2k] = {0, . . . , 2k − 1}, and permutations {πuv : πuv(i) = π1

uv(i) if i ∈
[k], and πuv(i) = π2

uv(i), otherwise}. Once the adversary is given a random set of edges Eε, she randomly
changes (“corrupts”) permutations {π2

uv}(u,v)∈Eε but does not change π1
uv, and then updates permutations

{πuv}(u,v)∈Eε accordingly. It turns out that the SDP value of I2 with corrupted edges is very close to ε, and
therefore, it is larger than ε′, the SDP value of I1 (if we choose parameters properly). So in this case the
SDP solution assigns positive weight only to the labels in [k] from the first instance. That means that the
SDP solution does not reveal any information about the optimal solution (the only integral solution we can
obtain from the SDP solution has value k−Ω(ε)). Similarly, algorithms that analyze the spectral gap of the
label extended graph cannot deal with this instance. Of course, in this example, we let our first instance,
I1, to be the Khot–Vishnoi instance because it “cheats” SDP based algorithms. Similarly, we can take as
I1 another instance that cheats another type of algorithms. For instance, if UGC is true, we can let I1 to
be a 1− ε′ satisfiable unique game that is indistinguishable in polynomial-time from a δ–satisfiable unique
game.

Our algorithms work only for values of ε less than some absolute constants. We show that this restriction
is essential. For every ε ≥ 1/2 and δ > 0, we prove that no polynomial time algorithm satisfies a δ fraction
of constraints in the “adversarial constraints, random edges” model (only the third step is random), assuming
the 2–to–2 conjecture.

One particularly interesting family of semi-random unique games (captured by our model) are mixed
instances. In this model, the adversary prepares a satisfiable instance, and then chooses a δ fraction of
edges and replaces them with adversarial constraints (corrupted constraints); i.e. she performs all four
steps in our model and can obtain an arbitrary 1 − δ satisfiable instance. Then the “nature” replaces every
corrupted constraint with the original constraint with probability 1− ε. In our model, this case corresponds
to an adversary who at first prepares a list of corrupted constraints π′uv, and then at the fourth step replaces
constraints for edges in Eε with constraints π′uv (if an edge from Eε is not in the list, the adversary does not
modify the corresponding constraint).

Distinguishing Semi-Random At Most (1 − ε) Satisfiable Instances From Almost Satisfiable In-
stances. We also study whether semi-random instances of Unique Games that are at most (1− ε) satisfiable
can be distinguished from almost satisfiable instances of Unique Games. This question was studied for other
problems. In particular, Feige’s “Random 3-SAT Conjecture” states that it is impossible to distinguish be-
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tween random instances of 3-SAT (with high enough clause density) and 1−δ satisfiable instances of 3-SAT.
In contrast, we show that in the “adversarial edges, random constraints” case (the fourth step is random),
semi-random (1−ε)-satisfiable instances can be efficiently distinguished from (arbitrary) (1−δ)-satisfiable
instances when ε > cδ (for some absolute constant c). (This problem, however, is meaningless in the other
two cases — when the adversary corrupts the constraints — since then she can make the instance almost
satisfiable even if ε is large.)

Linear Unique Games We separately consider the case of Linear Unique Games (MAX Γ-LIN). In the
semi-random model for Linear Unique Games, we require that constraints chosen at the second and fourth
steps are of the form xu − xv = suv(mod k). Note that in the “random edges, adversarial constraints”
model, the condition that constraints are of the form xu − xv = suv(mod k) only restricts the adversary
(and does not change how the random edges are selected). Therefore, our algorithms for semi-random
general instances still applies to this case. However, in the “adversarial edges, random constraints” case, we
need to sample constraints from a different distribution of permutations at the fourth step: for every edge
(u, v) we now choose a random shift permutation xv = xu − suv, where suv ∈U Z/kZ. We show that
our algorithm still works in this case; the analysis however is different. We believe that it is of independent
interest. We do not consider the case where only the initial satisfying assignment is chosen at random,
since for Linear Unique Games, the initial assignment uniquely determines the constraints between edges
(specifically, suv = xu − xv(mod k)). Thus the case when only the second step is random is completely
adversarial.

It is interesting that systems of linear equations affected by noise with more than two variables per
equations are believed to be much harder. Suppose we have a consistent system of linear equations Ax = b
over Z/2Z. Then we randomly change an ε fraction of entries of b. Alekhnovich [1] conjectured that no
polynomial-time algorithm can distinguish the obtained instance from a completely random instance even
if ε ≈ n−c, for some constant c (Alekhnovich stated his conjecture both for systems with 3 variables per
equation and for systems with an arbitrary number of variables per equation).

Our results can be easily generalized to Unique Games in arbitrary Abelian groups. We omit the details
in the conference version of this paper.

1.1 Brief Overview of Techniques

In this paper, we develop new powerful algorithmic techniques for solving semi-random instances of unique
games. We use different algorithms for different models. First, we outline how we solve semi-random
unique games in the “adversarial constraints, random edges” model (see Section 3 for details). As we
explained above, we cannot use the standard SDP relaxation (or other standard techniques) to solve semi-
random instances in this model. Instead, we consider a very unusual SDP program for the problem, which
we call “Crude SDP” (C-SDP). This SDP is not even a relaxation for Unique Games and its value can
be large when the instance is satisfiable. The C-SDP assigns a unit vector ui to every vertex (u, i) of
the label–extended graph (for a description of the label–extended graph we refer the reader to Section 2).
We use vectors ui to define the length of edges of the label–extended graph: the length of ((u, i), (v, j))
equals ‖ui − vj‖2. Then we find super short edges w.r.t. the C-SDP solution, those edges that have length
O(1/ log k). One may expect that there are very few short edges since for a given C-SDP most edges will be
long if we choose the unique games instance at random. We prove, however, that for every C-SDP solution
{ui}, with high probability (over the semi-random instance) either

1. there are many super short edges w.r.t. {ui} in the satisfiable layer of the semi-random game,

2. or there is another C-SDP solution of value less than the value of the solution {ui}.
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Here, as we describe later on in section 2, the “satisfiable layer” corresponds to the representation of the
satisfying assignment in the label–extended graph.

Note that if our instance is completely satisfiable, then in the optimal (integral) C-SDP solution all the
edges that correspond to the satisfiable layer have length zero and, therefore are super short.

Our proof shows how to combine the C-SDP solution with an integral solution so that the C-SDP value
goes down unless almost all edges in the satisfiable layer are super short. We then show that this claim holds
with high probability not only for one C-SDP solution but also for all C-SDP solutions simultaneously.
The idea behind this step is to find a family F of representative C-SDP solutions and then use the union
bound. One of the challenges is to choose a very small family F , so that we can prove our result under the
assumption that the average degree is only Ω̃(log k). The result implies that w.h.p. there are many super
short edges w.r.t. the optimal C-SDP solution.

Now given the set of super short edges, we need to find which of them lie in the satisfiable layer. We
write and solve an LP relaxation for Unique Games, whose objective function depends on the set of super
short edges. Then we run a rounding algorithm that rounds the C-SDP and LP solutions to a combinatorial
solution using a variant of the “orthogonal separators” technique developed in [9].

Our algorithm for the “adversarial edges, random constraints” model is quite different. First, we solve
the standard SDP relaxation for Unique Games. Now, however, we cannot claim that many edges of the
label–extended graph are short. We instead find the “long” edges of the graph G w.r.t. the SDP solution.
We prove that most corrupted edges are long, and there are at most O(ε) long edges in total (Theorem 4.4).
We remove all long edges and obtain a highly–satisfiable instance. Then we write and solve an SDP for this
instance, and round the SDP solution using the algorithm of [8].

We also present algorithms for two more cases: the case of “adversarial edges, random constraints”
where the constraints are of the special form MAX-Γ-LIN and the case of “random initial constraints”.

In this paper, we develop several new techniques. In particular, we propose a novel C-SDP program, and
then show how to exploit the optimality of a C-SDP solution in the analysis. We develop a rounding algo-
rithm that simultaneously uses SDP and LP solutions. We demonstrate how to bound the number of different
SDP solutions using dimension reduction methods and other tricks. We believe that our techniques are of
independent interest and that they will prove useful for solving semi-random instances of other problems.

2 Notation and Preliminaries

2.1 The Label-Extended Graph

For a given instance of Unique Games on a constraint graphG = (V,E), with alphabet size k and constraints
{πuv}(u,v)∈E we define the Label-Extended graph M(V ′ = V × [k], E′) associated with that instance as
follows: M has k vertices Bv = {v0, · · · , vk−1} for every vertex v ∈ V . We refer to this set of vertices as
the block corresponding to v. M has a total of |V | blocks, one for each vertex ofG. Two vertices ui, vj ∈ V ′

are connected by an edge if (u, v) ∈ E and πuv(i) = j. We refer to a set of nodes L = {u(z)
i(z)}

|V |
z=1 as

a “layer” if L contains exactly one node from each block Bu(z) . We note that a layer L can be seen as
an assignment of labels to each vertex of G. If a layer L consists of vertices with the same index i, i.e.
L = {u(z)

i }
|V |
z=1, we will call L the i-th layer.
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2.2 Standard SDP for Unique Games

Our algorithms use the following standard SDP relaxation for Unique Games (see also [17, 20, 8, 9]).

min
1

2|E|
∑

(u,v)∈E

∑
i∈[k]

‖ui − vπuv(i)‖2

subject to
k∑
i=1

‖ui‖2 = 1 for all u ∈ V

〈ui, uj〉 = 0 for all u ∈ V, i, j ∈ [k](i 6= j)

〈ui, vj〉 ≥ 0 for all u, v ∈ V, i, j ∈ [k](i 6= j)

‖ui − vj‖2 ≤ ‖ui − wl‖2 + ‖wl − vj‖2 for all u, v, w ∈ V, i, j, l ∈ [k].

In this relaxation, we have a vector variable ui for every vertex u and label i. In the intended solution, ui is
an indicator variable for the event “xu = i”. That is, if xu = i then ui = e; otherwise, and ui = 0; where e
is a fixed unit vector. The objective function measures the fraction of unsatisfied constraints: if the unique
game has value 1− ε, then the value of the intended SDP solution equals ε (and, therefore, the value of the
optimal SDP solution is at most ε).

Given an SDP solution of value ε, the approximation algorithm of Charikar, Makarychev, and Makarychev [8]
finds a solution of value 1 − O(

√
ε log k). We will use this approximation algorithm as a subroutine (we

will refer to it as CMMa). We will also use the following fact.

Lemma 2.1 (see e.g. Lemmas A.1 and A.2 in [9]). Suppose, we are given two random Gaussian variables
γ1 and γ2 with mean 0 and variance 1 (not necessarily independent), and a parameter k ≥ 2. Let α =
1/(2k2). Consider a threshold t s.t. Pr(γ1 ≥ t) = Pr(γ2 ≥ t) = α. Then Pr(γ1 ≥ t and γ2 ≥ t) ≥
α
(

1−
√

1
c∗ Var(γ1 − γ2) log k

)
for some absolute constant c∗.

2.3 Models

In what follows, we will use several models for generating semi-random (1 − ε) satisfiable instances of
Unique Games2:

1. “Random Edges, Adversarial Constraints” Model. The adversary selects a graph G(V,E) on n
vertices and m edges and an initial set of constraints {πuv}(u,v)∈E so that the instance is completely
satisfiable. Then she adds every edge of E to a set Eε with probability ε (the choices for different
edges are independent). Finally, the adversary replaces the constraint for every edge in Eε with a
new constraint of her choice. Note that this model also captures the case where at the last step the
constraints for every edge in Eε are replaced with a new random constraint (random adversary).

2. “Adversarial Edges, Random Constraints” Model. The adversary selects a graph G(V,E) on n
vertices and m edges and an initial set of constraints {πuv}(u,v)∈E so that the instance is completely
satisfiable. Then she chooses a set Eε of ε|E| edges. Finally, the constraint for every edge in Eε is
randomly replaced with a new constraint. We will also consider some variations of this model, where
at all steps the constraints are MAX Γ-LIN. In particular, at the last step, choosing a random constraint
of the form MAX Γ-LIN, corresponds to choosing a random value s ∈ [|Γ|].

2The parameters of the models are the number of vertices n, the number of edges m, and the probability ε that an edge is
corrupted.

6



3. “Random Initial Constraints” Model. The adversary chooses the constraint graph G = (V,E) and
a “planted solution” {xu}. Then for every edge (u, v) ∈ E, she randomly chooses a permutation
(constraint) πuv such that πuv(xu) = xv (among (k− 1)! possible permutations). Then the adversary
chooses an arbitrary set Eε of edges of size at most ε|E| and replaces constraint πuv with a constraint
π′uv of her choice for (u, v) ∈ Eε.

Remark 2.2. Without loss of generality, we will assume, when we analyze the algorithms, that the initial
completely satisfying assignment corresponds to the “zero” layer. I.e. for every edge (u, v), πuv(0) = 0.
Note that in reality, the real satisfying assignment is hidden from us.

3 Random Edges, Adversarial Constraints

In this section, we study the “random edges, adversarial constraints” model and prove the following result.

Theorem 3.1. Let k ∈ N (k ≥ 2), ε ∈ (0, 1/3), and η ∈ (0, 1). There exists a polynomial-time approxima-
tion algorithm, that given an instance of Unique Games from the “random edges, adversarial constraints”
model on graph G with Cη−3(1/3− ε)−4n log k(log(η−1 log k))2 edges (C is a sufficiently large absolute
constant), finds a solution of value (1− ε− η)/(1 + ε+ η) +O(1/k), with probability 1− o(1).

Corollary 3.2. There exists a polynomial-time approximation algorithm, that given an instance of unique
games from the “random edges, adversarial constraints” model on graphG withCn log k(log log k)2 edges
(C is a sufficiently large absolute constant) and ε ≤ 1/4, finds a solution of value 1/2, with probability
1− o(1).

Remark 3.3. We can make the constant in the O(1/k) term in (1− ε−η)/(1 + ε+η) +O(1/k) arbitrarily
small by increasing the value of C (and decreasing the value of α in the proof). We omit the details to
simplify the exposition.

The main challenge in solving “random edges, adversarial constraints” unique games is that the stan-
dard SDP relaxation may assign zero vectors to layers corresponding to the optimal solution (as well as to
some other layers) and assign non-zero vectors to layers, where every integral solution satisfies very few
constraints. To address this issue, we introduce a new slightly modified SDP. As usual the SDP has a vector
ui for every vertex–label pair (u, i) ∈ V × [k]. We require that vectors ui, ui′ corresponding to the same
vertex u are orthogonal: 〈ui, ui′〉 = 0 for all u ∈ V and i, i′ ∈ [k], i 6= i′. We also impose triangle inequality
constraints:

1

2
‖ui − vj‖2 +

1

2
‖ui′ − vj‖2 ≥ 1,

for all (u, v) ∈ E and i, i′, j ∈ [k], i 6= i′; and require that all vectors have unit length: ‖ui‖ = 1 for all
u ∈ V and i ∈ [k]. Observe, that our SDP is not a relaxation3, since the integer solution does not satisfy the
last constraint. The objective function is

min
∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖ui − vj‖2

2
.

Usually, this objective function measures the number of unsatisfied unique games constraints. However, in
our case it does not. In fact, it does not measure any meaningful quantity. Note, that the value of the SDP

3Unless, the unique game is from a special family like Linear Unique Games (see Section 5).
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can be arbitrary large even if the unique games instance is satisfiable. We call this SDP—the Crude SDP or
C-SDP. Given a C-SDP solution, we define the set of super short edges, which play the central role in our
algorithm.

Definition 3.4. We say that an edge ((u, i), (v, j)) in the label–extended graph is η–super short, if ‖ui −
vj‖2 ≤ c∗η2/ log k, here c∗ is an absolute constant defined in Lemma 2.1. We denote the set of all η–super
short edges by Γη.

In Section 3.1, we prove the following surprising result (Theorem 3.5), which states that all but very few
edges in the zero level of the label-extended graph are super short.

Theorem 3.5. Let k ∈ N (k ≥ 2), c ∈ (0, 1), ε ∈ (0, 1/3), η ∈ (c, 1) and γ ∈ (ε+ c, 1) and let G = (V,E)
be an arbitrary graph with at least Cη−2(γ− ε)−1(1/3− ε)−4×n log k(log(c−1 log k))2, edges. Consider
a semi-random instance of Unique Games in the “random edges, adversarial constraints” model. Let {ui}
be the optimal solution of the C-SDP. Then with probability 1− o(1), the set

Γ0
η = Γη ∩ {((u, 0), (v, 0)) : (u, v) ∈ E}

contains at least (1− γ)|E| edges.

More concretely, we proceed as follows. First, we solve the C-SDP. Then, given the C-SDP solution,
we write and solve an LP to obtain weights x(u, i) ∈ [0, 1] for every (u, i) ∈ V × [k]. These weights are
in some sense substitutes for lengths of vectors in the standard SDP relaxation. In the LP, for every vertex
u ∈ V , we require that ∑

i∈[k]

x(u, i) = 1.

The objective function is
max

∑
((u,i),(v,j))∈Γη

min(x(u, i), x(v, j))

(note that the objective function depends on the C-SDP solution). Denote the value of the LP by LP .
The intended solution of this LP is x(u, 0) = 1 and x(u, i) = 0 for i 6= 0. Since the LP contribution
of every edge in Γ0

η is 1, the value of the intended solution is at least |Γ0
η|. Applying Theorem 3.5 with

γ = ε + η, we get |Γ0
η| ≥ (1− γ)|E| = (1− ε− η)|E|, so LP ≥ (1− ε− η)|E|. In the next section, we

present an approximation algorithm (which rounds C-SDP an LP solutions) and its analysis. We prove the
approximation guarantee in Lemma 3.9, which implies Theorem 3.1.

3.1 Lower Bound on the Number of Super Short Edges: Proof of Theorem 3.5

We need the following lemma.

Lemma 3.6. Let G = (V,E) be an arbitrary graph on n vertices, and let ε ∈ [0, 1/3), ρ = 1/3 − ε,
ν ∈ (0, ρ). Suppose, that {Zuv}(u,v)∈E are i.i.d. Bernoulli random variables taking values 1 with probability
ε and 0 with probability (1− ε). Define the payoff function p : {0, 1} × R→ R as follows

p(z, α) =

{
−2α, if z = 1;

α, if z = 0.
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Then, with probability at least 1 − o(1) for every set of vectors {u0}u∈V satisfying (for some significantly
large absolute constant C)

1

2

∑
(u,v)∈E

‖u0 − v0‖2 ≥ Cν|E|+ Cρ−4 log2(1/ν)n (1)

the following inequality holds ∑
(u,v)∈E

p(Zuv, ‖u0 − v0‖2) > 0. (2)

Proof. We need the following dimension reduction lemma, which is based on the Johnson–Lindenstrauss
Lemma and is fairly standard (for an example of using the Johnson–Lindenstrauss Lemma in SDP rounding
see Raghavendra and Steurer [24]).

Lemma 3.7. For every positive ζ, η and ν, there exists a set N of unit vectors of size at most

exp
(
O(ζ−2 log(1/η) log(1/ν))

)
such that for every set of unit vectors U there exists a randomized mapping ϕ : U → N satisfying the
following property: for every u, v ∈ U ,

Pr((1 + ζ)−1‖u− v‖2 − η2 ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + ζ)‖u− v‖2 + η2) ≥ 1− ν. (3)

Proof sketch. To prove the lemma, we consider an O(ζ−2 log(1/ν)) dimensional space L and choose a
η2/32-net N in it. The size of N satisfies the bound in the lemma. To construct the mapping ϕ : U → N ,
we project all vectors from U to L using the Johnson–Lindenstrauss lemma and then define ϕ(u) to be the
closest vector u∗ ∈ N to the projection of u.

Proof of Lemma 3.6. Set ζ = ρ/5 ≡ (1/3− ε)/5. Define a new payoff function,

pζ(z, α) =

{
−2(1 + ζ)α, if z = 1;

(1 + ζ)−1α, if z = 0.

Note, that ζ < 1/15 and pζ(0, α)−pζ(1, α) = ((1+ζ)−1−(−2(1+ζ)))α ≤ 4α (for α ≥ 0). Suppose, that
for a given realization {Z∗uv}(u,v)∈E of {Zuv}(u,v)∈E there exists a set of unit vectors {u0}u∈V satisfying
condition (1) and violating (2). Embed vectors {u0}u∈V into a net N of size exp

(
O(ρ−2 log2(1/ν))

)
using

Lemma 3.7, such that for (1− ν2/2) fraction of all edges (u, v) ∈ E, the following condition holds

(1 + ζ)−1‖u0 − v0‖2 − ν2/8 ≤ ‖u∗ − v∗‖2 ≤ (1 + ζ)‖u0 − v0‖2 + ν2/4,

here u∗ is the image of u0; v∗ is the image of v0. Then,∑
(u,v)∈E

pζ(Z
∗
uv, ‖u∗ − v∗‖2) < ν2|E| < νρ|E| = 5νζ|E|. (4)

and (since we choose C to be sufficiently large)∑
(u,v)∈E

‖u∗ − v∗‖2 ≥ 40ν|E|+ Cρ−4 log2(1/ν)n. (5)
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Thus, the existence of vectors {u0}u∈V satisfying condition (1) and violating (2) implies the existence
of vectors {u∗}u∈V satisfying (4) and (5). We now show that for a random {Zuv} such vectors {u∗} exist
with exponentially small probability. Fix a set {u∗}u∈V ⊂ N and consider random {Zuv},

E
∑

(u,v)∈E

pζ(Zuv, ‖u∗ − v∗‖2) ≥
∑

(u,v)∈E

((1− ε)(1− ζ)− 2(1 + ζ)ε) ‖u∗ − v∗‖2

= (1− 3ε− 3εζ − ζ)
∑

(u,v)∈E

‖u∗ − v∗‖2

≥ (1− 3ε− 4ζ)
∑

(u,v)∈E

‖u∗ − v∗‖2

≥ ζ
∑

(u,v)∈E

‖u∗ − v∗‖2.

By Hoeffding’s inequality (using that pζ(0, ‖u∗−v∗‖2)−pζ(1, ‖u∗−v∗‖2) ≤ 4‖u∗−v∗‖2,
∑

(u,v)∈E ‖u∗−
v∗‖2 − 10ν|E| ≥ 3

4

∑
(u,v)∈E ‖u∗ − v∗‖2 and ‖u∗ − v∗‖2 ≤ 4),

Pr

 ∑
(u,v)∈E

pζ(Zuv, ‖u∗ − v∗‖2) < 2νρ|E|

 ≤ exp

−2ζ2
(∑

(u,v)∈E ‖u∗ − v∗‖2 − 10ν|E|
)2∑

(u,v)∈E 16‖u∗ − v∗‖4


≤ exp

−ζ2
(∑

(u,v)∈E ‖u∗ − v∗‖2
)2∑

(u,v)∈E 64‖u∗ − v∗‖2


≤ exp

− ζ2

64

∑
(u,v)∈E

‖u∗ − v∗‖2


≤ exp

(
−Cζ

2

64
ρ−4 log2(1/ν)n

)
= exp

(
− C

25 · 64
ρ−2 log2(1/ν)n

)

The number of all possible subsets {u∗}u∈V ⊂ N is at most

|N |n ≤ exp
(
O(nρ−2 log2(1/ν))

)
.

Hence, by the union bound with probability at least 1 − exp(−n) = 1 − o(1) for random {Zuv}(u,v)∈E ,
there does not exist a set of vectors {u0}u∈V satisfying condition (1) and violating (2).

Proof of Theorem 3.5. Let {u∗i } be the optimal SDP solution. Pick a unit vector e orthogonal to all vectors
u∗i . Define a new SDP solution uint0 = e and uinti = u∗i for i 6= 0 (for all u ∈ V ). Note that restricted to
{uint0 }u∈V this solution is integral. Since {u∗i } is the optimal solution,∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i − v∗j ‖2 ≤
∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖uinti − vintj ‖2.
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Denote by Eε the set of corrupted edges. Let Zuv = 1, if (u, v) ∈ Eε and Zuv = 0, otherwise. Let
Ẽε = {(u, v) ∈ E : πuv(0) 6= 0}. Clearly, Ẽε ⊂ Eε. Write,∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i − v∗j ‖2 − ‖uinti − vintj ‖2 =

=
∑

(u,v)∈E\Ẽε

‖u∗0 − v∗0‖2 +
∑

(u,v)∈Ẽε

‖u∗0 − v∗πuv(0)‖
2 + ‖u∗πvu(0) − v

∗
0‖2

−
∑

(u,v)∈Ẽε

‖uint0 − vintπuv(0)‖
2 + ‖uintπvu(0) − v

int
0 ‖2.

For (u, v) ∈ Ẽε, we have ‖uint0 −vintπuv(0)‖
2 = ‖uintπvu(0)−v

int
0 ‖2 = 2 and ‖u∗0−v∗πuv(0)‖

2 ≥ 2−‖u∗0−v∗0‖2.
Thus,∑

(u,v)∈E

∑
i∈[k]

j=πuv(i)

‖u∗i − v∗j ‖2 − ‖uinti − vintj ‖2 ≥
∑

(u,v)∈E\Ẽε

‖u∗0 − v∗0‖2 − 2
∑

(u,v)∈Ẽε

‖u∗0 − v∗0‖2

≥
∑

(u,v)∈E\Eε

‖u∗0 − v∗0‖2 − 2
∑

(u,v)∈Eε

‖u∗0 − v∗0‖2

=
∑

(u,v)∈E

p(Zuv, ‖u∗0 − v∗0‖2),

where p(·, ·) is the function from Lemma 3.6. By Lemma 3.6, with probability 1− o(1), for some absolute
constant C ′, ρ = (1/3− ε), ν = c∗η2(γ−ε)

2C′ log k ,

1

2|E|
∑

(u,v)∈E

‖u∗0 − v∗0‖2 <
C ′ν|E|+ C ′ρ−4 log2(1/ν)n

|E|
≤ c∗η2(γ − ε) log−1 k.

The last inequality holds, because

|E| ≥ Cη−2(γ − ε)−1ρ−4n log k(log(c−1 log k))2 ≥ C ′

2c∗
η−2(γ − ε)−1ρ−4n log k log2(1/ν)2.

By the Markov inequality, for all but (γ − ε)/2 fraction of edges (u, v) ∈ E, ‖u∗0 − v∗0‖2 ≤ c∗η2/ log k.
Recall that a pair ((u, 0), (v, 0)) is an η–super short edge in the label–extended graph if πuv(0) = 0 (i.e.,
(u0, v0) is an edge of the label–extended graph) and ‖u∗0 − v∗0‖2 ≤ c∗η2/ log k. By the Chernoff Bound,
|Eε| ≤ (ε + (γ − ε)/2)|E| with probability (1− o(1)); therefore, πuv(0) 6= 0 for at most a ε + (γ − ε)/2
fraction of edges. Thus, with probability (1−o(1)), there are at least (1− (γ−ε)/2− (ε+(γ−ε)/2))m =
(1− γ)|E| η–super short edges.

3.2 SDP and LP Rounding

We now present an algorithm that given a C-SDP solution {ui} and an LP solution {x(u, i)} finds an integer
solution. We first present a procedure for sampling subsets of vertex–label pairs, which is an analog of the
algorithm for finding orthogonal separators in CMMb [9].
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LP Weighted Orthogonal Separators
Input: An SDP solution {ui}, an LP solution {x(u, i)}.
Output: A set S of label vertex pairs (u, i).

1. Set a parameter α = 1/(2k2), which we call the probability scale.

2. Generate a random Gaussian vector g with independent components distributed as N (0, 1).

3. Fix a threshold t s.t. Pr(ξ ≥ t) = α, where ξ ∼ N (0, 1).

4. Pick a random uniform value r in the interval (0, 1).

5. Find set
S = {(u, i) ∈ V × [k] : 〈ui, g〉 ≥ t and x(u, i) ≥ r} .

6. Return S.

The rounding algorithm is given below.

LP and SDP Based Rounding Algorithm
Input: An instance of unique games.
Output: An assignment of labels to the vertices.

1. Solve the SDP.

2. Find the set of all super short edges Γη.

3. Solve the LP.

4. Mark all vertices unprocessed.

5. while (there are unprocessed vertices)

• Sample a set S of vertex–label pairs using LP weighted orthogonal separators.

• For all unprocessed vertices u:

– Let Su = {i : (u, i) ∈ S}
– If Su contains exactly one element i, assign label i to u and mark u as processed.

If after nk/α iterations, there are unprocessed vertices, the algorithm assigns arbitrary labels to them and
terminates.

Lemma 3.8. Let S be an LP weighted orthogonal separator. Then, for every (u, i) ∈ V × [k],

• Pr((u, i) ∈ S) = αx(u, i).

For every ((u, i), (v, j)) ∈ Γη and (u, i′) ∈ V × [k] (i′ 6= i),
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• Pr((u, i) ∈ S and (v, j) ∈ S) ≥ αmin(x(u, i), x(v, j))(1− η).

• Pr((u, i) ∈ S; (v, j) ∈ S; (u, i′) ∈ S) ≤ αmin(x(u, i), x(v, j))/(2k2).

Proof. We have

Pr((u, i) ∈ S) = Pr(〈ui, g〉 ≥ t and x(u, i) ≥ r) = Pr(〈ui, g〉 ≥ t) Pr(x(u, i) ≥ r) = αx(u, i).

Then, by Lemma 2.1,

Pr((u, i) ∈ S and (v, j) ∈ S) = Pr(〈ui, g〉 ≥ t and 〈vj , g〉 ≥ t) Pr(min(x(u, i), x(v, j)) ≥ r)
≥ α(1− η) min(x(u, i), x(v, j)).

Finally, we have (below we use that 〈ui, g〉 and 〈ui′ , g〉 are independent random variables)

Pr((u, i) ∈ S; (v, j) ∈ S; (u, i′) ∈ S) ≤ Pr(〈ui, g〉 ≥ t) Pr(〈ui′ , g〉 ≥ t) Pr(min(x(u, i), x(v, j)) ≥ r)
= α2 min(x(u, i), x(v, j)) ≤ αmin(x(u, i), x(v, j))/(2k2).

Lemma 3.9. Given a C-SDP solution {ui} and an LP solution {x(u, i)} of value at least LP ≥ x|E|, the
algorithm finds a solution to the unique games instance that satisfies (1 − η)x/(2 − (1 − η)x) − O(1/k)
fraction of all constraints in the expectation.

Proof. Consider an arbitrary edge (u, v). We estimate the probability that the algorithm assigns labels that
satisfy the constraint πuv. For simplicity of presentation, assume that πuv(i) = i (we may always assume this
by renaming the labels of v). Let δi(u, v) = min(x(u, i), x(v, i)) if ((u, i), (v, i)) ∈ Γη; and δi(u, v) = 0,
otherwise. Let δ(u, v) =

∑
i δi(u, v) and δ′(u, v) = δ(u, v)(1− η − 1/k).

Consider an arbitrary iteration at which both u and v have not yet been processed. By Lemma 3.8 (item
2), if ((u, i), (v, i)) ∈ Γη, then

Pr(i ∈ Su and i ∈ Sv) ≥ αmin(x(u, i), x(v, i))(1− η).

Then, by Lemma 3.8 (3) and the union bound, the probability that Su or Sv contains more than one element
and i ∈ Su, i ∈ Sv is at most αmin(x(u, i), x(v, i))/k. Hence, the algorithm assigns i to both u and v with
probability at least

αmin(x(u, i), x(v, i))(1− η − 1/k) = αδi(u, v)× (1− η − 1/k).

The probability that the algorithm assigns the same label to u and v is at least∑
i:((u,i),(v,i))∈Γη

αδi(u, v)× (1− η − 1/k) = αδ′(u, v).

The probability that the algorithm assigns a label to u is at most α and similarly the probability that the
algorithm assigns a label to v is at most α. Thus the probability that it assigns a label to either u or v is at
most α(2− δ′(u, v)).

Hence, the probability that the algorithm assigns the same label to u and v at one of the iterations is
at least (note that the probability that there are unlabeled vertices when the algorithm stops after nk/α
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iterations is exponentially small, therefore, for simplicity we may assume that the number of iterations is
infinite)

∞∑
t=0

(1− α(2− δ′(u, v)))tαδ′(u, v) =
αδ′(u, v)

α(2− δ′(u, v))
=

δ′(u, v)

2− δ′(u, v)
.

The function δ 7→ δ/(2− δ) is convex on (0, 2) and

1

|E|
∑

(u,v)∈E

δ′(u, v) =
1

|E|
∑

(u,v)∈E

δ(u, v)(1− η − 1/k) ≥ x(1− η − 1/k),

thus, by Jensen’s inequality, the expected number of satisfied constraints is at least

x(1− η − 1/k)

2− x(1− η − 1/k)
|E|.

3.3 Hardness: Semi-Random Instances for ε ≥ 1/2

In this section, we show that the problem becomes hard when ε ≥ 1/2 assuming the 2–to–2 conjecture.
The 2–to–2 conjecture follows from Khot’s 2–to–1 conjecture4, which is a frequently used complexity
assumption [17]. We prove the following theorem.

Theorem 3.10. For every ε ≥ 1/2 and δ > 0, no polynomial-time algorithm can distinguish with probability
greater than o(1) between the following two cases:

1. Yes Case: the instance is a 1− ε satisfiable semi-random instance (in the “random edges, adversarial
constraints” model),

2. No Case: the instance is at most δ satisfiable.

This result holds if the 2–to–2 conjecture holds.

Before we proceed with the proof we remind the reader the definition of 2–to–2 games and 2–to–2
conjecture.

Definition 3.11. In a 2–to–2 game, we are given a graphG = (V,E), a set of labels [k] = {0, . . . , k−1} (k
is even) and set of constraints, one constraint for every edge (u, v). Each constraint is defined by a 2–to–2
predicate Πuv: for every label i there are exactly two labels j such that Πuv(i, j) = 1 (the predicate is
satisfied); similarly, for every j there are exactly two labels i such that Πuv(i, j) = 1. Our goal is to assign
a label xu ∈ [k] to every vertex u so as to maximize the number of satisfied constraints Πuv(xu, xv) = 1.
The value of the solution is the number of satisfied constraints.

Definition 3.12. The 2–to–2 conjecture states that for every δ > 0 and sufficiently large k, there is no
polynomial time algorithm that distinguishes between the following two cases (i) the instance is completely
satisfiable and (ii) the instance is at most δ satisfiable.

4 The 2–to–1 conjecture implies the 2–to–2 conjecture because every 2–to–1 game can be converted to a 2–to–2 game of the
same value as follows. Let I be an instance of a 2–to–1 game on a graph (L,R,E), s.t. every constraint has degree 2 on the left
side, and degree 1 on the right side. We create two copies a1 and a2 for every label a for vertices in L. We replace each constraint
Πlr with a constraint Π∗lr defined by Π∗lr(a1, b) = Π∗lr(a2, b) = Πlr(a, b). We obtain a 2–to–2 game. It is clear that its value
equals the value of the original 2–to–1 game.
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Proof. We construct a randomized reduction that maps every satisfiable 2–to–2 game to a semi-random
unique game, and every at most δ satisfiable 2–to–2 game to an at most δ satisfiable unique game. Suppose
we are given an instance of a 2–to–2 game on a graphGwith predicates Πuv. For each predicate Πuv, we find
two permutations π0

uv and π1
uv such that Πuv(i, π

0
uv(i)) = 1 and Πuv(i, π

1
uv(i)) = 1, and π0

uv(i) 6= π1
uv(i)

for every label i as follows. We consider a bipartite graph on vertex set {(u, i) : i ∈ [k]}∪{(v, j) : j ∈ [k]},
in which two vertices (u, i) and (v, j) are connected with an edge if Πuv(i, j) = 1. Every vertex has degree
2 in this graph. Therefore, it is a union of two matchings; each of them defines a permutation. Now for
every edge (u, v), we choose one of the two permutations, π0

uv or π1
uv , at random. We obtain a unique game

instance.
First of all it is clear, that the value of the unique game is at most the value of the 2–to–2 game (if

a labeling {xu} satisfies xv = π0
uv(xu) or xv = π1

uv(xu) then it also satisfies Πuv(xu, xv)). Hence our
reduction maps an at most δ satisfiable 2–to–2 game to an at most δ satisfiable unique game. Now suppose
that the 2–to–2 game instance is completely satisfiable. We show how an adversary can generate semi-
random instances that have the same distribution as instances generated by our reduction. The adversary
finds a solution {x∗u} to the 2–to–2 game that satisfies all constraints Πuv. For every edge (u, v), she
chooses ruv ∈ {0, 1} such that πruvuv (x∗u) = x∗v. She obtains a completely satisfiable unique game on G with
constraints πruvuv (xu) = xv. Now she performs the random step — she chooses a random set of edges Eε;
every edge belongs toEε with probability ε. She replaces every constraint πruvuv (xu) = xv with the constraint
π1−ruv
uv (xu) = xv with probability 1/(2ε), and returns the obtained instance. Note that the constraint for the

edge (u, v) is π0
uv(xu) = xv with probability 1/2 and π1

uv(xu) = xv with probability 1/2. Therefore, the
distribution of instances coincides with the distribution generated by our reduction.

Our positive results (for ε < 1/3) apply only to graphs with average degree greater than ε−1 log k log log k.
We want to point out that our negative results (for ε ≥ 1/2) also apply to graphs with high average degree.
Indeed, note that our reduction does not change the constraint graph. As the following lemma shows, if the
2–to–2 conjecture is true then it is also true for instances on graphs with very high average degree (as large
as n1−θ � k log k).

Lemma 3.13. Suppose that the 2–to–2 conjecture holds. Then it also holds for graphs with average degree
at least n1−θ (for every θ > 0).

Proof. Suppose we are given an instance I of a 2–to–2 game on a graph G = (V,E) with constraints
Πuv(xu, xv). We construct a new instance I ′ of a 2–to–2 game as follows. For every vertex u, we create a
“cloud” of N = |V |2/θ new vertices Vu. We connect all vertices in Vu with all vertices in Vv for every edge
(u, v). For every edge between vertices a ∈ Vu and b ∈ Vv, we add the constraint Πuv(xa, xb) = 1 (where
Πuv is the predicate for the edge (u, v) in I). We obtain a 2–to–2 game on a graph with average degree
2N2|E|/(N |V |) ≥ 2N/|V | ≥ (N |V |)1−θ.

Clearly, this is a polynomial–time reduction. We show that the values of I and I ′ are equal. If a solution
{xu} for I has value t then the solution defined by xa = xu if a ∈ Vu for I ′ has also value t. On the
other hand, given a solution {xa} for I ′ of value t, we construct a solution for I as follows: for every u, we
choose a random vertex a from Vu and let xu = xa. Then the expected value of this solution is t. Therefore,
the value of the optimal solution for I is at least t.

4 Adversarial Edges, Random Constraints

Theorem 4.1. There exists a polynomial-time approximation algorithm that given k ∈ N (k ≥ k0), ε ∈
(0, 1), η ∈ (c

√
ε log k/k, 1) and a semi-random instance of unique games from the “adversarial edges,
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random constraints” model on graph G = (V,E) with at least Cη−2n log k edges (C is a sufficiently large
absolute constant) finds a solution of value 1−O(ε+ η), with probability 1− o(1).

Our algorithm proceeds in several steps. First, it solves the standard SDP relaxation for Unique Games.
Then it removes “η–long edges” (see below) with respect to the SDP solution, and finally it runs the
CMMa [8] algorithm to solve the unique game on the remaining graph (the CMMa algorithm will again
solve the SDP relaxation for Unique Games — it cannot reuse our SDP solution).

Definition 4.2. We say that an edge (u, v) is η–long with respect to an SDP solution {ui}, if

1

2

∑
i∈[k]

‖ui − vπuv(i)‖2 > η.

Otherwise, we say that the edge (u, v) is η–short.

Now we formally present the algorithm.

Input: An instance of unique games.
Output: An assignment of labels to the vertices.

1. Solve the SDP and obtain an SDP solution {u∗i }.
2. Remove all 1/16–long (with respect to {u∗i }) edges (u, v) ∈ E from the graph G. Denote the new

graph G∗.

3. Solve the SDP on the graph G∗ and run the CMMa algorithm.

In Theorem 4.4, we show that after removing all 1/16–long edges from the graph G, the unique games
instance contains at most O(γ)|E| corrupted constraint w.h.p, where γ = η2/ log k. Since the value of the
optimal SDP is at least ε, the algorithm removes at most 16ε edges at step 2. In the remaining graph, G′, the
CMMa algorithm finds an assignment satisfying 1 − O(

√
γ log k) = 1 − O(η) fraction of all constraints.

This assignment satisfies at least 1−O(ε+ η) fraction of all constraints in G.

Remark 4.3. In the previous section we proved that a typical instance of unique games in the “random
edges, adversarial constraints” model contains many “super short” edges of the label-extended graph.
Then we showed how we can find an assignment satisfying many super short edges. Note, that edges in the
set Eε are not necessarily short or long. In this section, we show something very different: in the typical
instance of unique games in the “adversarial edges, random constraints” model, most edges in the set Eε
are long. However, note that the label-extended graph does not have to have any super short edges at all.

4.1 Almost All Corrupted Edges are Long

Theorem 4.4. Let k ∈ N (k ≥ k0), ε ∈ (0, 1], γ ∈ (cε/
√
k, 1/ log k). Consider a graph G = (V,E) with

at least Cγ−1n edges and a unique game instance on G (c, C, and k0 are absolute constants). Suppose that
all constraints for edges in Eε are chosen at random; where Eε is a set of edges of size ε|E|. Then, the set
Eε contains less than γ|E| 1/16–short edges w.r.t. every SDP solution {ui} with probability 1− o(1).
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Proof. Consider a semi-random instance of unique games. Let {ui} be an SDP solution. Suppose, that at
least γ|E| edges in Eε is 1/16–short. Define,

fα,{ui}(u, i, v) =

{
1, if ‖ui − vπuv(i)‖2 < α(‖ui‖2 + ‖vπuv(i)‖2);

0, otherwise.

We shall omit the second index of f , when it is clear that we are talking about the set {ui}. For every short
1/16–short edge (u, v) ∈ Eε, we have

1

2

∑
i∈[k]

j=πuv(i)

‖ui‖2 + ‖vj‖2

8
× (1− f1/8(u, i, v)) ≤ 1

2

∑
i∈[k]

j=πuv(i)

‖ui − vj‖2 ≤
1

16
, (6)

and, hence,

1

2

∑
i∈[k]

j=πuv(i)

(‖ui‖2 + ‖vj‖2)f1/8(u, i, v) ≥ 1

2

∑
i∈[k]

j=πuv(i)

(‖ui‖2 + ‖vj‖2)− 1

2
=

1

2
. (7)

We get (from (7) and the assumption that there are at least γ|E| 1/16–short edges in Eε)∑
(u,i)∈V×[k]

∑
v:(u,v)∈Eε

‖ui‖2f1/8(u, i, v) =
∑

(u,v)∈Eε

∑
i∈[k]

j=πuv(i)

(‖ui‖2 + ‖vj‖2)f1/8(u, i, v) ≥ γ|E|.

=
γ

2
|E|+ γ

8

∑
(u,i)∈V×[k]

‖ui‖2(ε−1 degEε(u) + ∆).

Here degEε(u) denotes the number of edges in Eε incident to u; and ∆ denotes the average degree in
the graph G. We used that

∑
i∈[k] ‖ui‖2 = 1. We now group all vertices of the label–extended graph

(u, i) ∈ E×[k] depending on the value of log2(‖ui‖2). Specifically, we pick a random r ∈ (1, 2) distributed
with density (x ln 2)−1 and for every t ∈ N, define

Vt,r = {(u, i) ∈ V × [k] : ‖ui‖2 ∈ [r2−(t+1), r2−t]}.

We define V∞,r = {(u, i) ∈ V × [k] : ‖ui‖2 = 0}. Let gr(u, i, v) = 1, if (u, i) and (v, πuv(i)) lie in the
same group Vt,r; and gr(u, i, v) = 0, otherwise. We claim, that if f1/8(u, i, v) = 1, then Prr(gr(u, i, v) =
1) ≥ 1/2.

Claim 4.5. If f1/8(u, i, v) = 1, then Prr(gr(u, i, v) = 1) ≥ 1/2.

Proof. Denote j = πuv(i). If f1/8(u, i, v) = 1, then ui 6= 0 and vj 6= 0. Assume w.l.o.g. that ‖ui‖2 ≥
‖vj‖2. Note, that gr(u, i, v) = 0, if and only if r2−t ∈ [‖vj‖2, ‖ui‖2] for some t ∈ N. The probability of
this event is bounded by ln(‖ui‖2/‖vj‖2)/ ln 2, since the probability that an interval [x, x+ ∆x] contains a
point from {r2−t : t ∈ N} is ∆x/(x ln(2)) + o(1). Using the inequality

‖ui‖2 − ‖vj‖2 ≤ ‖ui − vj‖2 ≤
‖ui‖2 + ‖vj‖2

8
,

we get ‖ui‖2/‖vj‖2 ≤ 9/7. Thus,

Pr
r

(gr(u, i, v) = 0) ≤ ln(9/7)/ ln 2 < 1/2.
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Therefore, for some r ∈ [1, 2],∑
(u,i)∈V×[k]

∑
v:(u,v)∈Eε

‖ui‖2f1/8(u, i, v)gr(u, i, v) ≥ γ

4
|E|+ γ

16

∑
(u,i)∈V×[k]

‖ui‖2(ε−1 degEε(u) + ∆).

Rewrite this inequality as follows∑
t∈N

∑
(u,i)∈Vt,r×[k]

∑
v:(u,v)∈Eε

‖ui‖2f1/8(u, i, v)gr(u, i, v) ≥

∑
t∈N

2−(t+1)γ

4
|E|+

∑
t∈N

∑
(u,i)∈Vt,r

‖ui‖2(ε−1 degEε(u) + ∆).

For some t ∈ N,∑
(u,i)∈Vt,r

∑
v:(u,v)∈Eε

‖ui‖2f1/8(u, i, v)gr(u, i, v) ≥ 2−(t+1)γ|E|
4

+
γ

16

∑
(u,i)∈Vt,r

‖ui‖2(ε−1 degEε(u) + ∆).

We now replace each term ‖ui‖2 in the left hand side with the upper bound r2−t and each term ‖ui‖2 in the
right hand side with the lower bound r2−(t+1). Then, we divide both sides by r2−t ≤ 2−t.∑

(u,i)∈Vt,r

∑
v:(u,v)∈Eε

f1/8(u, i, v)gr(u, i, v) ≥ γ

16
|E|+ γ

32

∑
(u,i)∈Vt,r

ε−1 degEε(u) +
γ

32
|Vt,r|∆.

Define a new set of vectors u∗i = ui/‖ui‖, if (u, i) ∈ Vt,r; u∗i = 0, otherwise. Observe, that if fα(u, i, v)gr(u, i, v) =
1, then fα,{u∗i }(u, i, v) = 1 since for j = πuv(i),

‖u∗i − v∗j ‖2 = 2− 2〈u∗i , v∗j 〉 = 2− 2
〈ui, vj〉
‖ui‖ ‖vj‖

= 2− ‖ui‖
2 + ‖vj‖2 − ‖ui − vj‖2

‖ui‖ ‖vj‖

< 2− (1− α)
‖ui‖2 + ‖vj‖2

‖ui‖ ‖vj‖
≤ 2− (1− α) · 2 = 2α = α(‖u∗i ‖2 + ‖v∗j ‖2).

Therefore, ∑
(u,i)∈Vt,r

∑
v:(u,v)∈Eε

f1/8,{u∗i }(u, i, v) ≥ γ

16
|E|+ γ

32

∑
(u,i)∈Vt,r

ε−1 degEε(u) +
γ

32
|Vt,r|∆. (8)

We now embed vectors {u∗i } in a netN of size exp(O(log k)) using a randomized mappingϕ (see Lemma 3.7,
a variant of the Johnson–Lindenstrauss lemma), so that for some small absolute constant β and every
(u, i), (v, j) ∈ Vt,r,

Pr((1 + β)−1‖u− v‖2 − β ≤ ‖ϕ(u)− ϕ(v)‖2 ≤ (1 + β)‖u− v‖2 + β) ≥ 1− β

k2
.

We say that a vertex u ∈ V is good if for all i′, i′′ ∈ {i : (u, i) ∈ Vt,r}, the following inequality holds:
‖ϕ(u∗i′) − ϕ(u∗i′′)‖2 ≥ 2 − 3β for i′ 6= i′′. I.e., if u is good then all vectors ϕ(ui

∗) are almost orthogonal.
By Lemma 3.7, vertex u is good with probability at least 1 − β. We let u∗∗i = ϕ(u∗i ), if u is good; and
u∗∗i = 0, otherwise. To slightly simplify the proof, for every vertex u, we also zero out a random subset of
dβk/4e vectors u∗∗i . Thus, if f1/8,{u∗i }(u, i, v) = 1, then Pr(f1/4,{u∗∗i }(u, i, v) = 1) ≥ 1− 4β (unless u or
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v are not good vertices; ui or vπuv(i) has been zeroed; or the distance between u∗i and v∗πuv(i) is significantly
distorted by φ). Hence, for some sample {u∗∗i },

R ≡
∑

(u,i):‖u∗∗i ‖=1

∑
v:(u,v)∈Eε

f1/4,{u∗∗i }(u, i, v) ≥ γ

64

(
|E|+

∑
(u,i)∈Vt,r

ε−1 degEε(u) + |Vt,r|∆
)
≡ S. (9)

We denote the left hand side by R. We denote the right hand side by S.
We now fix the set of vectors {u∗∗i } and estimate the probability that for a given set {u∗∗i } and a

random set of constraints {πuv} on edges (u, v) ∈ Eε inequality (9) holds. For each (u, v) ∈ Eε and
i, Pr{πuv}(f1/4,{u∗∗i }(u, i, v) = 1) ≤ 1/k (since for every i, there is at most one j ∈ [k] such that
‖u∗∗i − v∗∗j ‖2 ≤ 1/4; here we use that all non-zero vectors vj are almost orthogonal). Thus,

ER = E
∑

(u,i):‖u∗∗i ‖2=1

∑
v:(u,v)∈Eε

f1/4,{u∗∗i }(u, i, v) ≤ 1

k

∑
(u,i):‖u∗∗i ‖2=1

degEε(u) < 64S/(
√
kc).

In the last inequality, we used the bound γ ≥ cε/
√
k and (9). We assume that 64/c� 1. We would like to

apply the Bernstein inequality, which would give us an upper bound of

exp(−Ω(S)) ≡ exp
(
− Ω

((
γ|E|+ γ

∑
(u,i)∈Vt,r

ε−1 degEε(u) + γ|Vt,r|∆
)

log(k)
)

(10)

on the probability that inequality (9) holds (note: E[R] � S; log(S/E[R]) ≥ Θ(log k)). Formally, we
cannot use this inequality, since random variables f1/4,{u∗∗i }(u, i, v) are not independent. So, instead, we
consider a random process, where we consequently pick edges (u, v) ∈ Eε and then for every i such that
u∗∗i 6= 0 pick a random yet unchosen j ∈ [k] and set πuv(i) = j. For every u and i, there are at least dβk/4e
different candidates j (since at least dβk/4e ui’s equal 0) and for at most one of them ‖u∗∗i − v∗∗j ‖2 ≤ 1/4.
Hence, at every step Pr(f1/4,{u∗∗i }(u, i, v) = 1) ≤ 4/(βk). We now apply a martingale concentration
inequality and get the same bound (10).

Finally, we bound the number of possible solutions {u∗∗i } and then apply the union bound to show
that w.h.p. the set Eε contains less than γ|E| 1/16-short edges with respect to every SDP solution. Let
W = |Vt,r| be the number of pairs (u, i) such that u∗∗i 6= 0. We choose W variables among {u∗∗i }u,i and
assign them values from N as follows. Let au = |{u∗∗i 6= 0 : i}|. First, we choose the values of au for all
vertices (note that

∑
u∈V au = W ). The number of ways to choose {au} is at most the number of ways

to write W as the sum of n numbers, which is
(
n+W−1
n−1

)
< 2n+W . Then for each vertex u, we choose

au labels i1, . . . , iau for which u∗∗i1 6= 0, . . . , u∗∗iau 6= 0. The number of ways to choose labels is at most∏
u∈V k

au = kW . Finally, we assign a vector from N to each chosen variable u∗∗i . The number of ways to
do so is |N |W . Thus there are at most

2n+W × |N |W × kW = exp(O(W log k + n))

ways to choose vectors {u∗∗i } for given W . Since γ|Vt,r|∆ log k ≥ γW × (Cγ−1) log k ≥ CW log k
and γ|E| log k ≥ Cn inequality (9) holds for some collection {u∗∗} with exponentially small probability
exp(−Ω(n)) for every fixed value of W . Since there are only n possible values on W , inequality (9) holds
for some value of W with exponentially small probability.
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5 Random Corrupted Constraints in Linear Unique Games

In this section we study a special family of unique games, so-called Linear Unique Games (or MAX Γ-
Lin). In Linear Unique Games all labels i ∈ [k] are elements of the cyclic group Z/kZ; all constraints
have the form xu = xv − suv, where suv ∈ Z/kZ. It is known that if the Unique Games Conjecture holds
for general unique games, then it also holds for this family. We note that the results from the previous
subsection are not directly applicable for Linear Unique Games, since random permutations are restricted
to be shifts πuv : xu 7→ xv + suv and, thus, a random unique game from the “adversarial edges, random
constraints” model is most likely not a linear unique game. This is not the case in the “random edges,
adversarial constraints” model, since there the adversary may choose corrupted constraints in any fashion
she wants, particularly to be shifts. We note that the results of this section can be easily generalized to any
finite Abelian group using the decomposition of the group into a sum of cyclic subgroups. We omit the
details from the conference version of the paper.

For Linear Unique Games, we use a shift invariant variant of the SDP relaxation (see e.g., a paper by
Andersson, Engebretsen, and Håstad [2]). In this relaxation, all vectors ui are unit vectors, satisfying `22
triangle inequalities, and an extra constraint ‖ui − vj‖ = ‖ui+s − vj+s‖. The objective is to minimize

1

k
× 1

2|E|
∑

(u,v)∈E

∑
i∈[k]

‖ui − vi+suv‖2.

Given an arbitrary SDP solution {ui} one can obtain a uniform solution using symmetrization (this trick
works only for unique games on groups, not arbitrary unique games):

u′i =
1√
k

⊕
j∈Z/kZ

ui+j .

It is easy to verify (and it is well-known, see e.g., [8]) that vectors {u′i} satisfy all SDP constraints and the
objective value of the SDP does not change. We adapt the definition of η–short edges for this variant of SDP
as follows: we say that an edge (u, v) is η–short with respect to the SDP solution {ui} if 1/2 ‖ui−vi+s‖2 ≤
η for every i ∈ [k] (or, equivalently, for some i ∈ [k], since ‖ui − vi+s‖ = ‖uj − vj+s‖).

We prove the following analog of Theorem 4.4, which immediately implies that our general algorithm
for the adversarial edges, random constraints model works for linear unique games.

Theorem 5.1. Let k ∈ N (k ≥ k0), ε ∈ (0, 1), η ∈ (ε/ log k, 1/ log k). Consider a graph G = (V,E)
with at least Cnγ−1 edges (k0, c, C are absolute constants) and a random linear unique game from the
“adversarial edges, random constraints” model. Let Eε be the set of corrupted edges; and let {ui} be the
optimal SDP solution. Then, with probability 1− o(1), at most γ|E| edges in Eε are 1/32–short.

Proof. As mentioned in the beginning of this section the result we would like to prove holds not only for
cyclic groups but for arbitrary Abelian groups. In fact, the proof is simpler if the group can be decomposed
into a direct sum of many cyclic groups of small size. So, in some sense, our plan is to represent the
cyclic group as a “pseudo-direct sum” of such groups. Before proceeding to the proof, we note that all
transformations described below are only required for the proof and are not performed by the approximation
algorithm.

Let S be a circle (or a one dimensional torus). We identify S with the segment [0, 1] with “glued” ends
0 and 1. Define an embedding θ : [k] → S as follows θ(i) = i/k. We denote the distance between two
adjacent labels by τ = 1/k. Below, all “+” and “−” operations on elements of S are “modulo 1” and all
operations on [k] (and later [T ]) are modulo k (and T respectively).
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Recall, that in the “adversarial edges, random constraints” model of Linear Unique Games, the adversary
first chooses a set of edges Eε, then the “nature” randomly picks a shift suv ∈ [k] for every (u, v) ∈ Eε.
We assume that the nature picks suv in the following way: it chooses a random s̃uv ∈ S, and then defines
suv = bs̃uvkc. Then, clearly, suv is distributed uniformly in [k].

If M is a subset of S, then M + s denotes the shift of M by s. We denote by L(M) the set of labels
covered by M :

L(M) = {i ∈ [k] : θ(i) ∈M}.

We let Ψu(M) =
∑

i∈L(M) ui, and Ψ′u(M) = Ψu(M)/‖Ψu(M)‖.
Fix T = R2 (where R ∈ N) to be a sufficiently large absolute constant (not depending on k or any other

parameters). We represent each s̃ ∈ S as

s̃ =
∞∑
p=1

s̃p/T
p,

where every s̃p belongs to [T ], in other words, 0.s̃1s̃2s̃3 . . . is a representation of s̃ in the numeral system
with base T . (This representation is not unique for a set of measure 0. If it is not unique, we pick the
representation that ends in zeros.) We define Dp(s̃) = s̃p. Note, that if s̃ is uniformly distributed random
variable in S, then Dp(s̃) is uniformly distributed in [T ] and all Dp(s̃) are independent for different p. We
are interested in the first P = d2 ln ln ke digits of s̃uv. We have chosen P so that T−P = log−Θ(1) k >
τR ≡ R/k, but eP ≥ ln2 k.

For every integer p ∈ {1, . . . , P} and d ∈ [T ] define

Mp,d = {s̃ ∈ S : Dp(s̃) ∈ [d, d+R− 1]},

that is, Mp,d is the set of numbers in [0, 1], whose p-th digit is in the range [d, d+R− 1]. Note, that the set
{s̃ ∈ S : Dp(s̃) = d} is a union of segments of length T−P > τR ≡ R/k (here and below, all segments are
left-closed and right-open).

Lemma 5.2. Let M ⊂ S be a union of segments of length at least Rτ and let s̃ ∈ [0, 1]. Then,

(1− 1/R) µ(M)/τ ≤ |L(M)| ≤ (1 + 1/R) µ(M)/τ.

and
|L(M)4 L(M + s̃)| ≤ min(|L(M)|, |L(M + s̃)|)/R× (2s̃/τ + 2),

here4 denotes the symmetric difference of two sets; and µ is the uniform measure on [0, 1].

Proof. Let M be the disjoint union of segments I ∈ I of length at least Rτ each. Consider one of the
segments I ⊂ M . This segment covers at least bµ(I)/τc ≥ (µ(I)/τ − 1) and at most dµ(I)/τe ≤
(µ(I)/τ+1) points θ(i). In other words, µ(I)/τ−1 ≤ |L(I)| ≤ µ(I)/τ+1. Observe that 1/R·µ(I)/τ ≥ 1,
because µ(I) ≥ Rτ , thus

(1− 1/R)µ(I)/τ ≤ |L(I)| ≤ (1 + 1/R)µ(I)/τ.

Using equalities |L(M)| =
∑

I∈I |L(I)| and µ(M) =
∑

I∈I µ(I), we get (1−1/R)µ(M)/τ ≤ |L(M)| ≤
(1 + 1/R)µ(M)/τ .

To prove the second inequality, observe that

L(M)4 L(M + s̃) ⊂
⋃
I∈I

(L(I)4 L(I + s̃)).
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For each I ∈ I, L(I)4L(I+s̃) = L(I4(I+s̃)). The set I4(I+s̃) is the union of two segments of length at
most s̃, thus I4(I+s̃) covers at most 2(s̃/τ+1) points θ(i) (i ∈ [k]). Every interval covers at leastR points.
Thus, the size of the family I is at most L(I)/R. Therefore, |L(M)4L(M+s̃)| ≤ |L(M)|/R×(2s̃/τ+2).
The same argument shows |L(M)4 L(M + s̃)| ≤ |L(M + s̃)|/R× (2s̃/τ + 2).

Lemma 5.3. Let suv = bks̃uvc (suv ∈ [k], s̃uv ∈ S), p ∈ {1, . . . , P} and let d = Dp(s̃uv) be the p-th digit
of s̃uv. Then |L(Mp,0)|, |L(Mp,d)| ∈ [(1− 1/R)/(Rτ), (1 + 1/R)/(Rτ)] and

|L(Mp,0)4 (L(Mp,d)− suv)| ≤ 8 min(|L(Mp,0)|, |L(Mp,d)|)/R.

Proof. We have µ(Mp,d) = R/T = 1/R, thus by Lemma 5.2, |L(Mp,0)| ∈ [(1 − 1/R)/(Rτ), (1 +
1/R)/(Rτ)]. Write,

|L(Mp,0)4 (L(Mp,d)− suv)| = |(L(Mp,0) + suv)4 L(Mp,d)| = |L(Mp,0 + θ(suv))4 L(Mp,d)|
≤ |L(Mp,0 + θ(suv))4 L(Mp,0 + s̃uv)|+ |L(Mp,0 + s̃uv)4 L(Mp,d)|.

Since s̃uv − θ(suv) ∈ [0, τ ], by Lemma 5.2,

|L(Mp,0 + θ(suv))4L(Mp,0 + s̃uv)| ≤ |L(Mp,0 + θ(suv))|/R · (2(s̃uv− θ(suv))/τ + 2) ≤ 4|L(Mp,0)|/R.

The p-th digit of s̃uv is Dp(s̃uv) = d. Hence, the p-th digit of every number s̃ in Mp,0 + s̃uv is in the range
[d, (R− 1) + d+ 1] = [d,R+ d]. Moreover, all numbers with p-th digit in the interval [d+ 1, (R− 1) + d]
are covered by Mp,0 + s̃uv. Thus, (Mp,0 + s̃uv)4Mp,d ⊂ {s̃ : Dp(s̃) ∈ {d, d+ R}}. The measure of the
set {s̃ : Dp(s̃) ∈ {d, d+R}} is 2/T . It is a union of segments of lengths T−p ≥ τR. By Lemma 5.2,

L((Mp,0 + s̃uv)4Mp,d) ⊂ L({s̃ : Dp(s̃) ∈ {d, d+R}}) ≤ (1 + 1/R) · 2/(Tτ) ≤ 4L(Mp,0)/R.

Lemma 5.4. Let suv = bks̃uvc (suv ∈ [k], s̃uv ∈ S), p ∈ {1, . . . , P}, and let d = Dp(s̃uv) be the p-th
digit of s̃uv. Suppose that an edge (u, v) ∈ Eε is 1/32–short, then

‖Ψu(Mp,0)−Ψv(Mp,d)‖2 ≤ 1/8 min(‖Ψu(Mp,0)‖2, ‖Ψv(Mp,Dp(s̃))‖2); (11)

and
‖Ψ′u(Mp,0)−Ψ′v(Mp,d)‖2 ≤ 1/8. (12)

Proof. Write,

‖Ψu(Mp,0)−Ψv(Mp,d)‖2 =
∥∥ ∑
i∈L(Mp,0)

ui −
∑

i∈L(Mp,d)

vi
∥∥2

=
∥∥∥ ∑
i∈L(Mp,0)∩(L(Mp,d)−suv)

(ui − vi+suv) +

∑
i∈L(Mp,0)\(L(Mp,d)−suv)

ui −
∑

i∈(L(Mp,d)−suv)\L(Mp,0)

vi+suv

∥∥∥2
.

Using `22 triangle inequalities 〈ui−vi+suv , uj−vj+suv〉 = −〈ui, vj+suv〉−〈vi+suv , uj〉 ≤ 0, 〈ui,−vj+suv〉 ≤
0 (for i 6= j) and then Lemma 5.3, we get (for sufficiently large R)

‖Ψu(Mp,0)−Ψv(Mp,d)‖2 ≤
∑

i∈L(Mp,0)∩(L(Mp,d)−suv)

‖ui − vi+suv‖2 + |L(Mp,0)4 (L(Mp,d)− suv)|

≤ 1/16 |L(Mp,0)|+ 8|L(Mp,0)|/R ≤ 1/8 |L(Mp,0)| = ‖Ψu(Mp,0)‖2/8.
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Similarly, ‖Ψu(Mp,0)−Ψv(Mp,d)‖2 ≤ ‖Ψu(Mp,d)‖2/8.
Inequality (12) immediately follows from inequality (11): let ψu = Ψu(Mp,0), ψv = Ψv(Mp,d) and

assume ‖ψu‖ ≤ ‖ψv‖, then ‖ ψu/‖ψu‖ − ψv/‖ψu‖ ‖2 ≤ 1/8. Vector ψu/‖ψu‖ has length 1, and vector
ψv/‖ψu‖ has length at least 1, hence ‖ ψu/‖ψu‖ − ψv/‖ψv‖ ‖2 ≤ ‖ ψu/‖ψu‖ − ψv/‖ψu‖ ‖2 ≤ 1/8.

Observe, that vectors Ψ′v(Mp,d′), Ψ′v(Mp,d′′) are orthogonal if |d′′ − d′| > R, and thus

‖Ψ′u(Mp,d′)−Ψ′u(Mp,d′′)‖2 = 2.

We now proceed the same way as in the proof of Theorem 4.4. We embed O(n log log k) vectors
Ψ′u(Mp,d) (u ∈ V , p ∈ P , d ∈ T ) in a net N of size O(1) using a randomized mapping ϕ (see Lemma 3.7),
so that for some small absolute constant β and every u, v ∈ V ; d′, d′′ ∈ T ; and p ∈ {1, . . . , P},

Pr((1 + β)−1‖Ψ′u(Mp,d′)−Ψ′v(Mp,d′′)‖2 − β ≤ ‖Φ(u, p, d′)− Φ(v, p, d′′)‖2

≤ (1 + β)‖Ψ′u(Mp,d′)−Ψ′v(Mp,d′′)‖2 + β) ≥ 1− β/T 2,

where Φ(u, p, d) = ϕ(Ψ′u(Mp,d)). We say that a pair (u, p) ∈ V × {1, . . . , P} is good if the following
inequality holds: ‖Φ(u, p, d′) − Φ(u, p, d′′)‖2 ≥ 2 − 3β for all d′, d′′ ∈ [T ] such that |d′′ − d′| > R.
By Lemma 3.7, a pair (u, p) is good with probability at least 1 − β. Then, for a fixed 1/32–short edge
(u, v) ∈ Eε, the expected fraction of p’s for which both pairs (u, p) and (v, p) are good and

‖Φ(u, p, 0)− Φ(v, p,Dp(s̃uv))‖2 ≤ 1/4 (13)

is at least 1− 3β.
Assume that γ|E| = γε−1|Eε| edges in Eε are 1/32–short. We say that an edge (u, v) ∈ Eε is good

with respect to the set {Φ(u′, p, d)u,p,d} if the following statement holds: “for at least (1 − 6β) fraction of
p’s in {1, . . . , P}, the pairs (u, p) and (v, p) are good, and inequality (13) holds”. By the Markov inequality,
there exists a realization of random variables Φ(u, p, d) (random with respect to a random embedding in the
net N ) such that for at least γ/2 fraction of edges (u, v) ∈ Eε the previous statement holds.

Thus we have shown that for every linear unique game with γ|E| 1/32–short edges there always exists
a witness—a collection of vectors {Φ(u, p, d)} ⊂ N , such that at least γ|E|/2 edges in Eε are good with
respect to this collection (Remark: so far we have not used that the instance is semi-random). Now, we
will prove that for a fixed witness, the probability that γ|E|/2 edges in Eε is good in a semi-random unique
game is exponentially small.

Fix an edge (u, v) ∈ Eε and compute the probability that it is good with respect to a fixed witness
{Φ(u, p, d)} ⊂ N . The probability that

‖Φ(u, p, 0)− Φ(v, p,Dp(s̃uv))‖2 ≤ 1/4 (14)

for a random (s̃uv) is at most 1/R if pairs (u, p) and (v, p) are good, since among every R values d ∈
{d0, d0 +R, d0 + 2R, · · · } there is at most one d satisfying

‖Φ(u, p, 0)− Φ(v, p, d)‖2 ≤ 1/4.

(Recall, that ‖Φ(v, p, d′)−Φ(v, p, d′′)‖2 ≥ 2−3β if |d′−d′′| > R). By the Chernoff bound the probability
that for (1− 6β) fraction of p’s the inequality (14) is satisfied and (u, p), (v, p) are good is at most

e−P ln((1−6β)R) ≤ e−P ≤ ln−2 k.
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Hence, the expected number of good edges inEε is at most |Eε|/ ln2 k = ε|E|/ ln2 k, and the probability
that γ|E|/2 edges in Eε are good is at most

exp
(
−γ|E|/2 · ln

(
γε−1 ln2 k/2

))
≤ exp(−Cn/2 · ln(1/2 ln k)).

The total number of possible witnesses {Φ(u, p, d)} ⊂ N is exp(O(n log log k)). So by the union
bound (for sufficiently large absolute constant C) with probability 1− exp(−n) = 1− o(1), less than γ|E|
edges in Eε are 1/32–short.

6 Random Initial Constraints

In this section, we consider the model, in which the initial set of constraints is chosen at random and other
steps are controlled by the adversary. Specifically, in this model the adversary chooses the constraint graph
G = (V,E) and a “planted solution” {xu}. Then for every edge (u, v) ∈ E, she randomly chooses a
permutation (constraint) πuv such that πuv(xu) = xv (each of (k− 1)! possible permutations is chosen with
the same probability 1/(k − 1)!; choices for different edges are independent). Then the adversary chooses
an arbitrary set Eε of edges of size at most ε|E| and (adversarially) changes the corresponding constraints:
replaces constraint πuv with a constraint π′uv for (u, v) ∈ Eε. Note that the obtained semi-random instance
is 1− ε satisfiable since the “planted solution” xu satisfies constraints for edges in E \ Eε. The analysis of
this model is much simpler than the analysis of the other two models that we study.

Theorem 6.1. There exists a polynomial-time algorithm that given k ∈ N (k ≥ k0), ε ∈ (0, 1), η ∈
(c log k/

√
k, 1) and a semi-random instance of unique games from the “random initial instance” model

on graph G = (V,E) with at least Cη−1n log k edges finds a solution of value 1 − O(ε + η/ log k) with
probability 1− o(1) (where c, C and k0 are some absolute constants).

Proof. We solve the standard SDP relaxation for the problem. Then we use a very simple rounding proce-
dure. For every vertex u, if ‖ui‖2 > 1/2 for some label i, we label u with i; otherwise, we label u with an
arbitrary label (since for every two labels i1 6= i2, ‖ui1‖2 + ‖ui2‖2 ≤ 1, we do not label any vertex with two
labels).

We now show that our labeling satisfies a 1 − O(ε + η/ log k) fraction of constraints w.h.p. Without
loss of generality, we assume that the planted solution is xu = 0 for every u ∈ V . For every t ∈ (1/2; 3/4),
let St =

{
u : ‖u0‖2 ≥ t

}
. Let t0 be the value of t that minimizes the size of the cut between St and

V \ St; let S = St0 . Note that if u ∈ S then we label vertex u with 0. Therefore, our labeling satisfies all
constraints πuv for edges (u, v) within S (but not necessarily constraints π′uv). We conservatively assume
that constraints for all edges from S to V \ S and edges within V \ S are not satisfied. We now estimate
their number. First, we bound the number of edges leaving S. Note that since the unique game instance is
1− ε satisfiable the cost of the SDP solution is at most ε. In particular,

1

2

∑
(u,v)∈E

∣∣∣‖u0‖2 − ‖v0‖2
∣∣∣ ≤ 1

2

∑
(u,v)∈E

‖u0 − v0‖2 ≤ ε.

On the other hand, if we choose t uniformly at random from (1/2; 3/4), then the probability that u ∈ St
and v /∈ St or u /∈ St and v ∈ St is at most 4

∣∣∣‖u0‖2 − ‖v0‖2
∣∣∣ for every (u, v) ∈ E. Therefore, the expected

size of the cut between St and V \ St is at most 8ε|E|. Hence the size of the cut between S and V \ S is at
most 8ε|E|.
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Now we estimate the number of edges within V \ S. We consider a new instance of Unique Games on
G with the label set {1, . . . , k − 1} and constraints π∗uv = πuv|{1,...,k−1} (the restriction of πuv to the set
{1, . . . , k − 1}). Note that each π∗uv is a permutation of {1, . . . , k − 1} since πuv(0) = 0. Moreover, each
π∗uv is a random permutation uniformly chosen among all permutations on {1, . . . , k − 1}. For each vertex
u and label i ∈ {1, . . . , k−1}, we define a vector u∗i as follows. If u /∈ S, we let u∗i = ui. Otherwise, we let
u∗1 = e and u∗i = 0 for i > 1, where e is a fixed unit vector orthogonal to all vectors vj in the SDP solution.

We say that {u∗i } is a relaxed SDP solution if it satisfies all SDP conditions except possibly for the
condition that

∑
i ‖u∗i ‖2 = 1 for every vertex u. We require instead that 1/4 ≤

∑
i ‖u∗i ‖2 ≤ 1. Note that

the set of vectors {u∗i } is a relaxed SDP solution since for every u /∈ S,
∑k−1

i=1 ‖u∗i ‖2 = 1 − ‖u0‖2 ≥
1− t0 ≥ 1/4; for every u ∈ S,

∑k−1
i=1 ‖u∗i ‖2 = ‖e‖2 = 1.

We now use a slightly modified version of Theorem 4.4.

Lemma 6.2. Consider a unique game on a graph G = (V,E) with at least Cη−1n log k edges with random
set of constraints π∗uv, where η ∈ (c log k/

√
k, 1) (where c and C are some absolute constants). Let {u∗i } be

a relaxed SDP solution. Then, there are at most O(η/ log k)|E| 1/64–short edges with probability 1−o(1).

The proof of the lemma almost exactly repeats the proof of Theorem 4.4 for ε = 1 (we only need to
change inequalities (6) and (7) slightly).

We apply this lemma to the solution {u∗i }. We get that there are at most O(η/ log k)|E| 1/64–short
edges. In particular, there are at most O(η/ log k)|E| 1/64–short edges in E(V \ S). Thus

1

2

∑
(u,v)∈E

k−1∑
i=1

‖ui − vπuv(i)‖2 ≥
1

2

∑
(u,v)∈E(V \S)

k−1∑
i=1

‖ui − vπuv(i)‖2 =
1

2

∑
(u,v)∈E(V \S)

k−1∑
i=1

‖u∗i − v∗π∗uv(i)‖
2

≥ |E(V \ S)|
64

−O(η/ log k)|E|.

However, the left hand side is at most ε|E|. Therefore, E(V \ S) = O(ε+ η/ log k)|E|.
We conclude that the solution that our algorithm finds satisfies a 1 − O(ε + η/ log k) fraction of con-

straints πuv. Since there are at most ε|E| corrupted constraints, the solution also satisfies a 1 − O(ε +
η/ log k)− ε = 1−O(ε+ η/ log k) fraction of corrupted constraints.

7 Distinguishing Between Semi-Random Unsatisfiable Games and Almost
Satisfiable Games

In this section, we study the following question, Is it possible to distinguish between (1 − ε) satisfiable
semi-random games and (1− δ) satisfiable (non-random) games if δ � ε? This question is interesting only
in the model where the corrupted constraints are chosen at random (i.e. step 4 is random), since in the other
two semi-random models (when the initial constraints are random, and when the set of corrupted edges Eε
is random), the semi-random instance can be 1− δ satisfiable, therefore, the answer is trivially negative.

Specifically, we consider the following model. The adversary chooses a constraint graph G and a set
of constraints πuv. We do not require that this instance is completely satisfiable. Then she chooses a set of
edges Eε of size ε|E|. She replaces constraints for edges in Eε with random constraints (each constraint is
chosen uniformly at random among all k! possible constraints).

We show that such semi-random instance can be distinguished w.h.p. from a (1− δ) satisfiable instance
if δ < cε (where c is an absolute constant) if |E| ≥ Cnmax(ε−1, log k). To this end, we consider the
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standard SDP relaxation for Unique Games. We prove that the SDP value of a semi-random instance is at
least cε; whereas, of course, the SDP value of a (1− δ) satisfiable instance is at most δ.

Theorem 7.1. Let k ∈ N (k ≥ k0) and ε ∈ (0, 1]. Consider a graph G with at least Cnmax(ε−1, log k)
edges, and a semi-random unique games instance I onG with ε|E| randomly corrupted constraints (k0 and
C are absolute constants). Then the SDP value of I is at least ε/32 with probability 1− o(1).

Proof. We apply Theorem 4.4 to our instance of Unique Games, with γ = min(ε/2, 1/(2 log k)). We
get that at least half of all edges in Eε are 1/16–long w.h.p. The contribution of these edges to the sum
1
2

∑
(u,v)

∑
i ‖ui−vπuv(i)‖2 in the SDP objective function is at least 1/16×(|Eε|/2) = ε|E|/32. Therefore,

the SDP value is at least ε/32.
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