NP hardiness
Reduckions 111

MIN Vertex Cover
» Input: a graph G(V,E)

o Output: Smallest set of vertices that touch every
edge

o If|is Independent set in G,

V\|l Is vertex cover!

o Largest|Sin G is the complement

of smallest VC in G

MAXINDEPENDENTSET
MINVERTEX
G | COVER k .
graph N size of smallest _
vertex cover in G size of largest
independent
setin G
_ n
number of vertices in G

what is G'? same graph as G
Qutput is different

How to prove NP hardness
« [0 prove X Is NP-hard:

. Step 1: Pick a known NP-hard problem Y

.- Step 2: Assume for the sake of argument, a
polynomial time algorithm for X.

. Step 3: Derive a polynomial time algorithm for Y,
using algorithm for X as subroutine.

. Step 4: Contradiction Reduce FROM the problem
| Know about

Reduce Y to X TO the problem
| am curious about

K

NP hardness of X

« To show X is NP hard (example):

o Poly time reduction from CircuitSAT.

f there is a poly time algorithm to solve X, then

there is poly time algorithm to solve CircuitSAT

Boolean
circuit

CIRCUITSAT
TRUE
K is
transform satisfiable
in O(n)
: Instance
tume FALSE

of X No

>

K is not
satisfiable

your work

NP hardness

o Library of NP-hard problems

R CiruitST '

SA

i 3SAT
MAX IS
MAX Clique

Min Vertex Cover

Mickey Mouse Diagram @

“‘,— CircuitSAT
.v NP-complete

SAT
Does a given boolean forumla, in CNF, have a satisfying assignment?
3-SAT
Does a given boolean forumla, in CNF with exactly three literals per clause, have a satisfying
assignment?
Min Vertex Cover
In a given undirected graph, what is the (size of the) smallest subset of the vertices covering all of the
edges?
Max Independent Set
In a given undirected graph, what is the (size of the) larges subset of the vertices having no edges in
common?
Max Clique
What is the (size of the) largest complete subgraph of a given undirected graph?
Min Set Cover
Given a set S and a collection of subsets of S, what is smallest set of these subsets whose union is 37
Min Hitting Set
Given a set S and a collection of subsets of S, what is smallest subset of S containing at least one
element from every subset?

Hamilton Path

Does a given graph have a Hamilton Path?
Hamilton Cycle

Does a given graph have a Hamilton Cycle?

Traveling Salesperson

What is the minimum cost Hamilton Cycle in a weighted, complete, graph?
Longest Path

What is the longest path between two given nodes in a weighted, undirected, graph?
Subset Sum

Does a given set of positive integers have a subset with sum k?
Partition

Can a given set of positive integers be partitioned into two subsets each with the same sum?
3-Partition

Can a given set of 3n positive integers be partitioned into 7 3-element subsets each with the same sum?
Minesweeper

In a given Minesweeper configuration, is it safe to click on a particular square?
Sodoku

Does a given Sodoku puzzle have a solution?

NP hardness ‘

o Library of NP-hard problems

IrcultSAT
SAT
3SAT
MAX IS
MAX Clique
Min Vertex Cover
3 Coloring

3 Coloring ‘

» Input: a graph G(V,E)

o Qutput: True iff G has a proper 3 coloring

'.... ---_,-.-V'.-..---- .'.,:--:’.-\'_-: ’
® | S
- ®

what problem to start with?

10

3SAT

O
— >

3CNF
Boolean
formula

G is @ is

transform 3-colorable satisfiable
in O(n)
tme FALSE FALSE .
G is not ® is not
3-colorable satisfiable

3COL

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces
1) piece that corresponds to variables
2) piece that corresponds to clauses

3) piece that enforces logical consistency
‘gadgets”

12

3COL ‘

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces

1) Truth Gadget

13

3COL ‘

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces

1) Truth Gadget

14

3COL ‘

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces

2) Variable Gadget

15

3COL

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces

2) Variable Gadget

one vertex in the graph for every
variable and one for its negation.
One vertex labeled X

16

3COL ‘

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces

3) Clause Gadget

17

3COL ‘

o Given an arbitrary SCNF formula F

« Build a graph G as follows

Best described In pleces

3) Clause Gadget

18

3COL

(avbVvc)A(bvivd)A(@Vvevd)A(avbVvd)

IN any proper coloring
at least one of the three literals
must be colored T

easier to prove with 2 SAT example

literal vertices,
connected to X

(X

6‘6

1)

20

3COL

(avbVvc)A(bveivd)A(@Vevd)A(avbvd)

IN any proper coloring
at least one of the three literals
must be colored T

easier to prove with 2 SAT example

p
iteral vertices, / \
100

connected to X

3COL ‘

(avbVc)A(bvevd)A(@vevd)A(aVvbvd)

21

3COL ‘

(avbVvc)A(bVveivd)A(@Vevd)A(avbvd)

There are 8 possible colorings for the 3 literals on the letft.
e For 7 of them one gets colored T and
| can properly color the gadget
« [or the 8th, all of them are colored False and
| can't properly color the gadget

22

" (avbVve)A(bVvivd)A(@vevd)A(avbvd) 0

Proof ‘

Suppose F is satisfiable Suppose G is 3-Colorable

So G is 3-Colorable So F is satisfiable

24

Proof

Suppose F is satisfiable

e Fix any satisfying assignment

e Color True literals same coloras T
o Color False literals same color as F
« By case analysis:

extend the coloring to the clause
gadget

So G is 3-Colorable

25

Suppose G is 3-Colorable

So F is satisfiable

26

Proof

Suppose F is satisfiable

Fix any satistying assignment
Color True literals same coloras T
Color False literals same color as F
By case analysis:
extend the coloring to the clause
gadget

So G is 3-Colorable

Suppose G is 3-Colorable

Fix a proper 3 Coloring

Each literal vertex is colored
TorkF

This gives me an assignment of
boolean values to variables

By case analysis: At least one
iteral In each clause gadget is
colored T

So F is satisfiable

4 Coloring? ‘

» Input: a graph G(V,E)

o Qutput: True iff G has a proper 4 coloring

27

Hamiltonian Cycle
e Input: a directed graph G(V,E)

o Output: Is there a cycle in G that visits each vertex
exactly once”

e Really asking if there is a way to order the vertices so
that every adjacent pair is connected by an edge.

e Reduction from HC if a problem asks for ordering of
vertices.

e Anti-topological sort

28

NP hardness ‘

o Library of NP-hard problems
| | - CircutsAI
SAT
3SAT
MAX IS
MAX Clique

_ (M;:;Tﬁ‘Ver ex. _

29

30

Hamiltonian Cycle

VERTEXCOVER
TRUE
G DIRECTED G has a
graph | transform HAMCYCLE Vertex cover
) in O(V+E) of size k
integer L FALSE .
G has no
vertex cover
of size k

Hamiltonian Cycle

o (Given an arbitrary graph G and parameter k

« Build a graph H as follows

Best described in gadgets

31

Hamiltonian Cycle ‘
1)

edge gadget

b ‘
5 S) S

bothu,vinVC onlyuinVC onlyvinVC

32

Hamiltonian Cycle ‘
. .,

vertex gadget
U

J

V1 V2 V3

uvzin uvz out

o000 0o

uviln uviout

uvsin uvsout

33

Hamiltonian Cycle ®
.

vertex gadget
U

J

V1 V2 V3

S uv2in uve U

—®--8— 80O

Uvsin uviout s

B3N L3 out

connected with edge gadget too

34

Hamiltonian Cycle ‘
. .,

cover gadget

35

Approximation Algorithm/Ratio

Minimization problem II: A is an approximation
algorithm with (relative) approximation ratio o iff

« A is polynomial time algorithm

« for all instance I of I1, A produces a feasible solution A(I) such
that

val (A(I)) < a val (OPT(I))
(Note: o > 1)
Remark: o can depend in size of I, hence technically it is a(|I]).
Example: o(|I|) = log n

Maximization problems

Maximization problem II: A is an approximation
algorithm with (relative) approximation ratio o iff

« A is polynomial time algorithm
= for all instance I of I1, A produces a feasible solution .A(I) such

that
val (A(I)) > a val (OPT(I))
(Note: a < 1)

Very often people use 1/a. (> 1) as approximation ratio

Proving hardness of approximation

Proving hardness of approximation is essentially the
following:

Let IT be a minimization problem

Suppose we want to prove that IT is a(|I|) hard to
approximation where |I| is the instance size

We need to show that if there is a polynomial time
algorithm for IT with an approximation ratio «.(|I|) then
we can use it to solve an NP-Hard decision problem (any
NP-Hard problem would do)

This implies that unless P=NP no «o(|I|) approximation
ratio for I1

Reductions

Once we prove a particular problem IT is hard to
approximate to within an o factor, we wish to use this to
prove that another problem I1" is hard to approximate to
within a 5 factor

To make it easy to compose reductions we need to define
a proper notion of reduction. This is somewhat more
involved than reductions to prove NP-Completeness for
decision problems since we have function problems with
solutions, quality of solutions etc.

We define two types of reductions

Approximation Preserving
Reductions

Given an instance I of 11, I" = f(I) is an instance of I1’

Given a solution s to I, g(I, I’, s) is a solution to I
Both f and g are poly-time computable functions

Approx preserving reductions

Other properties of f, g

We assume that both I1, IT" are minimization problems, the
definitions change for min-max, max-max, etc

1. OPT(I") < OPT(I)

. If s e S(I') then t = g(I,I,s) is a solution to I and
Val(t, I) < Val(s, I')

(recall that S(I) is the set of solutions to instance I and
that Val(t, I) is the objective function value for soln t)

If f, g satisfy above properties then (f,g) is an
approximation preserving reduction from I1 to I1’

Approx preserving reductions

Using this notion of reduction allows us to claim a couple
of simple but useful features

Lemma: If (f,g) is an approximation preserving reduction
from I1 to I1" and (f',g") is an approximation preserving
reduction from I1" to 11" then (f”,g") is an
approximation preserving reduction from IT to 11"

where f" =f'ofandg”"=go g’

Approx preserving reductions

Lemma: If (f,g) is an approximation preserving reduction
for I1 to I1" then an o« approximation to I1" where « is a
constant implies an o approximation to I1

The converse of the above lemma is:

If (f,g) is an approximation reduction from I1 to I1" and if I1
does is NP-hard to approximate to a factor of [then IT’
IS NP-hard to approximate to within a factor of {5

Both lemmas are straight forward exercises from the
definitions

An example

We give a reduction from the Set Cover problem to the
Node-Weighted Steiner tree problem

Set cover:

Given universe U/ of n elements and

sets S, S,, ..., S, where each S, is a subset of //
Solution: A € {1,2, ..., mystu,_,S =U
Objective function: Val(A) = |A]

Goal: minimization

An example

Node-weighted Steiner tree problem:
Given graph G=(V,E) and node weighs w: V — R*
T C V, terminals

Solution: a (connected) subgraph H=(V,, E,) of G s.t
T CV,

Objective function: w(V,)
Goal: minimization

Reduction

It is known that Set Cover is hard to approximate within a
factor of c log n unless P=NP for some constant c

Thus we would like to conclude that node-weighted Steiner
tree is also c log n hard to approximate

Unfortunately we cannot do this in a straight forward way
using the current machinery we set up

What we can conclude is the following:

Since Set Cover is hard to approximate to within any
constant o, nhode-weighted Steiner tree problem is also

hard to approximate to within any constant o

