
Undecidability II

Lecture 12

1

Example of Undecidable Language

2

SELFREJECT = { <M> | M rejects <M> }

M =Turing Machine (piece of executable code)

<M> = encoding of M as a string (source code for M)

<M> is what you would feed to a universal TM,

that would allow it to simulate M.

(e.g. TM that rejects everything.

TM that rejects every description of a TM are in that language)

3

SELFHALT = { <M> | M halts on <M> }

Claim: SELFHALT is undecidable

To show L is undecidable, reduce some undecidable language to L

More general looking problem:
HALT = { <M,w> | M halts on w }

Claim: HALT is acceptable

Claim: HALT is undecidable
The halting problem

Showing Undecidability

4

HALT = { <M,w> | M halts on w }

Claim: HALT is undecidable
Proof:

Suppose (towards contradiction) that there is a TM H that

decides HALT. Reduce from SELFHALT

Showing Undecidability

5

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

(is a TM useless or not?)

Claim: NEVERACCEPT is undecidable

How many Turing Machines?

6

• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the
window)

• Pseudocode :

M’(x)

Run M(w)

7

• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the
window)

• Pseudocode :

M’(x)

Run M(w)

Mw
acc

rej

How many Turing Machines?

8

• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the
window)

• Pseudocode :

M’(x)

Run M(w)

Mw
acc

rej

M’
x

w hardcoded and M hardcoded in M’

How many Turing Machines?

• Build M’?

Write a program

Output <M’>: M’ - Turing Machine,

s.t. for any string x, M’ accepts x iff M accepts w.

Input <M,w>: M - Turing Machine,

w - string

• could produce M’ ourselves (write pseudocode).
So far, when we talk about reduction, WE are doing the reduction

• Now, we need to describe how to do this transformation
• by writing code that performs the transformation

10

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

We will assume we know the following:

ACCEPT = { <M,w> | M accepts w } is undecidable

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

(M accepts nothing)

Claim: NEVERACCEPT is undecidable

11

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: NEVERACCEPT is undecidable

NA

A

<M>

w

acc

rej

12

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: NEVERACCEPT is undecidable

NA

A

<M>

w

<M’>

acc

rej

13

Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT.

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: NEVERACCEPT is undecidable

NA

A

<M>

w

<M’>M’ accepts x iff M
accepts w

acc

rej

acc

rej

how many TMs?

14

NA

A

<M>

w

<M’>M’ accepts x iff M
accepts w

acc

rej

acc

rej

when I design a compiler for a piece of code,
I can’t worry about the input that this code will be

fed many many years from now.
x and w not related!

15

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: A decides ACCEPT

• Case 1: M accepts w.

16

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: A decides ACCEPT

• Case 1: M accepts w.

Implies M’ accepts everything (by def. of M’).

Implies M’ not in NEVERACCEPT (by def of NEVERACCEPT)

Implies NA rejects <M’> (by def of NA)

Implies A accepts <M,w> (by def of A)

17

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: A decides ACCEPT

• Case 2: M doesn’t accept w.

18

NEVERACCEPT = { <M> | ACCEPT(M)=ø }

Claim: A decides ACCEPT

• Case 2: M doesn’t accept w.

Implies M’ doesn't accept anything (by def. of M’).

Implies M’ in NEVERACCEPT (by def of NEVERACCEPT)

Implies NA accepts <M’> (by def of NA)

Implies A rejects <M,w> (by def of A)

These two cases are exhaustive and imply A decides
ACCEPT, contradiction

DIVERGERSAME = { <M1><M2> | DIVERGE(M1)
=DIVERGE(M2) }

Claim: Undecidable

22

• We want to answer questions of the form “does the language this
machine accepts have some interesting property?”

• L={set of acceptable languages that is not empty and is not the set
of all languages}

• e.g. L = set of all languages containing the word “surfing”

• Define ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

• L =ø : ACCEPTIN(ø) is decidable (always say no, no language is
element of ø)

• L= everything: ACCEPTIN(all) is decidable (always say yes: does
this TM accept a language?)

• For every other L ACCEPTIN(L) is undecidable

Rice’s Theorem

Rice’s Theorem

To Show ACCEPTIN(L) is undecidable

Reduce from HALT = { <M,w> | M halts on w }

Rice’s Theorem

AIL

HALT

<M>

w

acc

rej

24

HALT = { <M,w> | M halts on w }
• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

Rice’s Theorem

AIL

HALT

<M>

w

acc

rej

25

HALT = { <M,w> | M halts on w }

M halts on W iff ACCEPT(WTF) is in L

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

<WTF>

26

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>

acc

rej

26

HALT = { <M,w> | M halts on w }

M halts on w iff ACCEPT(WTF) is in L

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

27

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

HALT = { <M,w> | M halts on w }

M halts on w iff ACCEPT(WTF) is in L

acc

rej

Assume ø not in L. Let Y be a TM so that ACCEPT(Y) in L

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

28

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

29

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

if M halts on w then WTF(x) is Y(x) and

ACCEPT(WTF)=ACCEPT(Y) in L, AIL accepts
if M doesn't halt on w then WTF(x) never halts

so ACCEPT(WTF)=ø, not in L, AIL rejects

30

Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

H accepts <M,w> iff H halts on w!

contradiction

31

Rice’s Theorem

• example: {<M>| M accepts the empty string}

32

Rice’s Theorem

• example: {<M>| M accepts the empty string}

Let L be the set of all languages that contain the empty string.
Then AcceptIn(L) = {�M� | M accepts given an empty initial

tape}.

33

Rice’s Theorem

• example: {<M>| M accepts the empty string}

Let L be the set of all languages that contain the empty string.
Then AcceptIn(L) = {�M� | M accepts given an empty initial

tape}.
• M1 accepts nothing : empty string is

not in ø

• M2 accepts everything: empty string is
in S*

34

Rice’s Theorem

example: {<M>| M accepts regular language}

35

Rice’s Theorem

• example: {<M>| M accepts the empty string}

Let L be the set of all regular languages. Then AcceptIn(L) = {
�M� | M accepts a regular language}.

36

Rice’s Theorem

• example: {<M>| M accepts the empty string}

• M1 accepts O*

• M2 accepts {0n1n:n≥0}

Let L be the set of all regular languages. Then AcceptIn(L) = {
�M� | M accepts a regular language}.

Exercise:

