
Undecidability II

Lecture 12
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Example of Undecidable Language
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SELFREJECT = { <M> | M rejects <M> }

M =Turing Machine (piece of executable code)

<M> = encoding of M as a string (source code for M)

<M> is what you would feed to a universal TM, 

that would allow it to simulate M.

(e.g. TM that rejects everything. 

TM that rejects every description of a TM are in that language)
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SELFHALT = { <M> | M halts on <M> }

Claim: SELFHALT is undecidable

To show L is undecidable, reduce some undecidable language to L

More general looking problem:
HALT = { <M,w> | M halts on w }

Claim: HALT is acceptable 

Claim: HALT is undecidable 
The halting problem

Showing Undecidability
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HALT = { <M,w> | M halts on w }

Claim: HALT is undecidable 
Proof:

Suppose (towards contradiction) that there is a TM H that

decides HALT. Reduce from SELFHALT

Showing Undecidability
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NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

(is a TM useless or not?)

Claim: NEVERACCEPT is undecidable 



How many Turing Machines?
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• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the 
window)

• Pseudocode :

M’(x)

Run M(w)
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• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the 
window)

• Pseudocode :

M’(x)

Run M(w)

Mw
acc

rej

How many Turing Machines?
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• Fix a TM M and an input w.

• Build a new TM M’ with the following behavior:

• M’ accepts its input iff M accepts w. (toss input out the 
window)

• Pseudocode :

M’(x)

Run M(w)

Mw
acc

rej

M’
x

w hardcoded and M hardcoded in M’

How many Turing Machines?



• Build M’?

Write a program

Output <M’>: M’ - Turing Machine, 

s.t. for any string x, M’ accepts x iff M accepts w.

Input <M,w>: M - Turing Machine, 

w - string

• could produce M’ ourselves (write pseudocode).
So far, when we talk about reduction, WE are doing the reduction

• Now, we need to describe how to do this transformation 
• by writing code that performs the transformation
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Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT. 

We will assume we know the following: 

ACCEPT = { <M,w> | M accepts w } is undecidable 

NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

(M accepts nothing)

Claim: NEVERACCEPT is undecidable 
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Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT. 

NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: NEVERACCEPT is undecidable 

NA

A

<M>

w

acc

rej
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Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT. 

NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: NEVERACCEPT is undecidable 

NA

A

<M>

w

<M’>

acc

rej
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Proof:

Suppose (towards contradiction) that there is a TM NA that

decides NEVERACCEPT. 

NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: NEVERACCEPT is undecidable 

NA

A

<M>

w

<M’>M’ accepts x iff M 
accepts w

acc

rej

acc

rej

how many TMs?
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NA

A

<M>

w

<M’>M’ accepts x iff M 
accepts w

acc

rej

acc

rej

when I design a compiler for a piece of code, 
I can’t worry about the input that this code will be 

fed many many years from now. 
x and w not related!
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NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: A decides ACCEPT 

• Case 1: M accepts w. 
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NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: A decides ACCEPT 

• Case 1: M accepts w. 

Implies M’ accepts everything (by def. of M’).

Implies M’ not in NEVERACCEPT (by def of NEVERACCEPT)

Implies NA rejects <M’> (by def of NA)

Implies A accepts <M,w> (by def of A)
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NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: A decides ACCEPT 

• Case 2: M doesn’t accept w. 
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NEVERACCEPT = { <M> | ACCEPT(M)=ø } 

Claim: A decides ACCEPT 

• Case 2: M doesn’t accept w. 

Implies M’ doesn't accept anything (by def. of M’).

Implies M’ in NEVERACCEPT (by def of NEVERACCEPT)

Implies NA accepts <M’> (by def of NA)

Implies A rejects <M,w> (by def of A)

These two cases are exhaustive and imply A decides
ACCEPT, contradiction





DIVERGERSAME = { <M1><M2> | DIVERGE(M1)
=DIVERGE(M2) } 

Claim: Undecidable
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• We want to answer questions of the form “does the language this 
machine accepts have some interesting property?”

• L={set of acceptable languages that is not empty and is not the set 
of all languages}

• e.g. L = set of all languages containing the word “surfing”

• Define ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

• L =ø : ACCEPTIN(ø) is decidable (always say no, no language is 
element of ø)

• L= everything: ACCEPTIN(all) is decidable (always say yes: does 
this TM accept a language?)

• For every other L ACCEPTIN(L) is undecidable

Rice’s Theorem



Rice’s Theorem

To Show ACCEPTIN(L) is undecidable

Reduce from HALT = { <M,w> | M halts on w }



Rice’s Theorem

AIL

HALT

<M>

w

acc

rej
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HALT = { <M,w> | M halts on w }
• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}



Rice’s Theorem

AIL

HALT

<M>

w

acc

rej
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HALT = { <M,w> | M halts on w }

M halts on W iff ACCEPT(WTF) is in L

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

<WTF>
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Rice’s Theorem

AIL

HALT

<M>

w

<WTF>

acc

rej
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HALT = { <M,w> | M halts on w }

M halts on w iff ACCEPT(WTF) is in L

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
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Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

HALT = { <M,w> | M halts on w }

M halts on w iff ACCEPT(WTF) is in L

acc

rej

Assume ø not in L. Let Y be a TM so that ACCEPT(Y) in L

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}
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Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L
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Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

if M halts on w then WTF(x) is Y(x) and 

ACCEPT(WTF)=ACCEPT(Y) in L, AIL accepts
if M doesn't halt on w then WTF(x) never halts

so ACCEPT(WTF)=ø, not in L, AIL rejects
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Rice’s Theorem

AIL

HALT

<M>

w

<WTF>
WTF(x)
M(w)
Y(x)

acc

rej

acc

rej

• ACCEPTIN(L) = {<M>|ACCEPT(M) is in L}

ACCEPT(Y) in L

ø not in L

H accepts <M,w> iff H halts on w!

contradiction
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Rice’s Theorem

• example: {<M>| M accepts the empty string}
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Rice’s Theorem

• example: {<M>| M accepts the empty string}

Let L be the set of all languages that contain the empty string. 
Then AcceptIn(L) = {�M� | M accepts given an empty initial 

tape}. 
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Rice’s Theorem

• example: {<M>| M accepts the empty string}

Let L be the set of all languages that contain the empty string. 
Then AcceptIn(L) = {�M� | M accepts given an empty initial 

tape}. 
• M1 accepts nothing : empty string is 

not in ø

• M2 accepts everything: empty string is 
in S*
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Rice’s Theorem

example: {<M>| M accepts regular language}
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Rice’s Theorem

• example: {<M>| M accepts the empty string}

Let L be the set of all regular languages. Then  AcceptIn(L) = {
�M� | M accepts a regular language}. 
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Rice’s Theorem

• example: {<M>| M accepts the empty string}

• M1 accepts O* 

• M2 accepts {0n1n:n≥0}

Let L be the set of all regular languages. Then  AcceptIn(L) = {
�M� | M accepts a regular language}. 







Exercise:


