
Undecidability

Lecture 11
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Today

Decidable Problems (Languages)

Undecidable Problems (Languages)

Proving undecidability

Using reductions to prove more undecidability
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Program Collatz (n:integer)
while n > 1 {
if Even(n) then n ≔ n/2
else n ≔ 3n+1

}

A Puzzle

Q: Is there n that makes this program run forever?

Conjecture: Collatz(n) halts for every n > 0
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We know that up to numbers with several 
hundred digits (10120) it halts.



Can we write a program?

Could ask: isn’t there a program that can help us 
decide if it is possible that is gets stuck in infinite 

loop?

There is no program that takes input an arbitrary 
piece of code and report correctly if it halts or not!

There is no automatic/systematic way to answer that 
question in general, but maybe that question has a 

particular answer.

4



Another Puzzle
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Three stacks of cards, all cards in a stack 
identical. Two strings written on each card, 

one in green and one in red.

0

100

01

00

110

11

I want to choose a sequence of cards,
each from a different stack so that when 

I line up the strings in green and red they are the same string.



Another Puzzle
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0

100

01

00

110

11

I want to choose a sequence of cards, 
each from a different stack so that when I line up the strings 

in green and red they are the same string.

110

11

01

00

110

11

0

100

There is 
solution!



Another Puzzle
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I want to choose a sequence of cards, 
each from a different stack so that when I line up the strings 

in green and red they are the same string.

0

000

0

0101

10

1

1111
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There is solution that uses 451 cards!



Can we write a program?

Could ask: isn’t there a program that can help us 
decide if there is solution?

Input is finite set of pairs of strings (2n)

Yes/No Question 

There is no such algorithm!

Post correspondance problem has no solution!
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How to show there is no algorithm?
• A TM on input a string w can : accept w, reject w, 

diverge on w (run forever)

Language of a TM T: 

ACCEPT(T) = { w | T accepts  w }
REJECT(T) = { w | T rejects  w }
HALT(T) = { w | T halts on  w }

DIVERGE(T) = { w | T diverges on  w }

•We say T accepts L iff L=ACCEPT(T)
•What happens to the strings that are not accepted?

•We say T decides L iff L=ACCEPT(T) and DIVERGE(T)=ø
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Decidability
• A language L is decidable iff some TM T decides L

• A language L is acceptable iff some TM T accepts L

• A language L is undecidable iff no TM T decides L

• A language L is unacceptable iff no TM T accepts L

• TM decides a language = algorithm

• if TM does not halt in some inputs its not really an 
algorithm 

• Getting the YES answers right is not enough!
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No algorithm for a problem?
• There is no algorithm for a problem means the 

language associated with this problem is undecidable.

• E.g. Post correspondence problem: input is a string. 
Output is YES/NO. Language of all the instances where 
the answer is yes is a language L. No solution means L 

is not decidable.

• Same for the language L of programs that never enter 
an infinite loop. L is undecidable.

• Not hard to show that there are undecidable languages 
(uncountable number of languages, countable number 

of TM).
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Example of Decidable Language
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Acceptance Problem: Given a DFA, and a string w
Decide if the DFA accepts w.
Can be encoded as a language 
ADFA: {<B,W>| B is valid description of a DFA that  accepts w}

Theorem: ADFA is decidable
Proof:



Example of Decidable Language
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Acceptance Problem: Given a DFA, and a string w
Decide if the DFA accepts w.
Can be encoded as a language 
ADFA: {<B,W>| B is valid description of a DFA that  accepts w}

Theorem: ADFA is decidable
Proof: Need to simply present a TM M that decides ADFA.
M= “on input <B,w> simulate B on W. 
If the simulation ends in accepting state, accept. 
Otherwise reject.
-check if B is correctly describing a DFA
-keep track of current state of B and position in the input, 
by writing it down on the tape 
-update states and position according to transition function of B



Example of Decidable Language
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Acceptance Problem: Given a NFA, and a string w
Decide if the NFA accepts w.
Can be encoded as a language 
ANFA: {<B,W>| B is valid description of a NFA that  accepts w}

Idea:
Have TM N use previous TM M as subroutine. 
Transform NFA to DFA first!



Example of Decidable Language
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Acceptance Problem: Given a NFA, and a string w
Decide if the NFA accepts w.
Can be encoded as a language 
ANFA: {<B,W>| B is valid description of a NFA that  accepts w}

Idea:



Example of Decidable Language
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Acceptance Problem: Given aRegExp, and a string w
Decide if the The regular expression generates w.
Can be encoded as a language 
AREX: {<R,W>| R is valid description of a regular expression
that generates w}

Idea:
Have TM use previous TM M as subroutine. 
Transform  Regular expression to NFA first!



Example of Decidable Language
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Acceptance Problem: Given DFA A, decide if the language it 
accepts is empty
EDFA={<A>| A is valid description of a DFA and L(A)=0}

Theorem: EDFA is decidable.

Proof:



Example of Decidable Language
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Acceptance Problem: Given DFA A, decide if the language it 
accepts is empty
EDFA={<A>| A is valid description of a DFA and L(A)=0}

Theorem: EDFA is decidable.

Proof: A DFA accepts some string if reaching an accept state from
The start state by traveling along the arrows of the DFA is possible.
Design a TM T that uses a marking algo to test this condition:
T= “on input <A>
-mark the start state of A
Repeat until no new states get marked: Mark any state that has a 
Transition coming into it from any state that is already marked.
-If no accept state is marked, accept. Otherwise reject.”



Example of Undecidable Language
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SELFREJECT = { <M> | M rejects <M> }

M =Turing Machine (piece of executable code)

<M> = encoding of M as a string (source code for M)

<M> is what you would feed to a universal TM, 

that would allow it to simulate M.

(e.g. TM that rejects everything. 

TM that rejects every description of a TM are in that language)



Example of Undecidable Language

Proof:

Suppose (towards contradiction) that there is a TM SR that

decides SELFREJECT. 

What happens if we feed <SR> to SR?

• SR accepts <SR>

• SR rejects <SR>

• SR diverges on <SR>
20

SELFREJECT = { <M> | M rejects <M> }

Claim: SELFREJECT is undecidable



Example of Undecidable Language

Proof:

Suppose (towards contradiction) that there is a TM SR that

decides SELFREJECT. 

What happens if we feed <SR> to SR?

• SR accepts <SR> :

• SR rejects <SR>

• SR diverges on <SR> :
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SELFREJECT = { <M> | M rejects <M> }

Claim: SELFREJECT is undecidable



Example of Undecidable Language

Proof:

Suppose (towards contradiction) that there is a TM SR that

decides SELFREJECT. 

What happens if we feed <SR> to SR?

• SR accepts <SR> : <SR> is in SELFREJECT = SR rejects <SR>!

• SR rejects <SR> : <SR> not in SELFREJECT = SR accepts or 
diverges

• SR diverges on <SR> : impossible because this TM makes 
decisions about every string!
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SELFREJECT = { <M> | M rejects <M> }

Claim: SELFREJECT is undecidable



Russel’s barbers paradox
• On a small town, on a certain day everyone gets a 

haircut

• Everyone either cuts their own hair or has their hair cut 
by someone else.

• Barber = cuts the hair only of those who don’t cut their 
own

• Does the barber cut their own hair?
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Russel’s barbers paradox
• On a small town, on a certain day everyone gets a 

haircut

• Everyone either cuts their own hair or has their hair cut 
by someone else.

• Barber = cuts the hair only of those who don’t cut their 
own

• Does the barber cut their own hair?
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Every TM A cuts B’s hair = A accepts <B>

Barber is TM that accepts <M> iff M does not accept <M>



Cantor
Let X be any set and 2X its powerset (Set of subsets)

f: X →2X is NOT onto

Meaning there is a set S in 2X that has no preimage.

• x is SAD if x is not in f(x)

• Y = {x in X | x is SAD}

• There is no y in X such that f(y)= Y

25



Cantor
Let X be any set and 2X its powerset (Set of subsets)

f: X →2X is NOT onto

Meaning there is a set S in 2X that has no preimage.

• x is SAD if x is not in f(x)

• Y = {x in X | x is SAD}

• There is no y in X such that f(y)= Y

• maps to barber paradox (X is the set of people, f(x) is the set of people 
whose hair x cuts). A person is sad if they don't cut their own hair

• maps to SELFREJECT : X is the set of TM that halt on all inputs. f(x) is the 
set of all TM that x accepts. A TM is sad if is rejects its own encoding
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Cantor’s Diagonal Slash

Is the set of all infinitely long 
binary strings countable?

Suppose it was: consider 
enumerating them in a table

Consider the string  
corresponding to the 
“flipped diagonal”

It doesn’t appear in this 
table!
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Si

S1 = 1 0 0 1 0 0 0 0 1

S2 = 0 0 1 0 1 0 0 1 1

S3 = 1 1 1 1 1 1 1 0 0

S4 = 1 1 0 1 0 1 0 1 1

S5 = 1 1 0 0 0 0 1 0 0

S6 = 0 0 0 0 0 0 1 1 0

S7 = 0 1 0 1 0 1 0 1 1

0 1 0 0 1 1 1 . .



Showing Undecidability
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SELFHALT = { <M> | M halts on <M> }

Claim: SELFHALT is undecidable

To show L is undecidable, reduce some undecidable language to L

More general looking problem:
HALT = { <M,w> | M halts on w }

Claim: HALT is acceptable 

Claim: HALT is undecidable 
The halting problem


