Turing Machines

Lecture 9

Course Trajectory

In algorithms, we see what can be done.
But what cannot be done?

Computation

Problem:

To compute a function F that maps each input (a string) to an output bit

Program:

A finitely described process taking a string as input, and outputting a bit (or not halting)

P computes F if for every $x, P(x)$ outputs $F(x)$ and halts

- A program is a finite bit string
- Programs can be enumerated - listed sequentially - (say, lexicographically) so that every program appears somewhere in the list
- The set of all programs is countable.

1	ε
2	0
3	1
4	00
5	01
6	10
7	11
8	000
9	001
10	010

Computation

Problem:

To compute a function F that maps each input (a string) to an output bit

Program:

A finitely described process taking a string as input, and outputting a bit (or not halting)

P computes F if for every $x, P(x)$ outputs $F(x)$ and halts

- A function assigns a bit to each finite string
- Corresponds to an infinite bit string
- The set of all functions is uncountable!
- As numerous as, say, real numbers in $[0,1]$

1	ε	0
2	0	0
3	1	1
4	00	0
5	01	1
6	10	1
7	11	0
8	000	0
9	001	$\mathbf{1}$
10	010	1

Computation

Problem:

To compute a function F that maps each input (a string) to an output bit

Program:

A finitely described process taking a string as input, and outputting a bit (or not halting)

P computes F if for every $x, P(x)$ outputs $F(x)$ and halts

There are uncountably many functions!

But only countably many programs

Almost every function is uncomputable!
(non constructive proof)

Course Trajectory

We will be looking at what can be computed at all?
What cannot be decided (undecidability)

What about a particular problems?

- Given program P, input w:

Will halt or run into an infinite loop?
 Halting problem!

Halting Problem Undecidable

- Given program P:

- Write a program that decides if a program halts.
- Dual view of program as program and as data.

Alas!

There is no program that solves the Halting Problem!

Way to view code as data allows diagonalization proof.

Computing

What does it mean to compute something?
"There is no algorithm for the halting problem"
What does it mean for something to be an algorithm formally?

Then I can say "For all algorithms..."

A Brief History of Computing

- Leibnitz (circa 1600): Believed in universal language for encoding any problem (math, philosophy, religion).
- Thought if you properly encode any problem in binary form, there is a way to calculate an answer (run the algorithm)

calculemus!

A Brief History of Computing

- Babbage (circa 1860): built Difference and Analytical Engine (Add, multiply, etc).
- It marks the transition from mechanised arithmetic to fully-fledged general purpose computation.
- Hypothesized that any mathematical question can be answered by the analytical engine, suitably encoded.

A Brief History of Computing

- Hilbert (circa 1900): What can we prove in mathematical world?
- Proving and computing almost identical, proof= trace the program.
- The Entscheidungsproblem (descision problem): is there an algorithm that takes as input a statement of a first-order logic and answers "Yes" or "No" according to whether the statement is universally valid, i.e., valid in every structure satisfying the axioms.

A Brief History of Computing

- Gödel: no! there is no such algorithm
- Church: better way to prove it with functional programming

Alan Turing

- British mathematician
- cryptanalysis during WWII
- arguably, father of AI, CS Theory
- several books, movies
- Mathematically defined computation

- Invented Turing Machines at 23 (1936). Turing machines can compute everything that is computable. He proved that The Halting Problem has no general algorithm (it is not possible to decide whether a turing machine will ever halt)

Computation

- Computers were people at that time!
- The way people do math is write-erase-throw away.
- Turing proposed to abstract this process.

Turing Machine

Turing Machine

Finite alphabet
Read
Write
Move +1 or - 1
Halt condition

Turing Machine

Finite number of internal states

Finite alphabet
Read
Write
Move +1 or - 1
Halt condition
Internal state (finite number)

Why do we care?

\square

- I need a model of computation that is simple enough to convince you that a TM can take as input a description of a TM and simulate it.
- Python interpreter in Python? Harder to explain Python semantics
- Will be able to define "what can we compute?"

TM for Decision Problems

$M=\left(Q, \Sigma, \Gamma, B, \delta, q_{\text {start, }}, q_{\text {accept }}, q_{\text {reject }}\right):$
Γ is a finite tape alphabet.

- B or \square is the blank symbol (special symbol)
- Σ is a finite input alphabet $\Sigma \subseteq \Gamma \mathrm{B}$
Q is a finite set of states
$q_{\text {start }} \in Q$ is the initial state
$q_{\text {accept }}, q_{\text {reject }} \in Q$ accept/reject states
Or maybe run forever

TM for Decision Problems

$M=\left(Q, \Sigma, \Gamma, B, \delta, q_{\text {start }}, q_{\text {accept }}, q_{\text {reject }}\right)$:
Γ is a finite tape alphabet.

- B or \square is the blank symbol (special symbol)
- Σ is a finite input alphabet $\Sigma \subseteq \Gamma \mathrm{B}$
Q is a finite set of states
$q_{\text {start }} \in Q$ is the initial state
$q_{\text {accept }}, q_{\text {reject }} \in Q$ accept/reject states
Or maybe run forever
Transition function: $\delta: Q \times \Gamma($ read $) \rightarrow Q \times \Gamma($ write $) \times\{\mathrm{L}, \mathrm{R}\}$

Turing Machine

 pink| 1 | 0 | 1 | 1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

tape $=$ string in Γ^{*} followed by infinite stream of \square

configuration $=$ state, string (content of tape), and integer (position of tape). ($\mathrm{Q}, \mathrm{x}, \mathrm{i}) \in \mathrm{Q} \times \Gamma^{*} \mathrm{x} \mathrm{N}$
e.g. (pink, 01011, 5)

Configuration = ID (Instantaneous

Description)

Contains all necessary information to capture the
"current configuration of the computation"

state, tape-contents \& head-location

a: symbol TM is about to read

Easy-to-read notation: (q,xay,i)
$x \in \Gamma^{*}$: tape contents left of the head
$q \in Q$: state
$y \in \Gamma^{*}$: tape contents at \& right of the head (till last non-blank)

Initial ID: ($q_{\text {start }},\langle$ input $\left.\rangle, 0\right)$

Relations $\Rightarrow \square \square$ on IDs

$I D_{1} \Rightarrow I D_{2}$ iff $I D_{1}$ evolves into $I D_{2}$ in one step.

$$
\text { e.g., if } \delta\left(q, a_{i}\right)=\left(q^{\prime}, b, L\right) \text {, then }
$$

$\left(q, a_{1} a_{2} \ldots a_{i-1} a_{i} a_{i+1} \ldots a_{n, i}\right) \Rightarrow\left(q^{\prime}, a_{1} a_{2} \ldots a_{i-2} a_{i-1} b a_{i+1} \ldots a_{n}, i-1\right)$
current ID

$\Rightarrow *$ is the reflexive $\&$ transitive closure of \Rightarrow
Thus, $\mathrm{ID}_{1} \Rightarrow * \mathrm{ID}_{2}$ iff M, when run from ID_{1}, reaches ID_{2} after some finite number (0 or more) of moves

Accept/Reject

In DFAs it was clear when to accept an input string or reject it.

TM can:

- go back and forth over the input
- overwrite the input
- write on the tape way past the end of the input
- need an explicit state

Definition of Acceptance

M accepts w iff $\left(q_{\text {start }}, w, 0\right) \quad \Rightarrow^{*}\left(q_{\text {accept }}, x, i\right)$ for some $x \in \Gamma^{*}$

Note that M is allowed to accept w without scanning all of w

$$
L(M)=\{w \mid M \text { accepts } w\}
$$

M does not accept w if starting from the ID $q_{\text {start }} w$:

1. M halts in $q_{\text {reject }}$ or
2. M crashes (head moves off the tape), or
3. M never stops

Deciding/Recognizing a Language

$$
L(M)=\{w \mid M \text { accepts } w\}
$$

is called the language recognized by M
M decides $L(M)$ if on input $w \notin L, M$ halts in $q_{\text {reject }}$
If a TM decides the language it recognizes,
then, on every input, it halts in $q_{\text {accept }}$ or $q_{\text {reject }}$
Easy to change "crashes" to rejects
But turns out the we can't avoid infinite executions! (can't tell if it is going to be infinite)

Deciding/Recognizing a Language

$$
L(M)=\{w \mid M \text { accepts } w\}
$$

is called the language recognized by M
M decides $L(M)$ if on input $w \notin L, M$ halts in $q_{\text {reject }}$

Fundamental questions of computability: | Which languages are recognizable? | Recursively |
| :---: | :---: |
| Whumerable | |

Recursive
Language

Example

Input alphabet : $\Sigma=\{0,1\}$
Tape alphabet : $\Gamma=\left\{0,1,0^{\prime}, 1^{\prime},{ }_{_}\right\}$
What does this TM do?

Example

Example

What does this TM do?

$$
\begin{aligned}
& \delta(p, a)=(q, b, \Delta) \\
& \hline \delta(0,0)=(0,0,+1) \\
& \delta(0,1)=(1,0,+1) \\
& \delta(0, \square)=(\text { halt, } 0,+1) \\
& \delta(1,0)=(0,1,+1) \\
& \delta(1,1)=(1,1,+1) \\
& \delta(1, \square)=(\text { halt, } 1,+1)
\end{aligned}
$$

What does this TM do?

Example

Avoiding Crashing

Given M (that may crash), an "equivalent" M^{\prime} which goes to $q_{\text {reject }}$ instead of crashing

Idea: Rewrite input w to be $\$ w$, place the head on the first symbol of w and run M. If head ever scans $\$$, move to $q_{\text {reject }}$ (and move the head right)

Shifting by k Positions

Can do "shift-by-1" k times. But k scans of tape.
To shift by k positions to the right in a single scan: Remember last k symbols. Overwrite current cell with symbol from k cells behind

Binary Addition

$L=\left\{x \# y \# z\left|x, y, z \in\{0,1\}^{*},|x|=|y|=|z|, x+y=z\right.\right.$ in binary $\}$
Plan:

shift

check MSB
check finished

Binary Addition

$L=\left\{x \# y \# z\left|x, y, z \in\{0,1\}^{*},|x|=|y|=|z|, x+y=z\right.\right.$ in binary $\}$
Shift input w to make it $\$ w$.
Scan the tape to ensure w matches $(0+1)^{*} \#(0+1) * \#(0+1)^{*}$ Return head to the left end (right of \$)
(In finite memory, carry-bit c initialized to 0) Repeat
copy the digit to the left of first \# into finite state, and overwrite it with \# (replace old \# by @). If no digit there, accept if carry is 0 \& no digits left; else reject. copy the digit to the left of second \# into finite state, and move \# left (replace old \# by @). If no digit there, reject.
check if the right most digit is "correct". Reject if no digit or if it is not correct; else erase digit and update carry.
Move head to the left end (right of \$)

What can a TM do?

Can shift by any number i, by keeping 2^{i} states to remember what were in the first i places of the tape.

Can do simple arithmetic operations, addition, multiplication etc.

What can a TM do?

$$
\mathrm{L}=\left\{0^{i} 1^{j} 0^{k} \mid i=j=k\right\} \text { is not a CFL! }
$$

Can be decided by TM (see notes)

What can a TM do?

A TM can do everything that can be done in a standard programming language (and vice versa)

