Context-Free Grammars (and Languages)

Lecture 8

Today

Beyond regular expressions: Context-Free Grammars (CFGs)

What is a CFG?
What is the language associated with a CFG?

Creating CFGs. Reasoning about CFGs.

Today

First used to study human languages

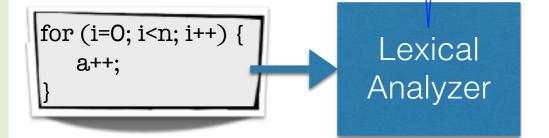
Important applications in specifying and compiling programming languages

Include Regular languages, but much more.

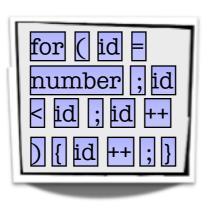
Compiler Frontend

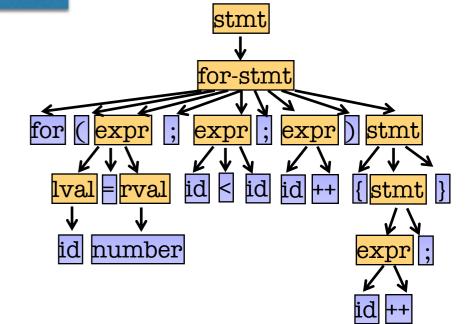
Rules encoded as regular expressions

Rules *cannot be* encoded as regular expressions



Parser





Biological Models

Biological Models

Biological Models

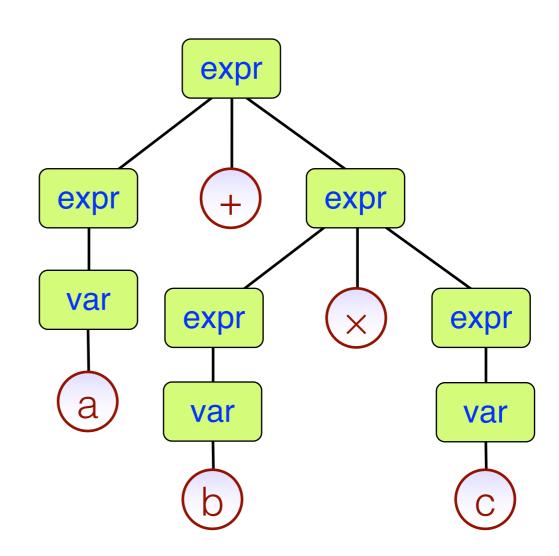
Grammar: Rewriting rules for generating a set of strings (i.e., a language) from a "seed"

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

$$expr \rightarrow expr + expr$$

 $expr \rightarrow expr \times expr$
 $expr \rightarrow var$
 $var \rightarrow a$
 $var \rightarrow b$
 $var \rightarrow c$



(This grammar is "ambiguous" since there is another parse tree for the same string)

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

```
expr \rightarrow expr + expr
expr \rightarrow expr \times expr
expr → var
var \rightarrow a
var \rightarrow b
var \rightarrow c
```

```
"derives"
```

```
expr \rightarrow expr + expr | expr \times expr | var
var \rightarrow a \mid b \mid c
       short-hand
```

```
G = (\Sigma, V, P, S)
                               \Sigma = \{a,b,c,+,\times\} (terminals)
                               V = \{ expr, var \} (non-terminals)
e.g. \exp r \Rightarrow^* a + b \times c \parallel P = \{(A, \alpha) \mid A \to \alpha\} (prod. rules)
                               S = expr (start symbol)
```

Context-Free Grammar: Arrows

Production Rule: $A \to \pi$, $A \in V$, $\pi \in (\Sigma \cup V)^*$

```
expr \rightarrow expr + expr | expr \times expr | var

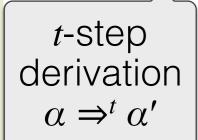
var \rightarrow a | b | c
```

Immediately Derives: $\alpha_1 \Rightarrow \alpha_2$ if $\alpha_1, \alpha_2 \in (\Sigma \cup V)^*$

s.t., $\alpha_1 = \beta A \gamma$, $\alpha_2 = \beta \pi \gamma$ and $A \rightarrow \pi$

More clearly, if grammar is G, we write $\alpha \Rightarrow_G^* \alpha'$

Derives: $\alpha \Rightarrow^* \alpha'$ if $\exists \alpha_1, ..., \alpha_{t+1} \in (\Sigma \cup V)^*$ s.t. $\alpha_1 = \alpha$, $\alpha_{t+1} = \alpha'$, and for all $i \in [1, t]$, $\alpha_i \Rightarrow \alpha_{i+1}$



Context-Free Grammar: Arrows

Production Rule: $A \to \pi$, $A \in V$, $\pi \in (\Sigma \cup V)^*$

```
expr \rightarrow expr + expr | expr \times expr | var

var \rightarrow a | b | c
```

Immediately Derives: $\alpha_1 \Rightarrow \alpha_2$ if $\alpha_1, \alpha_2 \in (\Sigma \cup V)^*$

s.t., $\alpha_1 = \beta A \gamma$, $\alpha_2 = \beta \pi \gamma$ and $A \rightarrow \pi$

More clearly, if grammar is G, we write $\alpha \Rightarrow_G^* \alpha'$

Derives: $\alpha \Rightarrow^* \alpha'$ if $\exists \alpha_1, ..., \alpha_{t+1} \in (\Sigma \cup V)^*$ s.t. $\alpha_1 = \alpha$, $\alpha_{t+1} = \alpha'$, and for all $i \in [1, t]$, $\alpha_i \Rightarrow \alpha_{i+1}$

```
t-step derivation \alpha \Rightarrow^t \alpha'
```

```
expr \Rightarrow* expr + expr \times expr \Rightarrow* var + var \times var \Rightarrow* a + b \times c expr \Rightarrow* a + b \times c
```


Context-Free Languages

The language *generated* by a grammar G with start symbol S and alphabet S, $L(G) = \{ w \in S^* \mid S \Rightarrow_G^* w \}$

Languages generated by a context free grammars are called Context Free Languages (CFL)

Examples

Over $\Sigma = \{0,1\}$, give a grammar for the following languages:

$$L = \{ 0^n 1^n \mid n \ge 0 \}$$

$$L = \{ w \mid w = w^{R} \}$$

$$L = \{ 0^m 1^n \mid m < n \}$$

$$L = \{ 0^m 1^n \mid m \neq n \}$$

Examples

Over $\Sigma = \{0,1\}$, give a grammar for the following languages:

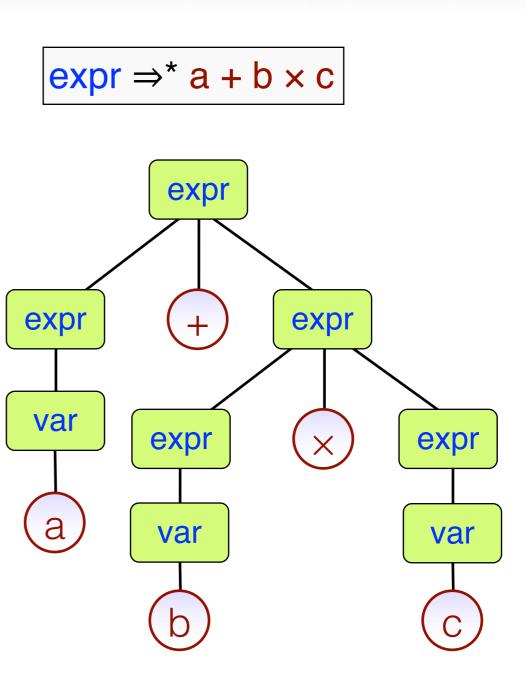
Parse Tree

Parse Tree captures the structure of derivations for a given string (but not the exact order)

The exact order of derivations is *not* important

But structure is important!

Ambiguous grammar: If some string has two different parse trees



Parse Tree

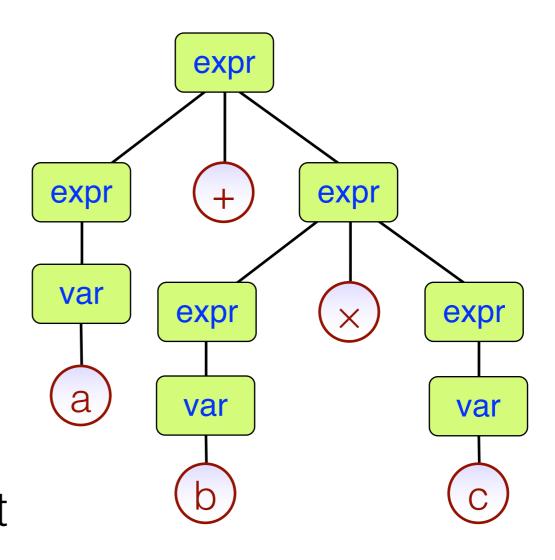
Parse Tree captures the structure of derivations for a given string (but not the exact order)

The exact order of derivations is *not* important

But structure is important!

Ambiguous grammar: If some string has two different parse trees

$$expr \Rightarrow *a + b \times c$$

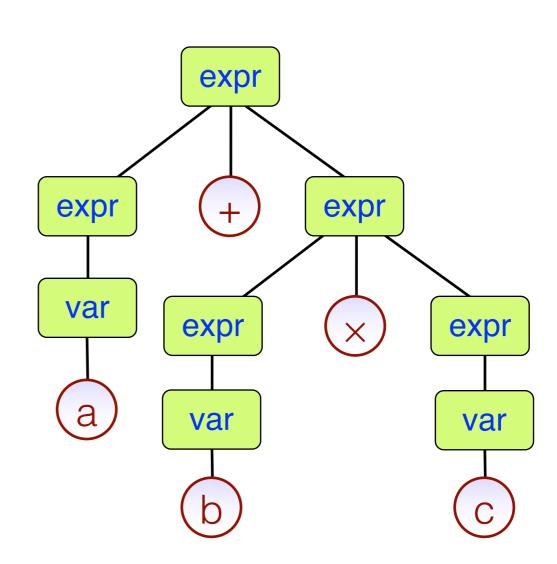


expr
$$\Rightarrow$$
* expr + expr \times expr \Rightarrow * var + var \times var \Rightarrow * a + b \times c expr \Rightarrow * a + expr \Rightarrow * a + expr \times c \Rightarrow * a + b \times c

$$expr \rightarrow expr + expr | expr \times expr | var$$

 $var \rightarrow a | b | c$

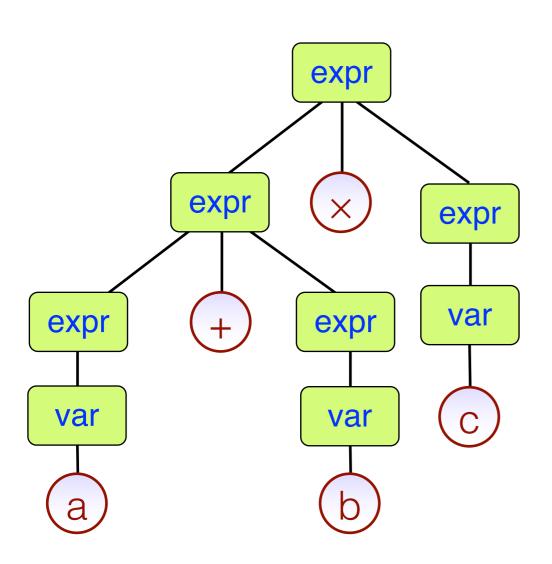
$$expr \Rightarrow *a + b \times c$$

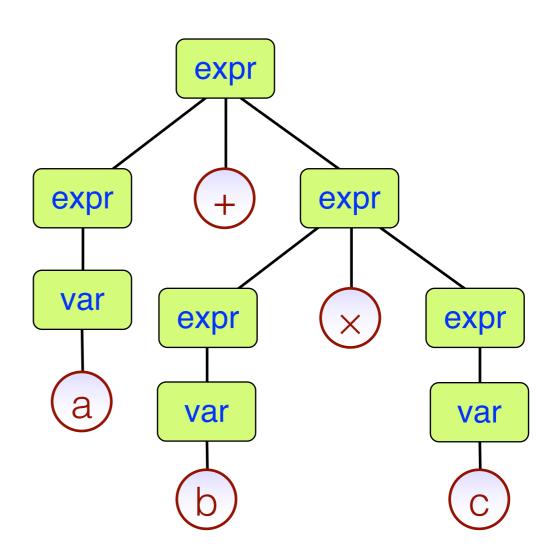


$$expr \rightarrow expr + expr | expr \times expr | var$$

 $var \rightarrow a | b | c$

$$expr \Rightarrow *a + b \times c$$






```
expr → term + expr | term
term → var | var × term
var → a | b | c
```

$$expr \Rightarrow^* a + b \times c$$

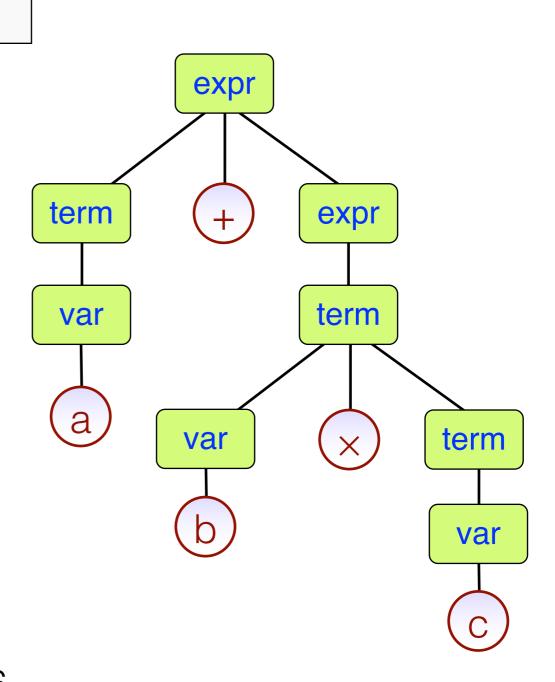

```
\begin{array}{l} expr \rightarrow term + expr \mid term \\ term \rightarrow var \mid var \times term \\ var \rightarrow a \mid b \mid c \end{array}
```

 $expr \Rightarrow^* a + b \times c$

In practice, unambiguous grammars are important (e.g., in compilers)

Operator precedence enforced by requiring all × carried out (to get a "term") before any +

There are CFLs which do not have *any* unambiguous grammar: inherently ambiguous languages



Examples

$$L = L(0*)$$

$$S \rightarrow \varepsilon \mid 0 \mid SS$$
: Ambiguous!

$$S \rightarrow \varepsilon \mid 0S$$
: Unambiguous

 \triangleright L = set of all strings with balanced parentheses

$$S \rightarrow \varepsilon \mid (S) \mid SS$$
: Ambiguous!

$$T \rightarrow () | (S)$$

$$S \rightarrow \varepsilon \mid TS$$
: Unambiguous

Examples

 $L = \text{set of all valid regular expressions over } \{0, 1\}$

An ambiguous grammar (start symbol S, $\Sigma = \{\emptyset, e, 0, 1, +, *, (,)\}$): $S \rightarrow \emptyset \mid e \mid 0 \mid 1 \mid (S) \mid S^* \mid SS \mid S+S$

An unambiguous grammar for a *subset* of regular expressions:

$$S \rightarrow \emptyset \mid e \mid 0 \mid 1 \mid (S) \mid (S^*) \mid (SS) \mid (S+S)$$

Exercise: An unambiguous grammar for *all* valid regular expressions

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where the productions of G are: $S \to 0S1 \mid 1S0 \mid SS \mid \varepsilon$

Challenge: Give an unambiguous grammar

Proof: Need to prove both $L(G) \subseteq L$ and $L(G) \supseteq L$.

Prove $L(G) \subseteq L$ by induction on the length of derivations (or height of parse trees)

Prove $L(G) \supseteq L$ by induction on the length of strings.

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where

the productions of *G* are: $S \rightarrow 0S1 \mid 1S0 \mid SS \mid \varepsilon$

Proof: Proving $L(G) \subseteq L$ by induction on the length of derivations.

Let $w \in L(G)$. $S \Rightarrow^t w$ for some $t \ge 1$. Induction on t to show that $w \in L$.

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where the productions of G are: $S \to 0S1 \mid 1S0 \mid SS \mid \varepsilon$

Proof: Proving $L(G) \subseteq L$ by induction on the length of derivations.

Let $w \in L(G)$. $S \Rightarrow^t w$ for some $t \ge 1$. Induction on t to show that $w \in L$. Base case: t=1. Only string derived is ε . \checkmark

Induction step: Consider t > 1. Suppose all u s.t. $S \Rightarrow^k u$, k < t, in L. Let w be such that $S \Rightarrow^t w$. i.e., $S \Rightarrow \alpha_1 \Rightarrow^{t-1} w$. Case $\alpha_1 = 0S1$: w = 0u1 and $S \Rightarrow^{t-1} u$. By IH, $\#_0(u) = \#_1(u)$. Hence $\#_0(w) = \#_0(u) + 1 = \#_1(v) + 1 = \#_1(w)$. (Case $\alpha_1 = 1S0$ is symmetric.) Case $\alpha_1 = SS$: w = uv and $S \Rightarrow^m u$, $S \Rightarrow^n v$, $1 \le m, n < t (m+n = t-1)$. By IH, $\#_0(u) = \#_1(u) \& \#_0(v) = \#_1(v)$. Hence $\#_0(w) = \#_0(u) + \#_0(v) = \#_1(u) + \#_1(v) = \#_1(w)$

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where

the productions of G are: S \rightarrow 0S1 | 1S0 | SS | ε

Proof: Proving $L(G) \supseteq L$ by induction on the length of strings.

Suppose $w \in L$. To show by induction on |w| that $w \in L(G)$.

•

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where the productions of G are: $S \to 0S1 \mid 1S0 \mid SS \mid \varepsilon$

Proof: Proving $L(G) \supseteq L$ by induction on the length of strings.

Suppose $w \in L$. To show by induction on |w| that $w \in L(G)$. Base cases: |w| = 0. $\varepsilon \in L(G)$. \checkmark No string with |w| = 1 in L(G). \checkmark

Induction step: Let $n \ge 2$. Suppose $u \in L(G)$ for all $u \in L$ with |u| < n. Let $w \in L$ be such that |w| = n; i.e., $\#_0(w) = \#_1(w)$.

Case w=0u1: Then $u \in L$ and |u| < n. By IH, $u \in L(G)$. i.e., $S \Rightarrow^* u$. Hence, $S \Rightarrow 0S1 \Rightarrow^* 0u1 = w$. (Case w=1u0 is symmetric.)

Case w=0u0: Let $d_i = \#_0(i\text{-long prefix of }w) - \#_1(i\text{-long prefix of }w)$. Then $d_1 = 1$, $d_n = 0$, $d_{n-1} = -1$. So $\exists 1 < m \le n-1$ s.t., $d_m = 0$. i.e., w=xy, where |x|, |y| < |w|, and $x,y \in L$. By IH, $x,y \in L(G)$. Hence $S \Rightarrow SS \Rightarrow^* xy = w$. (Case w=1u1 is symmetric.)

Often will need to strengthen the claim to include strings generated by every variable in the grammar

Claim: Let $L = \{ w \mid \#_0(w) = \#_1(w) \}$. Then, L(G) = L where productions of G are:

$$S \rightarrow AB \mid BA \mid \varepsilon$$

 $A \rightarrow 0 \mid AS \mid SA$
 $B \rightarrow 1 \mid BS \mid SB$

Stronger Claim:

A derives all strings w s.t. $\#_0(w) = \#_1(w) + 1$.

B derives all strings w s.t. $\#_1(w) = \#_0(w) + 1$.

S derives all strings w s.t. $\#_0(w) = \#_1(w)$.

Union: If L_1 and L_2 are CFLs, so is $L_1 \cup L_2$. Let $G_1 = (\Sigma, V_1, P_1, S_1), G_2 = (\Sigma, V_2, P_2, S_2)$ with $V_1 \cap V_2 = \emptyset$. Let $G = (\Sigma, V, P, S)$ with $V = V_1 \cup V_2 \cup \{S\}$, and $P = P_1 \cup P_2 \cup \{S\} \rightarrow S_1 \mid S_2 \}$. Then $L(G) = L(G_1) \cup L(G_2)$.

Concatenation: If L_1 and L_2 are CFLs, so is $L_1 L_2$. Let $G_1 = (\Sigma, V_1, P_1, S_1), G_2 = (\Sigma, V_2, P_2, S_2)$ with $V_1 \cap V_2 = \emptyset$. Let $G = (\Sigma, V, P, S)$ with $V = V_1 \cup V_2 \cup \{S\}$, and $P = P_1 \cup P_2 \cup \{S\} \rightarrow S_1 \setminus S_2 \}$. Then $L(G) = L(G_1) \setminus L(G_2)$.

> Kleene Star: If L_1 is a CFL, so is L_1 *. Let $G_1 = (\Sigma, V_1, P_1, S_1)$. Let $G = (\Sigma, V, P, S)$ with $V = V_1 \cup \{S\}$, and $P = P_1 \cup \{S\} \rightarrow \varepsilon \mid S \mid S_1 \}$. Then $L(G) = L(G_1)$ *.

Closure Properties for CFL

CFLs are **not** closed under intersection or complement

Intersection: $L_1 = \{ 0^i 1^j 0^k \mid i=j \} \& L_1 = \{ 0^i 1^j 0^k \mid j=k \} \text{ are CFLs.}$ But it turns out that $L_1 \cap L_2 = \{ 0^i 1^j 0^k \mid i=j=k \} \text{ is not a CFL!}$

Complement: If CFLs were to be closed under complementation, since they are already closed under union, they would have been closed under intersection!

Grammars

Rewriting rules for generating strings from a "seed"

In an "unrestricted" grammar, the rules are of the form $\alpha \to \beta$ where $\alpha, \beta \in (\Sigma \cup V)^*$

Context-Free Grammar: Rewriting rules apply to individual variables (with no "context")

