NFA/DFA,
 Relation Lo Regular Languages

Lecture 7

NFA recap

- Last lecture, we saw these objects called NFAs...

- Like DFA, but with a weird transition function: choices!
- DFA is a special case of NFA (how?)

NFA recap

- Last lecture, we saw these objects called NFAs...

3 models for (Regular) Languages:

NFA recap

Kleene's Theorem

NFA $+\varepsilon$: Formally

- I want to be able to change my state without consuming input

NFA $+\varepsilon$: Formally

- I want to be able to change my state without consuming input

- On input 10001?

NFA $+\varepsilon$: Formally

$$
N=(\Sigma, Q, \delta, s, A)
$$

Σ : alphabet Q : state space s : start state A : set of accepting states

$$
\delta: Q \times\{\Sigma \cup \varepsilon\} \rightarrow \mathrm{P}(Q)
$$

We say $q \stackrel{w}{w \rightarrow N}$. p

$$
L(N)=
$$

e.g., $\delta(\mathbf{1}, \mathrm{o})=\{\mathbf{2}\}, \delta(1, x)=\emptyset, \delta(1, \varepsilon)=\{\mathbf{2}\}$.

NFA $+\varepsilon$: Formally

$$
N=(\Sigma, Q, \delta, s, A)
$$

Σ : alphabet Q : state space s : start state A : set of accepting states

$$
\delta: Q \times\{\Sigma \cup \varepsilon\} \rightarrow \mathrm{P}(Q)
$$

 $w=a_{1} \ldots a_{t}, q_{1}=q, q_{t+1}=p$, and $\forall i \in[1, t], q_{i+1} \in \delta\left(q_{i}, a_{i}\right)$

$$
L(N)=\left\{\left.w\right|^{s} w_{N N_{N}} p \text { for some } p \in A\right\}
$$

$$
\text { e.g., } \delta(1, o)=\{2\}, \delta(1, x)=\emptyset, \delta(1, \varepsilon)=\{2\}
$$

NFA $+\varepsilon$: Formally

We define the ε-reach of a state p :

$$
\text { e.g., } \delta(\mathbf{1}, o)=\{\mathbf{2}\}, \delta(\mathbf{1}, x)=\emptyset, \delta(1, \varepsilon)=\{\mathbf{2}\} .
$$

$$
\varepsilon-\operatorname{reach}(\{\mathbf{1}\})=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{0}\}
$$

NFA $+\varepsilon$: Formally

We define the ε-reach of a state p :

- p itself
- any state q such that $r^{\xi_{m_{N}}} q$ for some r in the ε-reach of p

Means that there is a sequence of ε-transitions from p to q

$$
\text { e.g., } \delta(\mathbf{1}, o)=\{\mathbf{2}\}, \delta(1, x)=\varnothing, \delta(1, \varepsilon)=\{\mathbf{2}\} . \quad \varepsilon \text {-reach }(\{1\})=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, \mathbf{0}\}
$$

Get rid of nothing

Can modify any NFA N, to get an NFA $N_{\text {new }}$ without ε-moves

$$
\begin{gathered}
N_{\text {new }}=\left(\Sigma, Q_{\text {new }}, \delta_{\text {new }}, S_{\text {new }}, A_{\text {new }}\right) \\
\mathrm{Q}_{\text {new }}=Q \\
S_{\text {new }}=s
\end{gathered}
$$

$A_{\text {new }}=\{\mathbf{q l} \boldsymbol{\varepsilon}$-reach (\mathbf{q}) includes a state in A$\}$

$$
\delta_{\mathrm{new}}(q, a)=\cup_{p \in \varepsilon-\operatorname{reach}(q)} \delta(p, a)
$$

$$
\text { e.g.: } \delta_{\text {new }}(1,0)=\{0,2,3,4,5\}
$$

Get rid of nothing

Can modify any NFA N, to get an NFA $N_{\text {new }}$ without ε-moves

$$
N_{\text {new }}=\left(\Sigma, Q_{\text {new }}, \delta_{\text {new }}, S_{\text {new }}, A_{\text {new }}\right)
$$

$$
\begin{gathered}
\mathrm{Q}_{\text {new }}=Q \\
S_{\text {new }}=s
\end{gathered}
$$

$$
A_{\text {new }}=\{
$$

$$
\}
$$

Get rid of nothing

Can modify any NFA N, to get an NFA $N_{\text {new }}$ without ε-moves

$$
N_{\text {new }}=\left(\Sigma, Q_{\text {new }}, \delta_{\text {new }}, S_{\text {new }}, A_{\text {new }}\right)
$$

$$
\begin{gathered}
\mathrm{Q}_{\text {new }}=Q \\
S_{\text {new }}=S
\end{gathered}
$$

$$
\begin{aligned}
& A_{\text {new }}=\{\text { ql } \varepsilon-\operatorname{reach}(\mathbf{q}) \text { includes a state in } \mathrm{A}\} \\
& \delta_{\text {new }}(q, a)=\cup_{p \in \varepsilon-\operatorname{reach}(q)} \delta(p, a)
\end{aligned}
$$

Theorem: $L(N)=L\left(N_{\text {new }}\right)$

NFA $+\varepsilon$: Formally

NFA- ε

NFA- ε

NFA- ε

NFA- ε

- Same NFA!

Kleene's theorem

Theorem: A language L can be described by a regular expression if and only if L is the language accepted by a DFA.

Kleene's theorem

Kleene's theorem

Kleene's theorem

DFA from NFA (aka the subset construction)

NFA: $N=(\Sigma, Q, \delta, s, A)$
$\delta: Q \times \Sigma \rightarrow \mathrm{P}(Q)$

NFA

1001
001
1001
1001
1001

NFA to DFA

$$
\begin{array}{c|c}
\text { NFA: } N=(\Sigma, Q, \delta, s, A) & \text { DFA: } M_{N}=\left(\Sigma, Q^{\prime}, \delta^{\prime}, s^{\prime}, A^{\prime}\right) \\
\begin{array}{c}
\delta: Q \times \Sigma \rightarrow \mathrm{P}(Q) \\
\text { assume no }
\end{array} & Q^{\prime}=2^{Q}=\mathrm{P}(Q) \\
\mathrm{s}^{\prime}=\{\mathrm{s}\}
\end{array}
$$

$$
\varepsilon \text {-moves }
$$

Deterministic state is now a set of (non-deterministic) states

$$
A^{\prime}=\{\text { all subsets } \mathrm{P} \text { of } \mathrm{Q} \text { s.t. } \mathrm{P} \cap A \neq \emptyset\}
$$

Theorem: $L(N)=L\left(M_{N}\right)$

$$
\begin{gathered}
\delta^{\prime}: \mathrm{P}(Q) \times \Sigma \rightarrow \mathrm{P}(Q) \\
\delta^{\prime}(P, a)=\mathrm{U}_{q \in P} \delta(q, a)
\end{gathered}
$$

NFA to DFA

- There are too many states in this DFA, more than - necessary.
- Construct the DFA incrementally instead,
- by performing BFS on the DFA graph.
- Prepare a table as follows

P	ε	$\delta^{\prime}(P, 0)$	$\delta^{\prime}(P, 1)$	$q^{\prime} \in A^{\prime}$
s	s	as	bs	No
as	as	ats	bs	No
bs	bs	as	bts	No
ats	ats	ats	bts	Yes
bts	bts	ats	bts	Yes

Kleene's theorem

Kleene's theorem

NFAs from Regular Languages

Theorem (Thompsons Algorithm): Every regular language is accepted by an NFA.

We will show how to get from regular expressions to NFA+e, but in a particular way. One accepting state only!

Single Final State Form

Can compile a given NFA so that there is only one final state
(and there is no transition out of that state)

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Atomic expressions (Base cases)

$$
\begin{array}{cc}
\varnothing & \mathrm{L}(\varnothing)=\emptyset \\
w \text { for } w \in \Sigma^{*} & \mathrm{~L}(w)=\{w\}
\end{array}
$$

Inductively defined expressions

$$
\begin{array}{cc}
\left(r_{1}+r_{2}\right) & \mathrm{L}\left(r_{1}+r_{2}\right)=\mathrm{L}\left(r_{1}\right) \cup \mathrm{L}\left(r_{2}\right) \\
\left(r_{1} r_{2}\right) & \mathrm{L}\left(r_{1} r_{2}\right)=\mathrm{L}\left(r_{1}\right) \mathrm{L}\left(r_{2}\right) \\
\left(r^{*}\right) & \mathrm{L}\left(r^{*}\right)=\mathrm{L}\left(r_{1}^{*}\right.
\end{array}
$$

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Base Case 1: L=Ø

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Base Case 1: L=Ø

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Base Case 2: L=\{ $\}$

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Base Case 3: $L=\{a\}$, some string in Σ^{*} (e.g. HW2)

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 1: $L=A \cup B$

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 1: $L=A \cup B$

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 2: $L=A B$

What is a NFA for L?

Closure Under Concatenation

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 2: L=AB

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

What is a NFA for L?

Closure Under Kleene Star

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

What is a NFA for L?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

Why not?

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

NFAs from Regular Languages

Theorem : Every regular language is accepted by an NFA.
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

I need the new start state.

NFAs \& Regular Languages

Example : L given by regular expression (10+1)*

NFAs \& Regular Languages

Example : L given by regular expression (10+1)*

