
Fooling Sets and Introduction to Non-
deterministic Finite Automata

Lecture 6

1

Proving that a language is
not regular

• Given a language, we saw how to prove it is
regular (union, intersection, concatenation,
complement, reversal…)

• How to prove it is not regular?

Proving that a language is
not regular

• Pick your favorite language L (= let L be an
arbitrary language)

• For any strings x,y (x,y not necessarily in L) we
define the following equivalence:

• Means for EVERY string z ∈ Σ* we have

xz ∈ L if and only if yz ∈ L

Proving that a language is
not regular

• Conversely,

• Means for SOME string z ∈ Σ* we have

either xz ∈ L and yz L

or xz L and yz ∈ L

We say z distinguishes x from y

(take z, glue it to x and y and see what belongs to L)

Example
• Pick your favorite language

• e.g. L = {strings with even zeroes and odd ones}

• Pick x= 0011 and y = 01. None of them in L!

• Can we find distinguishing suffix z?
z=1:

xz=00111 in L

yz =011 not in L

z=0:

xz=00110 not in L

yz =010 in L

z=ε:

xz=0011 not in L

yz =01 not in L

Example
• L = {strings with even zeroes and odd ones}

• Pick x= 0011 and y = 01. None of them in L!

• Can we find distinguishing suffix z?

z=1:

xz=00111 in L

yz =011 not in L

z=0:

xz=00110 not in L

yz =010 in L

z=ε:

xz=0011 not in L

yz =01 not in L

Bad choice for z!

Why do I care?
• I can learn something about the equivalence

relation by looking at every DFA that accepts L.

• Assume that after the DFA reads x and y it ends up
at the same state:

Proof: For any z,

Why do I care?
• This implication can be turned around:

In ANY DFA for L

• For the example before, we found two strings not equivalent.
• Any DFA for the language has AT LEAST two distinct states!
• Kind of trivial, cause what DFA has only one state?

Why do I care?
• Pushing it further:

If we can find k strings such that

Then, any DFA for L has at least k states

A way of formally proving how “complicated” a language
is if it is regular

Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

z=01
x1z=0001 not in L

x2z =00001 in L

Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

z=?

Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

z=1

Our Example
• L = {strings with even zeroes and odd ones}

Any DFA for L has AT LEAST 4 states!

What is a DFA for L?

x1=00

x2=01

x3=001

x4=000

Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

OO OE

0

1

EE

0

1

EO

We proved that this (obvious) DFA is the minimal one!!!

Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

OO OE

0

1

EE

0

1

EO

Fooling set.

Proving that a language is
not regular

• Suppose I can find an infinite fooling set for L.

• Infinite set of strings {x1,x2,…} such that

• Then every DFA for L has at least infinite number of
distinct states

• L not regular!

Proving that a language is
not regular

• Example: L={0n1n| }= {ε,01,0011,…}

• Claim: This is a fooling set: F={0n| }

Proof: Let x, y two arbitrary different strings in
F.

Therefore x y.

Proving that a language is
not regular

• Example: L={0n1n| }= {ε,01,0011,…}

• Claim: This is a fooling set: F={0n| }

Proof: Let x, y two arbitrary different strings in
F.

Therefore x y.

x=0i for some integer i

y=0j for some different
integer j

z= 1i

Proving that a language is
not regular

• Example: L={0n1n| }= {ε,01,0011,…}

• Claim: This is a fooling set: F={0n| }

Proof: Let x, y two arbitrary different strings in
F.

Therefore x y.

x=0i for some integer i

y=0j for some different
integer j

z= 1i

xz=0i 1i in L

yz=0j 1i not in L

Proving that a language is
not regular

• To prove that L is not Regular:

Find some infinite set F

Prove for any two strings x and y in F there is a
string z such that xz is in L XOR yz is in L.

• How to come up with those fooling sets?

• Be clever :)

• Think of what information you have to keep track of
in a DFA for L.

What to keep track of?
• Example: L={0n1n}= {ε,01,0011,…}

• Is a string in L? What do I have to keep track of?

• I need to keep track of the number of zeroes.

• So, every number of zeroes is intuitively a different
state (different equivalence class).

• Fooling set is a set of strings that exercises all
possible values that I need to keep track in my
head.

• Sometimes easier to narrow it down.

What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length

palindromes

• What is a fooling set?

• I have to remember the whole string w.

Attempt 1: Attempt 2:

F={?}
F=Σ*

x=0000

y=00

What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length

palindromes

• What is a fooling set?

• I have to remember the whole string w.

Attempt 1: Attempt 2:

F=0*1

x=0i1

y=0j1

F=Σ*

x=0000

y=00

What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length

palindromes

• What is a fooling set?

• I have to remember the whole string w.

F=0*1

x=0i1

y=0j1

What z (exercise)?

What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length

palindromes

• What is a fooling set?

• I have to remember the whole string w.
F=0*1

x=0i1

y=0j1

z= 10i

What to keep track of?
• Another Example: L={w|w=wR }= all palindromes

• What is a fooling set?

F=0*1

x=0i1

y=0j1

z= 10i

What to keep track of?
• Another Example: L={w|w=wR }= all palindromes

• What is a fooling set : SAME!

F=0*1

x=0i1

y=0j1

z= 10i

What to keep track of?
• Another Example: L={w|w=wR }= all palindromes

over the alphabet {0,1,a,b,c,d,e,f}

• What is a fooling set : SAME!

F=0*1

x=0i1

y=0j1

z= 10i

Proving that a language is
not regular

Language is regular if and only if there is
no infinite fooling set.

Nondeterminism

• Aka Magic.

Tracking Computation

A computation’s configuration evolves in each time-step

32

0 1

10 1 2

null
0 1

0

0

1
on input 1010

10101010 1010 1010 1010

current state and
remaining input

Deterministic Computation

33

10101010 1010 1010 1010

null

0

1

2

Deterministic: Each step is fully
determined by the configuration
of the previous step and the
transition function. If you do it
again, exactly the same thing
will happen.

Nondeterminism
• Determinism: opposite of free will

• Nondeterminism: you suddenly have choices!

Non-Deterministic FA
What can be non-deterministic about an FA?

35

• At a given state, on a given input, a set of “next-states”

• set could be empty, could be all states…

1

0

1

0

0,1

0,1

What language?

NFA : Formally

DFA : M = (Σ, Q, δ, s, A)
Σ: alphabet Q: state space s: start state A: set of accepting states

δ : Q × Σ →Q

δ(q, a) = a state

NFA : N= (Σ, Q, δ, s, A)

δ : Q × Σ → 2Q = P(Q)

δ(q, a) = { a set of states }

36

NFA
• Input = 1001

1

0

1

0

0,1

0,1

• L ={contains either 00 or 11}

NFA

38
10011001 1001 1001 1001

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]

NFA

39

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]

One of the states are accepting. There needs to be AT LEAST one accepting state

Nondeterminism
• What is non determinism?

• Magic?

• Parallelism?

• Advice?

Nondeterminism
• What is non determinism?

• Suppose I wanted to prove to you that the string
1001 is in L ={contains either 00 or 11}

• We built a DFA with product last time.

• Proof is an accepting computation

NFA

42
10011001 1001 1001 1001

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]

Nondeterminism
• What is non determinism?

• Suppose I wanted to prove to you that the string
1001 is in L ={contains either 00 or 11}

• We built a DFA with product last time.

• Proof is an accepting computation: guide for the
reader to how to follow the steps to a given
conclusion.

Nondeterminism
• P vs. NP

• Are they the same?

• Easier to give the proof than come up with the
proof! (?)

Nondeterminism
• For FSM, nondeterminism does not give you more

expressive power!

• Any language that can be accepted by an NFAs
can also be accepted by a DFA.

• It is more efficient, last example had 4 states but
product construction had 8!

DFA for L = {w: w contains 00 or
11}

46

0

0

1

1

1

0

1

0

0,1

1

10

0
0

1

1

0

1

0

0,1

0,1

NFA for L = {w: w contains 00 or
11}

NFA : More efficient

Design an NFA to recognize
L(M) = {w | w : 7th character from the end is a 1}

48

0,1 0,1 0,11 0,1 0,1

0,1

0,1

• Minimum DFA for this language would have 27 states

at least!

• need to remember the last 7 symbols.

NFA : Formally
• NFA has 5 parts, similar to a DFA : N = (Σ, Q, δ, s, A)

Σ: alphabet Q: state space s: start state F: set of accepting states

δ : Q × Σ → P(Q)=2Q transition function

• Define extended transition function:

δ*: Q × Σ → P(Q)=2Q

δ*(q, w)=

49

…….. if w=ε

……… if w=ax

NFA : Formally
• NFA has 5 parts, similar to a DFA : N = (Σ, Q, δ, s, A)

Σ: alphabet Q: state space s: start state F: set of accepting states

δ : Q × Σ → P(Q)=2Q transition function

• Define extended transition function:

δ*: Q × Σ* → P(Q)=2Q

δ*(q, w)=

50

{q} if w=ε

if w=ax

NFA : When does it accept?
NFA accepts a string w if and only if

δ*(s, w) ∩ A

51

NFA : Examples

Design an NFA to recognize
L(M) = {w | w contains 011 or 110 }

For any input string, if it contains 011 or 110, then there
is some computation path, that ends in the final state

And vice versa
52

0 1 1

1 0

11

ε 0 01 OK

11

0,10,1

Design an NFA to recognize
L(M) = {w | w has the substring 110 and ends in 111 }

Design an NFA to recognize
L(M) = {w | w has the substring 110 and ends in 000 }

NFA : Examples

53

1 1 1
c d e f1 1 0

s a b

0,1
0,1

0 0 0
c d e f1 1 0

s a b

0,1
0,1

0

