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Proving that a language is 
not regular

• Given a language, we saw how to prove it is 
regular (union, intersection, concatenation, 
complement, reversal…)

• How to prove it is not regular?



Proving that a language is 
not regular

• Pick your favorite language L (= let L be an 
arbitrary language)

• For any strings x,y (x,y not necessarily in L) we 
define the following equivalence: 

• Means for EVERY string z ∈ Σ* we have 

xz ∈ L if and only if yz ∈ L



Proving that a language is 
not regular

• Conversely, 

• Means for SOME string z ∈ Σ* we have 

either xz ∈ L and yz   L

or xz   L and yz ∈ L

We say z distinguishes x from y 

(take z, glue it to x and y and see what belongs to L)



Example
• Pick your favorite language 

• e.g. L = {strings with even zeroes and odd ones}

• Pick x= 0011 and y = 01. None of them in L!

• Can we find distinguishing suffix z?
z=1:

xz=00111 in L

yz =011 not in L

z=0:

xz=00110 not in L

yz =010 in L

z=ε:

xz=0011 not in L

yz =01 not in L



Example
• L = {strings with even zeroes and odd ones}

• Pick x= 0011 and y = 01. None of them in L!

• Can we find distinguishing suffix z?

z=1:

xz=00111 in L

yz =011 not in L

z=0:

xz=00110 not in L

yz =010 in L

z=ε:

xz=0011 not in L

yz =01 not in L

Bad choice for z!



Why do I care?
• I can learn something about the equivalence 

relation by looking at every DFA that accepts L.

• Assume that after the DFA reads x and y it ends up 
at the same state: 

Proof: For any z,  



Why do I care?
• This implication can be turned around:

In ANY DFA for L

• For the example before, we found two strings not equivalent.
• Any DFA for the language has  AT LEAST two distinct states!
• Kind of trivial, cause what DFA has only one state?



Why do I care?
• Pushing it further:

If we can find k strings                     such that  

Then, any DFA for L has at least k states

A way of formally proving how “complicated” a language 
is if it is regular



Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000



Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

z=01
x1z=0001 not in L

x2z =00001 in L



Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

z=?



Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

z=1



Our Example
• L = {strings with even zeroes and odd ones}

Any DFA for L has AT LEAST 4 states!

What is a DFA for L?

x1=00

x2=01

x3=001

x4=000



Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

OO OE

0

1

EE

0

1

EO

We proved that this (obvious) DFA is the minimal one!!!



Our Example
• L = {strings with even zeroes and odd ones}

x1=00

x2=01

x3=001

x4=000

OO OE

0

1

EE

0

1

EO

Fooling set.



Proving that a language is 
not regular

• Suppose I can find an infinite fooling set for L.

• Infinite set of strings {x1,x2,…} such that  

• Then every DFA for L has at least infinite number of 
distinct states

• L not regular!



Proving that a language is 
not regular

• Example: L={0n1n|           }= {ε,01,0011,…}

• Claim: This is a fooling set: F={0n|           }

Proof: Let x, y two arbitrary different strings in 
F.

Therefore x    y.



Proving that a language is 
not regular

• Example: L={0n1n|           }= {ε,01,0011,…}

• Claim: This is a fooling set: F={0n|           }

Proof: Let x, y two arbitrary different strings in 
F.

Therefore x    y.

x=0i for some integer i

y=0j for some different 
integer j

z= 1i



Proving that a language is 
not regular

• Example: L={0n1n|           }= {ε,01,0011,…}

• Claim: This is a fooling set: F={0n|           }

Proof: Let x, y two arbitrary different strings in 
F.

Therefore x    y.

x=0i for some integer i

y=0j for some different 
integer j

z= 1i

xz=0i 1i  in L

yz=0j 1i not in L



Proving that a language is 
not regular

• To prove that L is not Regular:

Find some infinite set F

Prove for any two strings x and y in F there is a 
string z such that xz is in L XOR yz is in L.

• How to come up with those fooling sets? 

• Be clever :)

• Think of what information you have to keep track of 
in a DFA for L.



What to keep track of?
• Example: L={0n1n}= {ε,01,0011,…}

• Is a string in L? What do I have to keep track of?

• I need to keep track of the number of zeroes. 

• So, every number of zeroes is intuitively a different 
state (different equivalence class).

• Fooling set is a set of strings that exercises all 
possible values that I need to keep track in my 
head.

• Sometimes easier to narrow it down.



What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length 

palindromes

• What is a fooling set?

• I have to remember the whole string w.

Attempt 1:                                Attempt 2:

F={?}
F=Σ*

x=0000

y=00



What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length 

palindromes

• What is a fooling set?

• I have to remember the whole string w.

Attempt 1:                                Attempt 2:

F=0*1

x=0i1

y=0j1

F=Σ*

x=0000

y=00



What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length 

palindromes

• What is a fooling set?

• I have to remember the whole string w.

F=0*1

x=0i1

y=0j1

What z (exercise)?



What to keep track of?
• Another Example: L={wwR|w ∈ Σ* }= even length 

palindromes

• What is a fooling set?

• I have to remember the whole string w.
F=0*1

x=0i1

y=0j1

z= 10i



What to keep track of?
• Another Example: L={w|w=wR }= all palindromes

• What is a fooling set?

F=0*1

x=0i1

y=0j1

z= 10i



What to keep track of?
• Another Example: L={w|w=wR }= all palindromes

• What is a fooling set : SAME!

F=0*1

x=0i1

y=0j1

z= 10i



What to keep track of?
• Another Example: L={w|w=wR }= all palindromes 

over the alphabet {0,1,a,b,c,d,e,f}

• What is a fooling set : SAME!

F=0*1

x=0i1

y=0j1

z= 10i



Proving that a language is 
not regular

Language is regular if and only if there is 
no infinite fooling set.



Nondeterminism

• Aka Magic.



Tracking Computation

A computation’s configuration evolves in each time-step

32

0 1

10 1 2

null
0 1

0

0

1
on input 1010

10101010 1010 1010 1010

current state and 
remaining input



Deterministic Computation

33

10101010 1010 1010 1010

null

0

1

2

Deterministic: Each step is fully 
determined by the configuration 
of the previous step and the 
transition function. If you do it 
again, exactly the same thing 
will happen.



Nondeterminism
• Determinism: opposite of free will

• Nondeterminism: you suddenly have choices!



Non-Deterministic FA
What can be non-deterministic about an FA?

35

• At a given state, on a given input, a set of “next-states”

• set could be empty, could be all states…

1

0

1

0

0,1

0,1

What language?



NFA : Formally

DFA : M = (Σ, Q, δ, s, A) 
Σ: alphabet Q: state space s: start state A: set of accepting states

δ : Q × Σ →Q

δ(q, a) =  a state

NFA : N= (Σ, Q, δ, s, A)  

δ : Q × Σ → 2Q = P(Q)

δ(q, a) = { a set of states }

36



NFA
• Input = 1001

1

0

1

0

0,1

0,1

• L ={contains either 00 or 11}



NFA
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10011001 1001 1001 1001

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]



NFA
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1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]

One of the states are accepting. There needs to be AT LEAST one accepting state



Nondeterminism
• What is non determinism?

• Magic?

• Parallelism?

• Advice?



Nondeterminism
• What is non determinism?

• Suppose I wanted to prove to you that the string 
1001 is in L ={contains either 00 or 11}

• We built a DFA with product last time.

• Proof is an accepting computation 



NFA

42
10011001 1001 1001 1001

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]



Nondeterminism
• What is non determinism?

• Suppose I wanted to prove to you that the string 
1001 is in L ={contains either 00 or 11}

• We built a DFA with product last time.

• Proof is an accepting computation: guide for the 
reader to how to follow the steps to a given 
conclusion.



Nondeterminism
• P vs. NP

• Are they the same?

• Easier to give the proof than come up with the 
proof! (?)



Nondeterminism
• For FSM, nondeterminism does not give you more 

expressive power! 

• Any language that can be accepted by an NFAs 
can also be accepted by a DFA.

• It is more efficient, last example had 4 states but 
product construction had 8!



DFA for L = {w: w contains 00 or 
11}

46

0

0

1

1

1

0

1

0

0,1

1

10

0
0

1



1

0

1

0

0,1

0,1

NFA for L = {w: w contains 00 or 
11}



NFA : More efficient

Design an NFA to recognize
L(M) = {w | w : 7th character from the end is a 1}
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0,1 0,1 0,11 0,1 0,1

0,1

0,1

• Minimum DFA for this language would have 27 states 

at least!

• need to remember the last 7 symbols.



NFA : Formally
• NFA has 5 parts, similar to a DFA : N = (Σ, Q, δ, s, A) 

Σ: alphabet Q: state space s: start state F: set of accepting states

δ : Q × Σ → P(Q)=2Q transition function

• Define extended transition function:

δ*: Q × Σ → P(Q)=2Q

δ*(q, w)= 

49

……..   if w=ε

………    if w=ax



NFA : Formally
• NFA has 5 parts, similar to a DFA : N = (Σ, Q, δ, s, A) 

Σ: alphabet Q: state space s: start state F: set of accepting states

δ : Q × Σ → P(Q)=2Q transition function

• Define extended transition function:

δ*: Q × Σ* → P(Q)=2Q

δ*(q, w)= 
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{q}    if w=ε

if w=ax



NFA : When does it accept?
NFA accepts a string w if and only if

δ*(s, w) ∩ A 
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NFA : Examples

Design an NFA to recognize
L(M) = {w | w contains 011 or 110 }

For any input string, if it contains 011 or 110, then there 
is some computation path, that ends in the final state

And vice versa
52

0 1 1

1 0

11

ε 0 01 OK

11

0,10,1



Design an NFA to recognize
L(M) = {w | w has the substring 110 and ends in 111 }

Design an NFA to recognize
L(M) = {w | w has the substring 110 and ends in 000 }

NFA : Examples
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1 1 1
c d e f1 1 0

s a b

0,1
0,1

0 0 0
c d e f1 1 0

s a b

0,1
0,1

0


