Finite State Machines Lecture 4

Recall a Language is Regular if

- L is empty
- L contains a single string (could be the empty string)
- If L_{1}, L_{2} are regular, then $L=L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular, then $L=L_{1} L_{2}$ is regular
- If L is regular, then L^{*} is regular

Unbounded vs. Infinite

- Why do we need bullet 5 ?
- Why can't we say that L^{*} is the infinite union of $\{\varepsilon\} \cup$ $L \cup L L \cup L L L \cup .$.
- Recursive definitions: at every branch of recursion we need to reach a base case in finite number of steps.
- We can invoke the union rule for any integer n number of steps
- infinity is not a number! I can only produce infinite sets by an operation like the *.

Complexity of Languages

- Central Question: How complex an algorithm is needed to compute (aka decide) a language? How much memory do I need?
- Today: a simple class of algorithms, that are fast and can be implemented using minimal hardware
- Finite State Machines -Deterministic Finite Automata (FSM-DFA)
- DFAs around us: Vending machines, Elevators, Digital watch logic, Calculators, Lexical analyzers (part of program compilation), ...

DFA (a.k.a. FSM)

- Finite: cannot use more memory to work on longer inputs
- Eg. Automatic door

DFA (a.k.a. FSM)

- Finite: cannot use more memory to work on longer inputs
- Eg. Automatic door

DFA (a.k.a. FSM)

- Finite: cannot use more memory to work on longer inputs
- Eg. Automatic door

Input signal

	NEITHER	FRONT	REAR	BOTH
	CLOSED	CLOSED	OPEN	CLOSED
CLOSED				
	OPEN	CLOSED	OPEN	OPEN

Multiple of 5

```
MULTIPLEOF5(w[1..n]):
    rem}\leftarrow
    for }i\leftarrow
        rem}\leftarrow(2\cdotrem +w[i]) mod 5
    if rem =0
    return TRUE
    else
    return FALSE
```

- Could do long division, keep the intermediate results in an array but I don't want to spend that much memory!
- Only one variable, rem, which represents the remainder of the part of the string I read so far when I divided by 5.

Multiple of 5

MULTIPLEOF5(w[1..n]): $r e m \leftarrow 0$
for $i \leftarrow 1$ to n
$r e m \leftarrow(2 \cdot r e m+w[i]) \bmod 5$
if $\mathrm{rem}=0$
return True
else
return FALSE

- If I know the remainder for m mod 5 , and I read one more bit then line 3 tells me what the new remainder is (either $\mathrm{m0}$ or m 1)

Multiple of 5

- Important feature of algorithm: Aside from variable i which counts the input bits and is necessary to read input, I only have one variable rem, which takes only a small (5) number of values.
- Streaming algorithm : Data flies by! Once w[i] is gone, it is gone forever.
- Variable has a very small number of states, which I am able to specify at compile time. Very small amount of memory!

DFA (a.k.a. FSM)

- check if binary input is a multiple of 5.
store $x \bmod 5$ here (initial value "null").
output bit indicates if it is 0 .
next input
symbol fed here
calculate x ' mod 5 from x mod 5 and input bit b, where $x^{\prime}=2 x+b$
output bit for the input so far
"Lookup" table

$$
\begin{aligned}
& \frac{\text { DoSOMETHINGCOOL }(w[1 . . n]):}{q \leftarrow 0} \\
& \text { for } i \leftarrow 1 \text { to } n \\
& \quad q \leftarrow \delta[q, w[i]] \\
& \quad \text { return } A[q] \\
& \hline
\end{aligned}
$$

- q encapsulates the state of the algorithm
- Takes a small amount of values, which I know up front (e.g. q is a number between 1 and 4). Unbounded, not infinite!
- Depending on the character I read at position i, I change my state with function called delta (δ).
- I have a hardcoded array A and based on what the state is when I finish reading the string, I output the value of the array.

"Lookup" table

DoSomethingCool(w[1..n]): $q \leftarrow 0$ for $i \leftarrow 1$ to n $q \leftarrow \delta[q, w[i]]$
 return $A[q]$

If we want to use our new DoSomethingCool algorithm to implement MultipleOf5, we simply give the arrays δ and A the following hard-coded values:

q	$\delta[q, 0]$	$\delta[q, 1]$	$A[q]$	only one
0	0	1	TRUE	accepting
1	2	3	FALSE	state!
2	4	0	FALSE	
3	1	2	FALSE	
4	3	4	FALSE	

Instead of doing arithmetic at all, I could just hard code this lookup table into the code and simply do a lookup

DFA (a.k.a. FSM)

- Algorithm or Machine? Algorithm is a Machine!!
- Once you program the machine, you don't have to monitor it. It runs AUTOMATICALLY (Automaton...)

DFA (a.k.a. FSM)
-Equivalent view as a graph!

DFA (a.k.a. FSM)

- Example: check if input 01010101 is a multiple of 5

input bit	current state	next state
0	0	0
1	0	1
0	0	2
1	2	0
0	0	0
1	0	1
0	1	2
1	$\mathbf{2}$	0

DFA (a.k.a. FSM)

- check if input (MSB first) is a multiple of 5

input bit	current state	next state
0	0	0
1	0	1
0	0	2
1	2	0
0	0	0
1	0	1
0	1	2
1	$\mathbf{2}$	0

How to fully specify a DFA (syntax):
FINITE Alphabet: Σ
FINITE Set of States: Q
Start state: $s \in Q$
Set of Accepting states: $A \subseteq Q$
Transition Function: $\delta: Q \times \Sigma \rightarrow Q$

$$
\delta(q, a)=(2 q+a) \bmod 5
$$

DFA (a.k.a. FSM)

- 3 equivalent ways to specify a FSM:

1)

q	$\delta[q, 0]$	$\delta[q, 1]$	$A[q]$
0	0	1	TRUE
1	2	3	3
2	4	0	FALSE
3	1	2	FALSE
4	3	4	FALSE

2)

3)

$$
\delta(q, a)=(2 q+a) \bmod 5
$$

Together with a description of what are the states and what are the accepting states

How to interpret these functions?

- $M=(\Sigma, Q, \delta, s, A)$
- $\delta *(q, w)$ be the state M reaches starting from a state $q \in Q$, on input $w \in \Sigma^{*}$
- Recursive definition?
- What are the cases going to be?

Behavior of a DFA on an input

- $M=(\Sigma, Q, \delta, s, A)$
- $\delta^{*}(q, w)$ be the state M reaches starting from a state $q \in Q$, on input $w \in \Sigma^{*}$
- Formally,

$$
\begin{aligned}
& \cdot \delta^{*}(q, w)=q \text { if } w=\varepsilon \\
& \cdot \delta^{*}(q, w)=\delta^{*}(\delta(q, a), \mathrm{x}) \text { if } \mathrm{w}=\mathrm{ax}
\end{aligned}
$$

Behavior of a DFA on an input

- $\delta *(0,01001)=$? 4
- $\delta *(0, \varepsilon)=$? 0
- $\delta *(0,010)=? 2$
- $\delta *(2,01)=$? 4

Behavior of a DFA on an input

- $\delta *(0,01001)=4$
- Specify a walk in the graph
- Best represented as

Example: What strings does this machine accept?
Alphabet: $\Sigma=\{0,1\}$
Set of States: $Q=\{s, t\}$
Start state: $s \in Q$
Accepting state: $t \in Q$

Transition Function: $\delta: Q \times \Sigma \rightarrow Q$ $\delta(s, 0)=s, \delta(s, l)=t, \delta(t, 0)=t, \delta(t, l)=s$

Question: what is $L(M)$?
Answer: strings with odd number of ones!

Construction Exercise

- $L(M)=\{w \mid w$ ends in 01 or 10$\}$
$(0+1) * 01+(0+1) * 10$
-Is it regular??
-What should be in the memory?
- Last two bits seen. Possible values: $\varepsilon, 0,1,00,01,10,11$

Construction Exercise

- $L(M)=\{w \mid w$ ends in 01 or 10$\}$
- Is it regular??
- What should be in the memory? Last two bits seen. Possible values: $\varepsilon,(0+00),(1+11), 01,10$

Construction Exercise

- $L(M)=\{w \mid w$ contains 011 or 110$\}$
- Brute force: Enough to remember last 3 symbols (8+4+2+1=15 states). Stay at accepting states if reached.
- "Clever" construction: Enough to remember valid prefixes. States: $\varepsilon, 0,1,01,11,0 K$ (can forget everything else)

