# Finite State Machines Lecture 4

## Recall a Language is Regular if

- L is empty
- L contains a single string (could be the empty string)
- If  $L_1$ ,  $L_2$  are regular, then  $L = L_1 \cup L_2$  is regular
- If  $L_1$ ,  $L_2$  are regular, then  $L = L_1 L_2$  is regular
- If L is regular, then  $L^*$  is regular

# Unbounded vs. Infinite

- Why do we need bullet 5?
- Why can't we say that L\* is the infinite union of {ε} U
  L U LL U LLL U...
- Recursive definitions: at every branch of recursion we need to reach a base case in **finite number** of steps.
- We can invoke the union rule for any integer n number of steps
- infinity is not a number! I can only produce infinite sets by an operation like the \*.

Complexity of Languages

- Central Question: How complex an algorithm is needed to compute (aka decide) a language? How much memory do I need?
- Today: a simple class of algorithms, that are fast and can be implemented using minimal hardware
  - Finite State Machines Deterministic Finite Automata (FSM-DFA)
  - DFAs around us: Vending machines, Elevators, Digital watch logic, Calculators, Lexical analyzers (part of program compilation), ...

- Finite: cannot use more memory to work on longer inputs
- Eg. Automatic door





- Finite: cannot use more memory to work on longer inputs
- Eg. Automatic door



- Finite: cannot use more memory to work on longer inputs
- Eg. Automatic door

|       |        | NEITHER | FRONT | REAR   | BOTH   |
|-------|--------|---------|-------|--------|--------|
| State | CLOSED | CLOSED  | OPEN  | CLOSED | CLOSED |
|       | OPEN   | CLOSED  | OPEN  | OPEN   | OPEN   |

Input signal

### Multiple of 5

MULTIPLEOF5(w[1..n]):  $rem \leftarrow 0$ for  $i \leftarrow 1$  to n  $rem \leftarrow (2 \cdot rem + w[i]) \mod 5$ if rem = 0return TRUE else return FALSE

• Could do long division, keep the intermediate results in an array but I don't want to spend that much memory!

• Only one variable, rem, which represents the remainder of the part of the string I read so far when I divided by 5.



• If I know the remainder for m mod 5, and I read one more bit then line 3 tells me what the new remainder is (either m0 or m1)

# Multiple of 5

- Important feature of algorithm: Aside from variable i which counts the input bits and is necessary to read input, I only have one variable rem, which takes only a small (5) number of values.
- Streaming algorithm : Data flies by! Once w[i] is gone, it is gone forever.
- Variable has a very small number of states, which I am able to specify at compile time. Very small amount of memory!



"Lookup" table

 $\frac{\text{DOSOMETHINGCOOL}(w[1..n]):}{q \leftarrow 0}$ for  $i \leftarrow 1$  to n $q \leftarrow \delta[q, w[i]]$ return A[q]

- q encapsulates the state of the algorithm
- Takes a small amount of values, which I know up front (e.g. q is a number between 1 and 4). Unbounded, not infinite!
- Depending on the character I read at position i, I change my state with function called delta ( $\delta$ ).
- I have a hardcoded array A and based on what the state is when I finish reading the string, I output the value of the array.

"Lookup" table

$$\frac{\text{DOSOMETHINGCOOL}(w[1..n]):}{q \leftarrow 0}$$
  
for  $i \leftarrow 1$  to  $n$   
 $q \leftarrow \delta[q, w[i]]$   
return  $A[q]$ 

If we want to use our new DOSOMETHINGCOOL algorithm to implement MULTIPLEOF5, we simply give the arrays  $\delta$  and *A* the following hard-coded values:

| q | δ[q, <mark>0</mark> ] | $\delta[q, 1]$ | A[q]  | only one  |
|---|-----------------------|----------------|-------|-----------|
| 0 | 0                     | 1              | TRUE  | accepting |
| 1 | 2                     | 3              | False | state!    |
| 2 | 4                     | 0              | False |           |
| 3 | 1                     | 2              | False |           |
| 4 | 3                     | 4              | FALSE |           |

Instead of doing arithmetic at all, I could just hard code this lookup table into the code and simply do a lookup

- Algorithm or Machine? Algorithm is a Machine!!
- Once you program the machine, you don't have to monitor it. It runs AUTOMATICALLY (Automaton...)

• Equivalent view as a graph!



#### • Example: check if input 01010101 is a multiple of 5

| input | current | next  |
|-------|---------|-------|
| bit   | state   | state |
| 0     | 0       | 0     |
| 1     | 0       | 1     |
| 0     | 0       | 2     |
| 1     | 2       | 0     |
| 0     | 0       | 0     |
| 1     | 0       | 1     |
| 0     | 1       | 2     |
| 1     | 2       | 0     |



#### • check if input (MSB first) is a multiple of 5

| input | current | next  |
|-------|---------|-------|
| bit   | state   | state |
| 0     | 0       | 0     |
| 1     | 0       | 1     |
| 0     | 0       | 2     |
| 1     | 2       | 0     |
| 0     | 0       | 0     |
| 1     | 0       | 1     |
| 0     | 1       | 2     |
| 1     | 2       | 0     |

How to fully specify a DFA (syntax): FINITE Alphabet:  $\Sigma$ FINITE Set of States: QStart state:  $s \in Q$ Set of Accepting states:  $A \subseteq Q$ Transition Function:  $\delta : Q \times \Sigma \rightarrow Q$ 

$$\delta(q,a) = (2q+a)mod5$$

• 3 equivalent ways to specify a FSM:

$$^{\scriptscriptstyle 3)} \quad \delta(q,a) = (2q+a)mod5$$

Together with a description of what are the states and what are the accepting states

How to interpret these functions?

- • $M = (\Sigma, Q, \delta, s, A)$
- $\delta^*(q,w)$  be the state M reaches starting from a state  $q \in Q$ , on input  $w \in \Sigma^*$
- Recursive definition?
- What are the cases going to be?

### Behavior of a DFA on an input

- $M = (\Sigma, Q, \delta, s, A)$
- $\delta^{*}(q,w)$  be the state M reaches starting from a state  $q \in Q$  , on input  $w \in \Sigma^{*}$
- Formally,

• 
$$\delta^*(q,w) = q$$
 if  $w = \varepsilon$   
•  $\delta^*(q,w) = \delta^*(\delta(q,a), x)$  if  $w = ax$ 

in the second statement of the second statement of the

#### Behavior of a DFA on an input

- $\delta$ \*(0,01001) = ? 4
- $\delta^{*}(\mathbf{0},\varepsilon) = ? \mathbf{0}$
- δ\*(0,010) = ? <mark>2</mark>
- δ\*(2,01) = ? **4**



#### Behavior of a DFA on an input

- $\delta^{*}(0,01001) = 4$
- Specify a walk in the graph
- Best represented as





#### Example: What strings does this machine accept? Alphabet: $\Sigma = \{0,1\}$ Set of States: $Q = \{s,t\}$ Start state: $s \in Q$ 1 S Accepting state: $t \in Q$ 1 Transition Function: $\delta: Q \times \Sigma \rightarrow Q$ $\delta(s,0)=s, \delta(s,1)=t, \delta(t,0)=t, \delta(t,1)=s$

Question: what is L(M)?

Answer: strings with odd number of ones!

#### Construction Exercise • $L(M) = \{w \mid w \text{ ends in 01 or 10} \}$

- Is it regular??
- What should be in the memory?
- Last two bits seen.
  Possible values: ε, 0, 1, 00, 01, 10, 11



(0+1)\*01+(0+1)\*10

### **Construction Exercise**

- *L*(*M*) = {*w* | *w* ends in 01 or 10 }
- Is it regular??
- What should be in the memory? Last two bits seen.
  Possible values: ε, (0+00), (1+11), 01, 10



#### **Construction Exercise**

- *L*(*M*) = {*w* | *w* contains 011 or 110 }
- Brute force: Enough to remember last 3 symbols (8+4+2+1=15 states). Stay at accepting states if reached.
- "Clever" construction: Enough to remember valid prefixes.
  States: ε, 0, 1, 01, 11, OK (can forget everything else)

