Languages and Regular expressions

Lecture 3

Alphabet, Strings, and Languages

- An alphabet $\Sigma = \{a, b, c\}$ is a finite set of letters/symbols.
- A string over an alphabet Σ is finite sequence of symbols, e.g.
 - sequences cab, baa, and aaa are some strings over $\Sigma = \{a, b, c\}$
 - sequences ϵ , 0, 1, 00, and 01 are some strings over $\Sigma = \{0, 1\}$
- Σ^* is the set of all strings over Σ , e.g. $aabbaa \in \Sigma^*$,
- Naturally, A language L is a collection/set of strings over some alphabet, i.e. $L \subseteq \Sigma^*$ e.g.,
 - $L_{even} = \{ w \in \Sigma^* : w \text{ is of even length} \}$
 - $L_{\{a^nb^n\}} = \{w \in \Sigma^* : w \text{ is of the form } a^nb^n \text{ for } n \ge 0\}$

Sets of strings: Σ^n , Σ^* , and Σ^+

- Σ^n is the set of all strings over Σ of length exactly n. Defined inductively as:
 - $\Sigma^0 = \{\varepsilon\}$
 - $\Sigma^n = \Sigma \Sigma^{n-1}$ if n > 0
- Σ^* is the set of all finite length strings:

$$\Sigma^* = \bigcup_{n \geq 0} \Sigma^n$$

• Σ^+ is the set of all <u>nonempty</u> finite length strings:

$$\Sigma^+ = \bigcup_{n \ge 1} \ \Sigma^n$$

$$\Sigma^n$$
, Σ^* , and Σ^+

- $\bullet \mid \Sigma^n \mid = \mid \Sigma \mid^n$
- $|\mathcal{O}^n| = ?$
 - $\emptyset^0 = \{\varepsilon\}$

•
$$| \mathcal{O}^n | = 1$$
 if $n = 0$
 $| \mathcal{O}^n | = 0$ if $n > 0$

$$\Sigma^n$$
, Σ^* , and Σ^+

- $\bullet |\Sigma^*| = ?$
 - •Infinity. More precisely, ℵ₀
 - $\bullet |\Sigma^*| = |\Sigma^+| = |N| = \aleph_0$
- •How long is the longest string in Σ^* ? $\frac{1}{2}$ in $\frac{1}{2}$ in
- •How many infinitely long strings in Σ^* ? {none

Languages

Language

- <u>Definition</u>: A formal language L is a set of strings over some finite alphabet Σ or, equivalently, an arbitrary subset of Σ^* . Convention: Italic Upper case letters denote languages.
- Examples of languages :
 - the empty set Ø
 - the set $\{\varepsilon\}$,
 - the set {0,1}* of all boolean finite length strings.
 - the set of all strings in {0,1}* with an odd number of 1's.
 - The set of all python programs that print "Hello World!"
- There are uncountably many languages (but each language has countably many strings)

1	ε	0
2	0	0
3	1	1
4	00	0
5	01	1
6	10	1
7	11	0
8	000	0
9	001	1
10	010	1
11	011	0
12	100	1
13	101	0
14	110	0
15	111	1
16	1000	1
17	1001	0
18	1010	0
19	1011	1
20	1100	0

Much ado about nothing

- ε is a string containing no symbols. It is not a language.
- $\{\varepsilon\}$ is a language containing one string: the empty string ε . It is not a string.
- Ø is the empty language. It contains no strings.

- Languages can be manipulated like any other set.
- Set operations:
 - Union: $L_1 \cup L_2$
 - Intersection, difference, symmetric difference
 - Complement: $L^- = \Sigma^* \setminus L = \{ x \in \Sigma^* \mid x \notin L \}$
 - (Specific to sets of strings) concatenation: $L_1 \cdot L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$

Concatenation

• $L_1 \cdot L_2 = L_1 L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$ (we omit the bullet often)

e.g. L_1 = { fido, rover, spot }, L_2 = { fluffy, tabby } then L_1L_2 ={ fidofluffy, fidotabby, roverfluffy, ...}

$$|L_1L_2| = ?$$
6

$$L_1 = \{a,aa\}, L_2 = \emptyset$$

 $L_1L_2 = \emptyset$

$$L_1 = \{a,aa\}, L_2 = \{\epsilon\}$$

 $L_1L_2 = L_1$

• L^n inductively defined: $L^0 = \{\varepsilon\}, L^n = LL^{n-1}$ *Kleene Closure (star) L*

Definition 1: $L^* = U_{n \ge 0} L^n$, the set of all strings obtained by concatenating a sequence of zero or more stings from L

• L^n inductively defined: $L^0 = \{\varepsilon\}$, $L^n = LL^{n-1}$ **

Kleene Closure (star) L

Recursive Definition: L* is the set of strings w such that either

- $-w = \varepsilon \ or$
- $w=xy \quad for x in L and y in L*$

•
$$\{\epsilon\}^* = ? \quad \emptyset^* = ? \{\epsilon\}^* = \emptyset^* = \{\epsilon\}$$

- For any other L, the Kleene closure is infinite and contains arbitrarily long strings. It is the smaller superset of L that is closed under concatenation and contains the empty string.
- Kleene Plus

 $L^+ = LL^*$, set of all strings obtained by concatenating a sequence of at least one string from L.

-When is it equal to L^* ?

Regular Languages

Regular Languages

- The set of regular languages over some alphabet Σ is defined inductively by:
- L is empty
- L contains a single string (could be the empty string)
- If L_1 , L_2 are regular, then $L=L_1\cup L_2$ is regular
- If L_1 , L_2 are regular, then $L=L_1$ L_2 is regular
- If L is regular, then L^* is regular

Regular Languages Examples

- L = any finite set of strings. E.g., L = set of all strings of length at most 10
- L = the set of all strings of 0's including the empty string
- Intuitively *L* is regular if it can be constructed from individual strings using any combination of union, concatenation and unbounded repetition.

Regular Languages Examples

- Infinite sets, but of strings with "regular" patterns
 - Σ^* (recall: L^* is regular if L is)
 - $\Sigma^+ = \Sigma \Sigma^*$
 - All binary integers, starting with 1
 - $L = \{1\}\{0,1\}*$
 - All binary integers which are multiples of 37
 - later

- A compact notation to describe regular languages
- Omit braces around one-string sets, use + to denote union and juxtapose subexpressions to represent concatenation (without the dot, like we have been doing).
- Useful in
 - text search (editors, Unix/grep)
 - compilers: lexical analysis

- In arithmetic, we can use operations \times , + to build up expressions such as $(5+3)\times 4$
- Similarly, we can use regular operations to build up expressions describing languages, which are called regular expressions.
- E.g $(0 \cup 1)0^*$
- Value of arithmetic expression above is 32.
- Value of a regular expression is a language (which one?)

Inductive Definition

A regular expression r over alphabet Σ is one of the following (L(r) is the language it represents):

Atomic expressions (Base cases)		
Ø	$L(\emptyset) = \emptyset$	
w for w $\in \Sigma^*$	$L(w) = \{w\}$	

Inductively defined expressions		alt notation
(r_1+r_2)	$L(r_1+r_2) = L(r_1) U L(r_2)$	$(r_1 r_2)$ or $(r_1 \cup r_2)$
(r_1r_2)	$L(r_1r_2) = L(r_1)L(r_2)$	$(r_1 \cup r_2)$
(r^*)	$L(r^*) = L(r)^*$	

Any regular language has a regular expression and vice versa

- Can omit many parentheses
 - By following precedence rules:
 star (*) before concatenation (·), before union (+)
 (similar to arithmetic expressions)
 - e.g. $r*s + t \equiv ((r*)s) + t$
 - 10* is shorthand for $\{1\} \cdot \{0\}*$ and NOT $\{10\}*$
 - By associativity: $(r+s)+t \equiv r+s+t$, $(rs)t \equiv rst$
- More short-hand notation
 - e.g., $r^+ \equiv rr^*$ (note: + is in superscript)

Regular Expressions: Examples

- (0+1)*
 - All binary strings
- ((0+1)(0+1))*
 - All binary strings of even length
- (0+1)*001(0+1)*
 - All binary strings containing the substring 001
- 0* + (0*10*10*10*)*
 - All binary strings with #1s ≡ 0 mod 3
- $(01+1)*(0+\varepsilon)$
 - All binary strings without two consecutive 0s

Exercise: create regular expressions

 \bullet All binary strings with either the pattern 001 or the pattern 100 occurring somewhere

one answer:
$$(0+1)*001(0+1)* + (0+1)*100(0+1)*$$

• All binary strings with an even number of 1s

one answer: 0*(10*10*)*

Regular Expression Identities

- $r^*r^* = r^*$
- $\bullet (r^*)^* = r^*$
- $rr^* = r^*r$
- (rs)*r = r(sr)*
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = ...$

Equivalence

 Two regular expressions are equivalent if they describe the same language. eg.

•
$$(0+1)$$
* = $(1+0)$ * (why?)

 Almost every regular language can be represented by infinitely many distinct but equivalent regular expressions

•
$$(L \varnothing)*L\varepsilon+\varnothing = ?$$

Regular Expression Trees

- Useful to think of a regular expression as a tree. Nice visualization of the recursive nature of regular expressions.
- Formally, a regular expression tree is one of the following:
 - a leaf node labeled Ø
 - a leaf node labeled with a string
 - a node labeled + with two children, each of which is the root of a regular expression tree
 - a node labeled · with two children, each of which is the root of a regular expression tree
 - a node labeled * with one child, which is the root of a regular expression tree

A regular expression tree for 0 + 0*1(10*1 + 01*0)*10*

Not all languages are regular!

Are there Non-Regular Languages?

- Every regular expression over $\{0,1\}$ is itself a string over the 8-symbol alphabet $\{0,1,+,*,(,),\epsilon,\emptyset\}$.
- Interpret those symbols as digits 1 through 8. Every regular expression is a base-9 representation of a unique integer.
- Countably infinite!
- We saw (first few slides) there are uncountably many languages over {0,1}.
- In fact, the set of all regular expressions over the $\{0,1\}$ alphabet is a non-regular language over the alphabet $\{0,1,+,*,(,),\epsilon,\emptyset\}$!!