Languages and
 Regular expressions

Lecture 3

Alphabet, Strings, and Languages

- An alphabet $\Sigma=\{a, b, c\}$ is a finite set of letters/symbols.
- A string over an alphabet Σ is finite sequence of symbols, e.g.
- sequences $c a b, b a a$, and $a a a$ are some strings over $\Sigma=\{a, b, c\}$
- sequences $\epsilon, 0,1,00$, and 01 are some strings over $\Sigma=\{0,1\}$
- Σ^{*} is the set of all strings over Σ, e.g. aabbaa $\in \Sigma^{*}$,
- Naturally, A language L is a collection/set of strings over some alphabet, i.e. $L \subseteq \Sigma^{*}$ e.g.,
- $L_{\text {even }}=\left\{w \in \Sigma^{*}: w\right.$ is of even length $\}$
- $L_{\left\{a^{n} b^{n}\right\}}=\left\{w \in \Sigma^{*}: w\right.$ is of the form $a^{n} b^{n}$ for $\left.n \geq 0\right\}$

Sets of strings: Σ^{n}, Σ^{*}, and Σ^{+}

- Σ^{n} is the set of all strings over Σ of length exactly n. Defined inductively as:
- $\Sigma^{0}=\{\varepsilon\}$
- $\Sigma^{n}=\Sigma \Sigma^{n-1}$ if $n>0$
- Σ^{*} is the set of all finite length strings:

$$
\Sigma^{*}=U_{n \geq 0} \quad \Sigma^{n}
$$

- Σ^{+}is the set of all nonempty finite length strings:

$$
\Sigma^{+}=U_{n \geq 1} \Sigma^{n}
$$

Σ^{n}, Σ^{*}, and Σ^{+}

- $\left|\Sigma^{n}\right|=|\Sigma|^{n}$
- $\left|\emptyset^{n}\right|=$?
- $\emptyset^{0}=\{\varepsilon\}$
- $\emptyset^{n}=\emptyset \emptyset^{n-1}=\emptyset$ if $n>0$
- $\left|\emptyset^{n}\right|=1$ if $n=0$
$\left|\emptyset^{n}\right|=0$ if $n>0$

Σ^{n}, Σ^{*}, and Σ^{+}

$\cdot\left|\Sigma^{*}\right|=$?
-Infinity. More precisely, אo
$\bullet\left|\Sigma^{*}\right|=\left|\Sigma^{+}\right|=|N|=\aleph_{0}$
-How long is the longest string in Σ^{*} ? \{string!
-How many infinitely long strings in $\Sigma *$? none

Languages

Language

- Definition: A formal language L is a set of strings over some finite alphabet Σ or, equivalently, an arbitrary subset of Σ^{*}. Convention: Italic Upper case letters denote languages.
- Examples of languages :
- the empty set \varnothing
- the set $\{\varepsilon\}$,
- the set $\{0,1\}^{*}$ of all boolean finite length strings.
- the set of all strings in $\{0,1\}^{*}$ with an odd number of 1 's.
- The set of all python programs that print "Hello World!"
- There are uncountably many languages (but each language has countably many strings)

1	ε	0
2	0	0
3	1	1
4	00	0
5	01	$\mathbf{1}$
6	10	1
7	11	0
8	000	0
9	001	$\mathbf{1}$
10	010	$\mathbf{1}$
11	011	0
12	100	$\mathbf{1}$
13	101	0
14	110	0
15	111	$\mathbf{1}$
16	1000	$\mathbf{1}$
17	1001	0
18	1010	0
19	1011	$\mathbf{1}$
20	1100	0

Much ado about nothing

$-\varepsilon$ is a string containing no symbols. It is not a language.

- $\{\varepsilon\}$ is a language containing one string: the empty string ε. It is not a string.
- \emptyset is the empty language. It contains no strings.

Building Languages

- Languages can be manipulated like any other set.
- Set operations:
- Union: $L_{1} \cup L_{2}$
- Intersection, difference, symmetric difference
- Complement: $L^{-}=\Sigma^{*} \backslash L=\left\{x \in \Sigma^{*} \mid x \notin L\right\}$
-(Specific to sets of strings) concatenation: $L_{1} \cdot L_{2}=\{x y \mid$ $\left.x \in L_{1}, y \in L_{2}\right\}$

Concatenation

- $L_{1} \cdot L_{2}=L_{1} L_{2}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$ (we omit the bullet often)
e.g. $L_{1}=\{$ fido, rover, spot $\}, L_{2}=\{$ fluffy, tabby $\}$ then $L_{1} L_{2}=\{$ fidofluffy, fidotabby, roverfluffy, ...\}

$$
\begin{gathered}
L_{1}=\{\text { a, aa }\}, L_{2}=\emptyset \\
L_{1} L_{2}=\emptyset
\end{gathered}
$$

$$
\begin{gathered}
L_{1}=\{\mathrm{a}, \mathrm{aa}\}, L_{2}=\{\varepsilon\} \\
L_{1} L_{2}=L_{1}
\end{gathered}
$$

Building Languages

- L^{n} inductively defined: $L^{0}=\{\varepsilon\}, L^{n}=L L^{n-1}$ Kleene Closure (star) L^{*}

Definition 1: $L^{*}=U_{n \geq 0} L^{n}$, the set of all strings obtained by concatenating a sequence of zero or more stings from L

Building Languages

- L^{n} inductively defined: $L^{0}=\{\varepsilon\}, L^{n}=L L^{n-1}$

Kleene Closure (star) L^{*}

Recursive Definition: L^{*} is the set of strings w such that either
$-w=\varepsilon$ or
$-w=x y$ for x in L and y in L^{*}

Building Languages

- $\{\varepsilon\}^{*}=$? $\emptyset^{*}=?\left\{\{\varepsilon\}^{*}=\emptyset^{*}=\{\varepsilon\}\right.$
- For any other L , the Kleene closure is infinite and contains arbitrarily long strings. It is the smaller superset of L that is closed under concatenation and contains the empty string.
- Kleene Plus

$$
\begin{gathered}
L^{+}=L L^{*}, \text { set of all strings obtained by concatenating a } \\
\text { sequence of at least one string from } L . \\
-\quad-\text { When is it equal to } L^{*} ?
\end{gathered}
$$

Regular Languages

Regular Languages

- The set of regular languages over some alphabet Σ is defined inductively by:
- L is empty
- L contains a single string (could be the empty string)
- If L_{1}, L_{2} are regular, then $L=L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular, then $L=L_{1} L_{2}$ is regular
- If L is regular, then L^{*} is regular

Regular Languages Examples

- $L=$ any finite set of strings. E.g., $L=$ set of all strings of length at most 10
- $L=$ the set of all strings of 0 's including the empty string
- Intuitively L is regular if it can be constructed from individual strings using any combination of union, concatenation and unbounded repetition.

Regular Languages Examples

- Infinite sets, but of strings with "regular" patterns
- Σ^{*} (recall: L^{*} is regular if L is)
- $\Sigma^{+}=\Sigma \Sigma^{*}$
- All binary integers, starting with 1
- $L=\{1\}\{0,1\}^{*}$
- All binary integers which are multiples of 37
- later

Regular Expressions

Regular Expressions

- A compact notation to describe regular languages
- Omit braces around one-string sets, use + to denote union and juxtapose subexpressions to represent concatenation (without the dot, like we have been doing).
- Useful in
- text search (editors, Unix/grep)
- compilers: lexical analysis

Regular Expressions

- In arithmetic, we can use operations $\times,+$ to build up expressions such as $(5+3) \times 4$
- Similarly, we can use regular operations to build up expressions describing languages, which are called regular expressions.
- E.g (0 U 1) 0^{*}
- Value of arithmetic expression above is 32.
- Value of a regular expression is a language (which one?)

Inductive Definition

A regular expression r over alphabet Σ is one of the following $(\mathrm{L}(r)$ is the language it represents):

Atomic expressions (Base cases)

$$
\begin{array}{c|c}
\varnothing & L(\emptyset)=\varnothing \\
\hline w \text { for } w \in \Sigma^{*} & L(w)=\{w\}
\end{array}
$$

Inductively defined expressions

$$
\begin{array}{c|c}
\hline\left(r_{1}+r_{2}\right) & \mathrm{L}\left(r_{1}+r_{2}\right)=\mathrm{L}\left(r_{1}\right) \cup\left\llcorner\left(r_{2}\right.\right. \\
\left(r_{1} r_{2}\right) & \mathrm{L}\left(r_{1} r_{2}\right)=\mathrm{L}\left(r_{1}\right) \mathrm{L}\left(r_{2}\right)
\end{array}
$$

alt notation

$$
\left(r_{1} \mid r_{2}\right) \text { or }
$$

$$
\left(r_{1} \cup r_{2}\right)
$$

Any regular language has a regular expression and vice versa

Regular Expressions

- Can omit many parentheses
- By following precedence rules : star (*) before concatenation (•), before union (+) (similar to arithmetic expressions)
- e.g. $r^{*} s+t \equiv\left(\left(r^{*}\right) s\right)+t$
- $10 *$ is shorthand for $\{1\} \cdot\{0\}^{*}$ and NOT $\{10\}^{*}$
- By associativity: $(r+s)+t \equiv r+s+t,(r s) t \equiv r s t$
- More short-hand notation
- e.g., $r^{+} \equiv r r^{*}$ (note: ${ }^{+}$is in superscript)

Regular Expressions: Examples

- $(0+1)^{*}$
- All binary strings
- $((0+1)(0+1))^{*}$
- All binary strings of even length
- $(0+1) * 001(0+1) *$
- All binary strings containing the substring 001
- $0^{*}+\left(0^{*} 10^{*} 10 * 10^{*}\right)^{*}$
- All binary strings with $\# 1 \mathrm{~s} \equiv 0 \bmod 3$
- $(01+1) *(0+\varepsilon)$
- All binary strings without two consecutive Os

Exercise: create regular expressions

- All binary strings with either the pattern 001 or the pattern 100 occurring somewhere
one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- All binary strings with an even number of 1s
one answer: $0 *\left(10^{*} 10^{*}\right)^{*}$

Regular Expression Identities

- $r^{*} r^{*}=r^{*}$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} S^{*}\right)^{*}=\left(r^{*}+S^{*}\right)^{*}=\left(r+S^{*}\right)^{*}=\ldots$

Equivalence

- Two regular expressions are equivalent if they describe the same language. eg.
- $(0+1)^{*}=(1+0)^{*}($ why? $)$
- Almost every regular language can be represented by infinitely many distinct but equivalent regular expressions
$\cdot(\mathrm{L} \emptyset) * \mathrm{~L} \varepsilon+\varnothing=?$

Regular Expression Trees

- Useful to think of a regular expression as a tree. Nice visualization of the recursive nature of regular expressions.
- Formally, a regular expression tree is one of the following:
- a leaf node labeled \varnothing
- a leaf node labeled with a string
- a node labeled + with two children, each of which is the root of a regular expression tree
- a node labeled • with two children, each of which is the root of a regular expression tree
- a node labeled ${ }^{*}$ with one child, which is the root of a regular expression tree

A regular expression tree for $0+0^{*} 1\left(10^{*} 1+01^{*} 0\right)^{*} 10^{*}$

Not all languages are regular!

Are there Non-Regular Languages?

- Every regular expression over $\{0,1\}$ is itself a string over the 8 -symbol alphabet $\left\{0,1,+,{ }^{*},(),, \varepsilon, \emptyset\right\}$.
- Interpret those symbols as digits 1 through 8. Every regular expression is a base-9 representation of a unique integer.
- Countably infinite!
- We saw (first few slides) there are uncountably many languages over $\{0,1\}$.
- In fact, the set of all regular expressions over the $\{0,1\}$ alphabet is a non-regular language over the alphabet $\left\{0,1,+,{ }^{*},(),, \varepsilon, \varnothing\right\}!!$

