
Deutsch’s problem
revisited!

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Come see us!

� Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE
124.

� Matteo Wilczak: Wednesday, 1-2pm,
DUANG2B90 (physics help room)

Email
� Email is not a very good way to get your

technical questions answered.
� We *try* to respond to emails, but can’t

guarantee a quick and thorough response.
Most questions require interaction to clarify
where your understanding is and how to
best answer your question.

� The best way to get your questions
answered is to come to one of the 7 hours
of contact time we have scheduled each
week.

Come see us!

� Alexandra Kolla/Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE
124.

� Matteo Wilczak: Wednesday, 1-2pm,
DUANG2B90 (physics help room)

Last class:
Vectors, bras, kets, tensor products of
vectors, tensor product of matrices

Today: Deutsch’s algorithm!

The setup: classical

� Both	input	and	output	registers	contain	
one	bit.	

� Functions	f	that	take	one	bit	to	one	bit

Ufx f(x)

1 bit 1 bit

The setup: quantum

Uf

!
1

bi
t

1
bi

t" 1 bit
1 bit

!

"⨁$(!)

The setup, in quantum

Uf
!

"
!
"⨁$(!)

'$(

'$)

'$*

'$+

=

=

=

=

$ 0 $(1)

0 0

0 1

1 0

1 1

X

X

The setup, in quantum

• Uf is one of 4 possibly functions (table).
• We are given a black box that calculates one of

the 4 f ’s by performing
!" # ⨂ % = # ⨂ %⨁((#)

� We are guaranteed that the black box performs
one of the four computations, but we are not told
which one.

� We are allowed to use the box only once, what
can we learn about f?

Uf

1
bi

t
1

bi
t

% 1 bit
1 bit

#

%⨁((#)

The setup, in quantum

• Deutsch’s problem
We want to learn if f is constant (f(0)=f(1),
satisfied by f0 and f3) or not, with one
application of black box.

Uf

" 1
bi

t
1

bi
t

1 bit
1 bit

"

#⨁%(")

Classically

• We want to learn if f is constant (f(0)=f(1),
satisfied by f0 and f3) or not, with one
application of black box.

• With	a	classical	computer,	we	can	either	
learn	the	value	f(0)	or	f(1),	so	we	can	
learn	whether	the	function	is	one	of	(f0,	f1)	
with	f(0)=0	or	(f2,	f3)	with	f(0)=1.

• A	classical	computer	needs two	queries	to	
Uf to	determine	if	it	is	constant	or	not!

The setup, in quantum

• With a quantum computer we can do
better! Without learning any information
about the values of f(0) or f(1), we can
determine with one application of the
black box if f is constant or not.

Uf

! 1
bi

t
1

bi
t

" 1 bit
1 bit

!

"⨁$(!)

Who cares?
� Well, maybe an alien ship arrived on earth

and gave us one day to decide whether
some complicated function is balanced or
constant. They will vaporize us if we give
the wrong answer!

� Even worse, it takes 23 hrs for us to
compute the function! We can only
evaluate it once before ZAP!

� Therefore, a quantum computer could
save the world.

Just one query
Attempt 1: Superposition

�We	could	try	preparing	the	input	register	in	
superposition	of	0	and	1.

U8(H⨂ <)(0 ⨂ 0)= >
√@ 0 A(0) + >

√@ 1 A(1)

We can measure, and get either 0, f(0) or 1, f(1)
but no improvement over classical

U"(H⊗ &)(0 ⨂ 0)

Just one query
Attempt 1: Superposition

�We	could	try	preparing	the	input	register	in	
superposition	of	0	and	1.

U8(H⨂ <)(0 ⨂ 0)= >
√@ 0 A(0) + >

√@ 1 A(1)

We can measure, and get either 0, f(0) or 1, f(1)
but no improvement over classical

Attempt 1: Superposition
�We	could	try	preparing	the	input	register	in	
superposition	of	0	and	1.

U8(H⨂1)(0 ⨂ 0)= =
√? 0 @(0) + =

√? 1 @(1)

We can measure, and get either 0, f(0) or 1, f(1)
but no improvement over classical

Just one query
Attempt 2: Superposition |+>|+>

�We	can	pre	and	post	process	the	state	to	yield	
what	we	want

U3(H⨂7)(9⨂9)(0 ⨂ 0)

Superposition ++
�We	can	pre	and	post	process	the	state	to	yield	
what	we	want

(H⨂5)(7⨂7)(0 ⨂ 0)=(H⨂5)(1 ⨂ 1)=
(:√< 0 -

:
√< 1) (

:
√< 0 -

:
√< 1)

=:< (0 0 - 1 0 - 0 1 + 1 1)

Apply Uf

�We	can	pre	and	post	process	the	state	to	yield	
what	we	want
U3 H⨂6 7⨂7 0 ⨂ 0
= 9: U3(0 0 - 1 0 - 0 1 + 1 1)

=9: (=> 0 0 - U3 1 0 - U3 0 1 + U3 1 1)

= 9
: (0 ?(0) - 1 ?(1) - 0 1⨁?(0)

+ 1 1⨁?(1))

Apply Uf

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is

0 "(0) - 1 "(0) - 0 1⨁"(0) + 1 1⨁"(0)
= (0 − 1) " 0 − (0 − 1) 1⨁"(0)
= (0 − 1)(" 0 − 1⨁"(0))

Apply Uf

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0)≠f(1), f 1 = 1⨁"(0)
output state is
0 "(0) - 1 1⨁"(0) - 0 1⨁"(0) + 1 "(0)

= (0 + 1) " 0 − (0 + 1) 1⨁"(0)
= (0 + 1)(" 0 − 1⨁"(0))

Apply Uf

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is
(0 − 1)(" 0 − 1⨁"(0))

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

Apply Uf

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is
(0 − 1)(" 0 − 1⨁"(0))

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

� Apply	H	to	the	*input	register*

Apply Uf

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is
(0 − 1)(" 0 − 1⨁"(0))

After applying H:
(H⨂1)(0 − 1)(" 0 − 1⨁"(0))
= 1 (" 0 − 1⨁"(0))

� Apply	H	to	the	*input	register*

Finally
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

After applying H:
(H⨂1)(0 + 1)(" 0 − 1⨁"(0))
= 0 (" 0 − 1⨁"(0))

� Measure	the	*input	register*	t	decide	if	f	is	constant
(get	 1),	or	not	(get	 0),	

Uncertainty principle
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

After applying H:
(H⨂1)(0 + 1)(" 0 − 1⨁"(0))
= 0 (" 0 − 1⨁"(0))

� However,	we	learn	nothing	about	output,	since	it	
is	in	uniform	superposition	of	both	values!

The whole operation
� (H⨂1)U' H⨂()⨂) 0 ⨂ 0 =

� Either 1 ,
√. (/ 0 − 1⨁/ 0), f(0) = f(1)

� Or 0 ,
√. (/ 0 − 1⨁/ 0), f(0) ≠ f(1)

� Instead of querying the values of
/ 0 , /(1) algorithm queries the XOR
f(0)⨁/ 1

Deutsch problem

� Fine, but who really cares? This is basically a
quantum computing parlor trick. I don’t care
about saving myself one query!

� The idea----querying in superposition and
putting the answer into the input register---
is much broader and more powerful.

� There is a straight line from Deutsch’s
problem to Shor’s factoring algorithm. We’re
going to follow it.

Monday: Bernstein Vazirani

� We’ll see a different function (one bit
output, but on more input bits) where
you get an even bigger advantage by
querying in superposition.

� Please read 2.2-2.4

