
Deutsch’s Problem

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Homework

� HW 1 is out, due next Monday at noon.

Come see us!

� Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE
124.

Last Class

� Unitary circuits, input and output
registers

� Quantum Parallelism
� No cloning
� Uncertainty principle

Today

� Deutsch’s problem
� Simplest example of quantum tradeoff

that sacrifices particular information to
get relational information.

� First “Quantum supremacy” result

Inner Product test
Assume	 ' ,) ,	 * ,	 + are	arbitrary	vectors.	
What	is	the	inner	product		(' ⨂ * ,) ⨂ +) ?

A) 0 B) ⟨) ' A ⟨* +

C) ⟨) + A ⟨' * D)⟨) * A ⟨' +

Is this it for Quantum?

� We can be more clever, apply more
unitaries to the qubits before or after
applying Uf.

� We can learn something about the
relations between different values of f(x).

� We lose the information of f(x)
� This tradeoff of information is typical of

physics: Uncertainty principle.

The setup

� Both	input	and	output	registers	contain	
one	bit.	

� Functions	f	that	take	one	bit	to	one	bit
� Two	different	ways	to	think	about	such	f.

Ufx f(x)

1 bit 1 bit

The setup, in quantum

Uf

!
1

bi
t

1
bi

t" 1 bit
1 bit

!

"⨁$(!)

How many functions?
Howmany different functions f:	 0,1 6 → 0,1 are	there that take
input n bits and output one bit

A) 2 B) 26

C) 2=> D)2×26

The setup, in quantum

Uf
!

"
!
"⨁$(!)

'$(

'$)

'$*

'$+

=

=

=

=

$ 0 $(1)

0 0

0 1

1 0

1 1

X

X

The setup, in quantum

• Uf is one of 4 possibly functions (table).
• We are given a black box that calculates one of

the 4 f ’s by performing
!" # ⨂ % = # ⨂ %⨁((#)

� We are guaranteed that the black box performs
one of the four computations, but we are not told
which one.

� We are allowed to use the box only once, what
can we learn about f?

Uf

1
bi

t
1

bi
t

% 1 bit
1 bit

#

%⨁((#)

The setup, in quantum

Uf
!

"
!
"⨁$(!)

'$(=

$ 0 $(1)

0 1

f(x) =x
(CNOT)

The setup, in quantum

Uf
!

"
!
"⨁$(!)

'$(=

$ 0 $(1)

1 0
X

f(x) =NOT(x)

The setup, in quantum

Uf
!

"
!
"⨁$(!)

'$(=

$ 0 $(1)

1 1

X

f(x) =1

The setup, in quantum

• Deutsch’s problem
We want to learn if f is constant (f(0)=f(1),
satisfied by f0 and f3) or not, with one
application of black box.

Uf

" 1
bi

t
1

bi
t

1 bit
1 bit

"

#⨁%(")

Classically

• We want to learn if f is constant (f(0)=f(1),
satisfied by f0 and f3) or not, with one
application of black box.

• With	a	classical	computer,	we	can	either	
learn	the	value	f(0)	or	f(1),	so	we	can	
learn	whether	the	function	is	one	of	(f0,	f1)	
with	f(0)=0	or	(f2,	f3)	with	f(0)=1.

• A	classical	computer	needs two	queries	to	
Uf to	determine	if	it	is	constant	or	not!

The setup, in quantum

• With a quantum computer we can do
better! Without learning any information
about the values of f(0) or f(1), we can
determine with one application of the
black box if f is constant or not.

Uf

! 1
bi

t
1

bi
t

" 1 bit
1 bit

!

"⨁$(!)

More on Deutsch’s problem

� Second way to look at Deutsch’s problem, which
gives it nontrivial mathematical content.

� One can think of x as specifying a choice of two
different inputs to an elaborate subroutine that
requires many additional Qbits, and one can think
of f (x) as characterizing a two-valued property of
the output of that subroutine.

� For example f (x) might be the value of the
millionth bit in the binary expansion of √(2 + x)
so that f (0) is the millionth bit in the expansion
of 2 while f (1) is the millionth bit of √3.

� In this case the input register feeds data into the
subroutine and the subroutine reports back to
the output register.

More on Deutsch’s problem
� In the course of the calculation the input and output

registers will in general become entangled with the
additional Qbits used by the subroutine.

� If the entanglement persists to the end of the
calculation, the input and output registers will have no
final states of their own, and it will be impossible to
describe the computational process as the simple
unitary transformation we saw earlier.

� We shall see next lecture however, that it is possible to
set things up so that at the end of the computation the
additional Qbits required for the subroutine are no
longer entangled with the input and output registers, so
that the additional Qbits can indeed be ignored.

More on Deutsch’s problem
� The simple linear transformation then correctly

characterizes the net effect of the computation on
those two registers.

� Under interpretation (1) of Deutsch’s problem,
answering the question of whether f is or is not
constant amounts to learning something about the
nature of the black box that executes Uf without
actually opening it up and looking inside.

� Under interpretation (2) it becomes the nontrivial
question of whether the millionth bits of √2 and √3
agree or disagree. Under either interpretation, to
answer the question with a classical computer we can
do no better than to run the black box twice, with both
0 and 1 as inputs, and compare the two outputs.

Attempt 1: Superposition
�We	could	try	preparing	the	input	register	in	
superposition	of	0	and	1.

U8(H⨂1)(0 ⨂ 0)= =
√? 0 @(0) + =

√? 1 @(1)

We can measure, and get either 0, f(0) or 1, f(1)
but no improvement over classical

Attempt 2: Superposition ++

�We	can	pre	and	post	process	the	state	to	yield	
what	we	want

U3(H⨂7)(9⨂9)(0 ⨂ 0)

Superposition ++
�We	can	pre	and	post	process	the	state	to	yield	
what	we	want

(H⨂5)(7⨂7)(0 ⨂ 0)=(H⨂5)(1 ⨂ 1)=
(:√< 0 -

:
√< 1) (

:
√< 0 -

:
√< 1)

=:< (0 0 - 1 0 - 0 1 + 1 1)

The Trick
�We	can	pre	and	post	process	the	state	to	yield	
what	we	want
U3(H⨂7)(9⨂9)(0 ⨂ 0)
=;< (=> 0 0 - U3 1 0 - U3 0 1 + U3 1 1)
= ;
< (0 @(0) - 1 @(1) - 0 1⨁@(0)
+ 1 1⨁@(1))

The Trick

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is

0 "(0) - 1 "(0) - 0 1⨁"(0) + 1 1⨁"(0)
= (0 − 1) " 0 − (0 − 1) 1⨁"(0)
= (0 − 1)(" 0 − 1⨁"(0))

The Trick

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0)≠f(1), f 1 = 1⨁"(0)
output state is
0 "(0) - 1 1⨁"(0) - 0 1⨁"(0) + 1 "(0)

= (0 + 1) " 0 − (0 + 1) 1⨁"(0)
= (0 + 1)(" 0 − 1⨁"(0))

The Trick

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is
(0 − 1)(" 0 − 1⨁"(0))

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

The Trick
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is
(0 − 1)(" 0 − 1⨁"(0))

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

� Apply	H	to	the	*input	register*

The Trick
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is
(0 − 1)(" 0 − 1⨁"(0))

After applying H:
(H⨂1)(0 − 1)(" 0 − 1⨁"(0))
= 1 (" 0 − 1⨁"(0))

� Apply	H	to	the	*input	register*

Finally
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

After applying H:
(H⨂1)(0 + 1)(" 0 − 1⨁"(0))
= 0 (" 0 − 1⨁"(0))

� Measure	the	*input	register*	t	decide	if	f	is	constant
(get	 1),	or	not	(get	 0),	

Uncertainty principle
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0) ≠ f(1), output state is
(0 + 1)(" 0 − 1⨁"(0))

After applying H:
(H⨂1)(0 + 1)(" 0 − 1⨁"(0))
= 0 (" 0 − 1⨁"(0))

� However,	we	learn	nothing	about	output,	since	it	
is	in	uniform	superposition	of	both	values!

The whole operation
� (H⨂1)U' H⨂()⨂) 0 ⨂ 0 =

� Either 1 ,
√. (/ 0 − 1⨁/ 0), f(0) = f(1)

� Or 0 ,
√. (/ 0 − 1⨁/ 0), f(0) ≠ f(1)

� Instead of querying the values of
/ 0 , /(1) algorithm queries the XOR
f(0)⨁/ 1

M

MH!

"#

"$

