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Homework 

� HW 1 is out, due next Monday at noon.



Come see us!

� Alexandra Kolla/ Graeme Smith: Friday 
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm, 
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE 
124.



Last Class

� Unitary circuits, input and output 
registers

� Quantum Parallelism
� No cloning
� Uncertainty principle 



Today

� Deutsch’s problem
� Simplest example of quantum tradeoff 

that sacrifices particular information to 
get relational information.

� First “Quantum supremacy” result



Inner Product test
Assume	 ' , ) ,	 * ,	 + are	arbitrary	vectors.	
What	is	the	inner	product		( ' ⨂ * , ) ⨂ + ) ?

A) 0 B) ⟨) ' A ⟨* +

C) ⟨) + A ⟨' * D)⟨) * A ⟨' +



Is this it for Quantum? 

� We can be more clever, apply more 
unitaries to the qubits before or after 
applying Uf. 

� We can learn something about the 
relations between different values of f(x).

� We lose the information of f(x)
� This tradeoff of information is typical of 

physics: Uncertainty principle.



The setup

� Both	input	and	output	registers	contain	
one	bit.	

� Functions	f	that	take	one	bit	to	one	bit
� Two	different	ways	to	think	about	such	f.

Ufx f(x)

1 bit 1 bit



The setup, in quantum
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How many functions?
Howmany different functions f:	 0,1 6 → 0,1 are	there that take
input n bits and output one bit

A) 2 B) 26

C) 2=> D)2×26



The setup, in quantum
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The setup, in quantum

• Uf is one of 4 possibly functions (table). 
• We are given a black box that calculates one of 

the 4 f ’s by performing 
!" # ⨂ % = # ⨂ %⨁((#)

� We are guaranteed that the black box performs 
one of the four computations, but we are not told 
which one.

� We are allowed to use the box only once, what 
can we learn about f?
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The setup, in quantum

Uf
!

"
!
"⨁$(!)

'$( =

$ 0 $(1)

0 1

f(x) =x 
(CNOT)



The setup, in quantum
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The setup, in quantum
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The setup, in quantum

• Deutsch’s problem
We want to learn if f is constant (f(0)=f(1), 
satisfied by f0 and f3) or not, with one 
application of black box.
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Classically

• We want to learn if f is constant (f(0)=f(1), 
satisfied by f0 and f3) or not, with one 
application of black box.

• With	a	classical	computer,	we	can	either	
learn	the	value	f(0)	or	f(1),	so	we	can	
learn	whether	the	function	is	one	of	(f0,	f1)	
with	f(0)=0	or	(f2,	f3)	with	f(0)=1.

• A	classical	computer	needs two	queries	to	
Uf to	determine	if	it	is	constant	or	not!



The setup, in quantum

• With a quantum computer we can do 
better! Without learning any information 
about the values of f(0) or f(1), we can 
determine with one application of the 
black box if f is constant or not. 
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More on Deutsch’s problem

� Second way to look at Deutsch’s problem, which 
gives it nontrivial mathematical content. 

� One can think of x as specifying a choice of two 
different inputs to an elaborate subroutine that 
requires many additional Qbits, and one can think 
of f (x) as characterizing a two-valued property of 
the output of that subroutine. 

� For example f (x) might be the value of the 
millionth bit in the binary expansion of √(2 + x) 
so that f (0) is the millionth bit in the expansion 
of 2 while f (1) is the millionth bit of √3.

� In this case the input register feeds data into the 
subroutine and the subroutine reports back to 
the output register.



More on Deutsch’s problem
� In the course of the calculation the input and output 

registers will in general become entangled with the 
additional Qbits used by the subroutine.

� If the entanglement persists to the end of the 
calculation, the input and output registers will have no 
final states of their own, and it will be impossible to 
describe the computational process as the simple 
unitary transformation we saw earlier.

� We shall see  next lecture however, that it is possible to 
set things up so that at the end of the computation the 
additional Qbits required for the subroutine are no 
longer entangled with the input and output registers, so 
that the additional Qbits can indeed be ignored.



More on Deutsch’s problem
� The simple linear transformation then correctly 

characterizes the net effect of the computation on 
those two registers.

� Under interpretation (1) of Deutsch’s problem, 
answering the question of whether f is or is not 
constant amounts to learning something about the 
nature of the black box that executes Uf without 
actually opening it up and looking inside. 

� Under interpretation (2) it becomes the nontrivial 
question of whether the millionth bits of √2 and √3 
agree or disagree. Under either interpretation, to 
answer the question with a classical computer we can 
do no better than to run the black box twice, with both 
0 and 1 as inputs, and compare the two outputs.



Attempt 1: Superposition
�We	could	try	preparing	the	input	register	in	
superposition	of	0	and	1.

U8(H⨂1)( 0 ⨂ 0 )= =
√? 0 @(0) + =

√? 1 @(1)

We can measure, and get either 0, f(0) or 1, f(1) 
but no improvement over classical 



Attempt 2: Superposition ++

�We	can	pre	and	post	process	the	state	to	yield	
what	we	want

U3(H⨂7)(9⨂9)( 0 ⨂ 0 )



Superposition ++
�We	can	pre	and	post	process	the	state	to	yield	
what	we	want

(H⨂5)(7⨂7)( 0 ⨂ 0 )=(H⨂5)( 1 ⨂ 1 )=
( :√< 0 -

:
√< 1 ) (

:
√< 0 -

:
√< 1 )

=:< ( 0 0 - 1 0 - 0 1 + 1 1 )



The Trick
�We	can	pre	and	post	process	the	state	to	yield	
what	we	want
U3(H⨂7)(9⨂9)( 0 ⨂ 0 )
=;< (=> 0 0 - U3 1 0 - U3 0 1 + U3 1 1 )
= ;
< ( 0 @(0) - 1 @(1) - 0 1⨁@(0)
+ 1 1⨁@(1) )



The Trick

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is

0 "(0) - 1 "(0) - 0 1⨁"(0) + 1 1⨁"(0)
= ( 0 − 1 ) " 0 − ( 0 − 1 ) 1⨁"(0)
= ( 0 − 1 )( " 0 − 1⨁"(0) )



The Trick

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0)≠f(1), f 1 = 1⨁"(0)
output state is
0 "(0) - 1 1⨁"(0) - 0 1⨁"(0) + 1 "(0)

= ( 0 + 1 ) " 0 − ( 0 + 1 ) 1⨁"(0)
= ( 0 + 1 )( " 0 − 1⨁"(0) )



The Trick

0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is 
( 0 − 1 )( " 0 − 1⨁"(0) )

� Case 2: f(0) ≠ f(1), output state is 
( 0 + 1 )( " 0 − 1⨁"(0) )



The Trick
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is 
( 0 − 1 )( " 0 − 1⨁"(0) )

� Case 2: f(0) ≠ f(1), output state is 
( 0 + 1 )( " 0 − 1⨁"(0) )

� Apply	H	to	the	*input	register*



The Trick
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 1: f(0)=f(1), output state is 
( 0 − 1 )( " 0 − 1⨁"(0) )

After applying H: 
(H⨂1)( 0 − 1 )( " 0 − 1⨁"(0) )
= 1 ( " 0 − 1⨁"(0) )

� Apply	H	to	the	*input	register*



Finally
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0) ≠ f(1), output state is 
( 0 + 1 )( " 0 − 1⨁"(0) )

After applying H: 
(H⨂1)( 0 + 1 )( " 0 − 1⨁"(0) )
= 0 ( " 0 − 1⨁"(0) )

� Measure	the	*input	register*	t	decide	if	f	is	constant
(get	 1 ),	or	not	(get	 0 ),	



Uncertainty principle 
0 "(0) - 1 "(1) - 0 1⨁"(0) + 1 1⨁"(1)

� Case 2: f(0) ≠ f(1), output state is 
( 0 + 1 )( " 0 − 1⨁"(0) )

After applying H: 
(H⨂1)( 0 + 1 )( " 0 − 1⨁"(0) )
= 0 ( " 0 − 1⨁"(0) )

� However,	we	learn	nothing	about	output,	since	it	
is	in	uniform	superposition	of	both	values!



The whole operation
� (H⨂1)U' H⨂( )⨂) 0 ⨂ 0 =

� Either 1 ,
√. ( / 0 − 1⨁/ 0 ), f(0) = f(1)

� Or 0 ,
√. ( / 0 − 1⨁/ 0 ), f(0) ≠ f(1)

� Instead of querying the values of 
/ 0 , /(1) algorithm queries the XOR 
f(0)⨁/ 1
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