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HOW'S YOUR
QUANTUM COMPUTER
PROTOTYPE COMING

ALONG?

GREAT!
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THE PROJECT EXISTS
IN A STMULTANEOUS
STATE OF BEING BOTH
TOTALLY SUCCESSFUL
AND NOT EVEN
STARTED.

CANTI THATS
OBSERVE A TRICKY
1Te QUESTION.
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Homework

* HW | is out, due next Monday at noon.

* HW 0 solutions are posted



Come see us!

* Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

* Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

* Steven Kordonowy:Th | lam-12pm, ECAE
124,



Last Class

» Gates and measurements on multiple
qubit systems

e Examples of one and two qubit gates and
what they can do

« CNOT, CNOT, CNOT



Today

e More on tensor Products
e More on unitary evolution
e Superposition

* No cloning



Tensor Test

100 0
o1 0 ol ,_ 11 1

CNOT=5 ¢ o 1'H‘ﬁ[1 —1]
00 1 0

What is the dimension of the matrix CNOT & H?

A) 6x6 B)8x8

C)4x4 D)l16x16



Today

* Computers act on number x to produce
another number f(x).

* Treat these numbers as non-negative
integers less than 2% for some k.

e Each integer is represented in the
computer as a k bit-string.



Today

e Quantum computer acts on number x to
produce another number f(x).

* Treat these numbers as non-negative
integers less than 2% for some k.

e Each integer is represented in the
quantum computer with the
corresponding computational-basis state
of k Qubits.



The general quantum
computational process

n bits m bits

f(x)

Is this reversible?



The general quantum
computational process
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Even though qubits are scarce resource, having separate
registers for input and output is standard practice in
reversible computation.



The general quantum
computational process
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We define the transformation U; as a reversible transformation
(unitary), taking computational basis states into computational
basis states, and extend by linearity.



The general quantum
computational process
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The general quantum
computational process
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Utlx)n®lyim = [0)nly®f (X))m

e.g:11016p0111= 1010, bitwise XOR



The general quantum
computational process
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Regardless of initial value of y, the input register remains in
its initial state |x)



XOR test

If x and y are two arbitrary n-bit strings, what is x@x®y @y

A) The n bit string x B)The n bit string y

C)The n bit stringx @ y D) the n bit string with all 0



The general quantum
computational process

U is invertible, in fact it is its own inverse!

UtUel 2 |yIm = Uplx)nly®f (x))m
= [X)nly®f (O)Of (X))m = [X)n|y)m

This inspires the most important trick of
quantum computation: If we apply H to
each qubit in the 2-Qubit state |0)|0) we
get a uniform superposition of
everything!



The general quantum

computational process
Hl®H|0>@1>I0> = (I;II0>)(H10>) =
(100 + (10 +5110) 5

==>(100) +[01) + [10) + [ 11))

Generalizes to n-fold tensor product of n Hadamards

1
H®™ |0)" = W20<x52"|x>n

o H®"=H ®H... ®H, n times



The general quantum
computational process

e If we then apply U to that
superposition, with 0 in the output
register, we get by linearity

U (H®" @ 1) 100510} = = Bocrsan Up (1205 10n)=

1
)., [lf @

o<x<2n




Quantum Parallelism

e Is this a miracle!?
* We get all possible evaluations of f.

» For even 100 qubits, there are 2'%a
billion billion trillion evaluations.

 This magic is called Quantum
Parallelism



Quantum Parallelism

* We cannot say that the result of the
calculation is all 2" evaluations of f.

* No way to find out what the state is
unless we measure

* In which case the state collapses in
one value!!



Quantum Parallelism

* When we measure the input register, with equal
probability, we get any of the values of x.

* When we measure the output register, we get
the value f(x) for that x.

* So the result is learning a single value of f, as
well as a signle random x,, at which f has that
value.

» State collapses to |xy)|f (xg))

e Nothing more we could learn, could have done
this with a classical computer, choosing a
random value of x and evaluating f



Quantum Parallelism

e Quantum “weirdness’’: the selection
of the random x for which f(x) was
learned is only made after(!!) the
computation has been carried out.
Quite possibly long after

* No practical difference though.



No cloning

* If we could copy the output register,
then we could learn values of f(x) for
many random values of x with one
computation.

* No cloning for quantum!

* No cloning also for approximate
state



No Cloning Theorem

“There is no unitary transformation U
that takes the state |y),,|0),, into

|V) | V), for arbitrary y!”

Proof is immediate consequence of
linearity.



Linearity test

If |y) and |x) are qubits and U is a unitary such that

U(ly)[0)) = |y)y)and U([x)[0}) = [x}|x),
what is U((a|y) + b|x))|0))?

A) aly)|0) + blx)|0) B) aly)|y) + blx)|x)

C) (aly)y) + blx}|x))|0) D) (aly) + blx))(aly) + b|x))



No Cloning Theorem

“There is no unitary transformation U
that takes the state |y),,|0),, into

|V) | V), for arbitrary y!”

It follows from linearity that
U((aly) + blx))]0)) = aU(|y)|0)) +
bU(|x)|0)) = a|y}y) + blx)|x)



No Cloning Theorem

“There is no unitary transformationU
that takes the state |y),,|0),, into

|V) | V), for arbitrary y!”

But if U cloned arbitrary inputs,
U((aly) + blx))|0)) = (aly) + blx))
(aly) + blx)= a*|y)|y) + b*|x)|x) +
ably)|x) + ablx)|y)



No Cloning Theorem

By linearity:
U((aly) + b|x))|0))
= aU(|y}[0)) + bU(|x)[0))

= aly)|y) + blx)|x)
If U cloned arbitrary inputs:

U((aly) + blx))|0)) = (aly) + b|x))
(aly) + blx))=
a%|y)y) + b*|x)|x) + ably)|x) + ab|x)|y)

Only possible if one of a, b is zero!
Meaning | can only copy classical bits (duh!)




No Approximate Cloning Theorem

The ability to clone to a reasonable

degree of approximation would also be
useful. But this is also impossible.

Suppose U approximately cloned |y), |x)
U(yON~ Iy y), U([x}0)~]x)|x)




Inner Product test

Assume |y), |x), |w), |k) are arbitrary vectors.
What is the inner product (|y)®|w), |x)®|k)) ?

A) 0 B) (xly) - (wlk)

C) {xlk) - {ylw) D)(x|w) - (ylk)



No Approximate Cloning Theorem

The ability to clone to a reasonable degree of
approximation would also be useful. But this is
also impossible.

Suppose U approximately cloned |y), |x)

U 0)~[y)y), U(lx)|0)~[x)|x)

Since U preserves inner products, and
(0|0)=1, we would have {(x|y)~ {(x|y)?.

This requires (x|y) to be either close to 1 or 0.
So this can work only if the two states are very
close together or very close to orthogonal.



Is this it for Quantum!?

* We can be more clever, apply more
unitaries to the qubits before or after

applying U;
* We can learn something about the
relations between different values of f(x).

* We lose the information of f(x)

* This tradeoff of information is typical of
physics: Uncertainty principle.



Summary:

» Reversible Computation of functions
* Uniform superposition of everything

* How much information is in a quantum
state!

* No cloning

* Uncertainty principle



Reading

* We have finished Chapter 2.1
* Please read 2.2-2.4 for Friday



