The General Computational Process

PHYS/CSCI 3090

Prof. Alexandra Kolla

<u>Alexandra.Kolla@Colorado.edu</u> ECES 122 Prof. Graeme Smith

<u>Graeme.Smith@Colorado.edu</u> JILA S₃₂6

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Today

Homework

- HW I is out, due next Monday at noon.
- HW 0 solutions are posted

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X317.
- Ariel Shlosberg: Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy: Th 11am-12pm, ECAE 124.

Last Class

- Gates and measurements on multiple qubit systems
- Examples of one and two qubit gates and what they can do
- CNOT, CNOT, CNOT

Today

- More on tensor Products
- More on unitary evolution
- Superposition
- No cloning

Tensor Test

$$\mathsf{CNOT} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \ \mathsf{H} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

What is the dimension of the matrix CNOT \otimes H?

A) 6x6 B)8x8

C)4x4 D)16x16

Today

- Computers act on number x to produce another number f(x).
- Treat these numbers as non-negative integers less than 2^k for some k.
- Each integer is represented in the computer as a k bit-string.

Today

- Quantum computer acts on number x to produce another number f(x).
- Treat these numbers as non-negative integers less than 2^k for some k.
- Each integer is represented in the quantum computer with the corresponding computational-basis state of k Qubits.

Is this reversible?

Even though qubits are scarce resource, having separate registers for input and output is standard practice in reversible computation.

We define the transformation U_f as a reversible transformation (unitary), taking computational basis states into computational basis states, and extend by linearity.

 $U_{\rm f}|x\rangle_n \otimes |y\rangle_m = |x\rangle_n |y \oplus f(x)\rangle_m$

e.g: $1101 \oplus 0111 = 1010$, bitwise XOR

$$U_{f}|x\rangle_{n}\otimes|0\rangle_{m} = |x\rangle_{n}|f(x)\rangle_{m}$$

Regardless of initial value of y, the input register remains in its initial state $|x\rangle$

If x and y are two arbitrary n-bit strings, what is $x \oplus x \oplus y \oplus y$

A) The n bit string x

B)The n bit string y

C)The n bit string $x \oplus y$

D) the n bit string with all 0

 U_f is invertible, in fact it is its own inverse!

$$U_{f}U_{f}|x\rangle_{n}|y\rangle_{m} = U_{f}|x\rangle_{n}|y\oplus f(x)\rangle_{m}$$
$$= |x\rangle_{n}|y\oplus f(x)\oplus f(x)\rangle_{m} = |x\rangle_{n}|y\rangle_{m}$$

This inspires the most important trick of quantum computation: If we apply H to each qubit in the 2-Qubit state $|0\rangle|0\rangle$ we get a uniform superposition of everything!

$$H \otimes H |0\rangle \otimes |0\rangle = (H|0\rangle)(H|0\rangle) =$$
$$= \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) =$$
$$= \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$$

Generalizes to n-fold tensor product of n Hadamards

$$H^{\otimes n} |0\rangle^n = \frac{1}{2^{n/2}} \sum_{0 < x \le 2^n} |x\rangle_n$$

• $H^{\otimes n}$ =H \otimes H... \otimes H, n times

 If we then apply U_f to that superposition, with 0 in the output register, we get by linearity

$$U_f(H^{\otimes n} \otimes 1_m) |0\rangle_n |0\rangle_m = \frac{1}{2^{n/2}} \sum_{0 < x \le 2^n} U_f(|x\rangle_n |0\rangle_m) = \frac{1}{2^{n/2}} \sum_{0 < x \le 2^n} |x\rangle_n |f(x)\rangle_m$$

- Is this a miracle?
- We get all possible evaluations of f.
- For even 100 qubits, there are 2¹⁰⁰, a billion billion trillion evaluations.
- This magic is called Quantum Parallelism

• We cannot say that the result of the calculation is all 2ⁿ evaluations of f.

- No way to find out what the state is unless we measure
- In which case the state collapses in one value!!

- When we measure the input register, with equal probability, we get any of the values of x.
- When we measure the output register, we get the value f(x) for that x.
- So the result is learning a single value of f, as well as a signle random x₀, at which f has that value.
- State collapses to $|x_0\rangle|f(x_0)\rangle$
- Nothing more we could learn, could have done this with a classical computer, choosing a random value of x and evaluating f

- Quantum "weirdness": the selection of the random x for which f(x) was learned is only made after(!!) the computation has been carried out. Quite possibly long after
- No practical difference though.

No cloning

- If we could copy the output register, then we could learn values of f(x) for many random values of x with one computation.
- No cloning for quantum!
- No cloning also for approximate state

"There is no unitary transformation U that takes the state $|y\rangle_n |0\rangle_n$ into $|y\rangle_n |y\rangle_n$ for arbitrary y!"

Proof is immediate consequence of linearity.

Linearity test

If $|y\rangle$ and $|x\rangle$ are qubits and U is a unitary such that $U(|y\rangle|0\rangle) = |y\rangle|y\rangle$ and $U(|x\rangle|0\rangle) = |x\rangle|x\rangle$, what is $U((a|y\rangle + b|x\rangle)|0\rangle)$?

A) $a|y\rangle|0\rangle + b|x\rangle|0\rangle$

B) $a|y\rangle|y\rangle + b|x\rangle|x\rangle$

C) $(a|y\rangle|y\rangle + b|x\rangle|x\rangle)|0\rangle$

D) $(a|y\rangle + b|x\rangle)(a|y\rangle + b|x\rangle)$

"There is no unitary transformation U that takes the state $|y\rangle_n |0\rangle_n$ into $|y\rangle_n |y\rangle_n$ for arbitrary y!"

It follows from linearity that $U((a|y\rangle + b|x\rangle)|0\rangle) = aU(|y\rangle|0\rangle) + bU(|x\rangle|0\rangle) = a|y\rangle|y\rangle + b|x\rangle|x\rangle$

"There is no unitary transformation that takes the state $|y\rangle_n |0\rangle_n$ into $|y\rangle_n |y\rangle_n$ for arbitrary y!"

But if U cloned arbitrary inputs, $U((a|y\rangle + b|x\rangle)|0\rangle) = (a|y\rangle + b|x\rangle)$ $(a|y\rangle + b|x\rangle) = a^{2}|y\rangle|y\rangle + b^{2}|x\rangle|x\rangle + ab|y\rangle|x\rangle + ab|x\rangle|y\rangle$

By linearity: $U((a|y\rangle + b|x\rangle)|0\rangle)$ $= aU(|y\rangle|0\rangle) + bU(|x\rangle|0\rangle)$ $= a|y\rangle|y\rangle + b|x\rangle|x\rangle$

If U cloned arbitrary inputs:

 $U((a|y\rangle + b|x\rangle)|0\rangle) = (a|y\rangle + b|x\rangle)$ $(a|y\rangle + b|x\rangle) =$ $a^{2}|y\rangle|y\rangle + b^{2}|x\rangle|x\rangle + ab|y\rangle|x\rangle + ab|x\rangle|y\rangle$

Only possible if one of a, b is zero! Meaning I can only copy classical bits (duh!)

No Approximate Cloning Theorem

The ability to clone to a reasonable degree of approximation would also be useful. But this is also impossible.

Suppose U approximately cloned $|y\rangle$, $|x\rangle$ $U(|y\rangle|0\rangle) \sim |y\rangle|y\rangle$, $U(|x\rangle|0\rangle \sim |x\rangle|x\rangle$

Inner Product test

Assume $|y\rangle$, $|x\rangle$, $|w\rangle$, $|k\rangle$ are arbitrary vectors. What is the inner product $(|y\rangle \otimes |w\rangle, |x\rangle \otimes |k\rangle)$?

A) 0 B)
$$\langle x|y \rangle \cdot \langle w|k$$

C) $\langle x|k \rangle \cdot \langle y|w \rangle$ D) $\langle x|w \rangle \cdot \langle y|k \rangle$

No Approximate Cloning Theorem

The ability to clone to a reasonable degree of approximation would also be useful. But this is also impossible.

Suppose U approximately cloned $|y\rangle$, $|x\rangle$ $U(|y\rangle|0\rangle) \sim |y\rangle|y\rangle$, $U(|x\rangle|0\rangle \sim |x\rangle|x\rangle$ Since U preserves inner products, and $\langle 0|0\rangle = 1$, we would have $\langle x|y\rangle \sim \langle x|y\rangle^2$.

This requires $\langle x | y \rangle$ to be either close to 1 or 0. So this can work only if the two states are very close together or very close to orthogonal.

Is this it for Quantum?

- We can be more clever, apply more unitaries to the qubits before or after applying U_{f.}
- We can learn something about the relations between different values of f(x).
- We lose the information of f(x)
- This tradeoff of information is typical of physics: Uncertainty principle.

Summary:

- Reversible Computation of functions
- Uniform superposition of everything
- How much information is in a quantum state?
- No cloning
- Uncertainty principle

Reading

- We have finished Chapter 2.1
- Please read 2.2-2.4 for Friday