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Today



Homework 

� HW 1 is out, due next Monday at noon.

� HW 0 solutions are posted



Come see us!

� Alexandra Kolla/ Graeme Smith: Friday 
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm, 
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE 
124.



Last Class

� Gates and measurements on multiple 
qubit systems 

� Examples of one and two qubit gates and 
what they can do

� CNOT, CNOT, CNOT



Today

� More on tensor Products
� More on unitary evolution
� Superposition
� No cloning



Tensor Test

CNOT=

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

,	H	=	 '(
1 1
1 −1

What is the dimension of the matrix CNOT ⊗ H? 

A) 6x6 B)8x8 

C)4x4 D)16x16



Today

� Computers act on number x to produce 
another number f(x).

� Treat these numbers as non-negative 
integers less than 2k for some k.

� Each integer is represented in the 
computer as a k bit-string.



Today

� Quantum computer acts on number x to 
produce another number f(x).

� Treat these numbers as non-negative 
integers less than 2k for some k.

� Each integer is represented in the 
quantum computer with the 
corresponding computational-basis state 
of k Qubits.



The general quantum 
computational process

Uf
x f(x)

n bits m bits

Is this reversible? 



The general quantum 
computational process

Uf

Even though qubits are scarce resource, having separate 
registers for input and output is standard practice in
reversible computation.
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The general quantum 
computational process

Uf

We define the transformation Uf as a reversible transformation
(unitary), taking computational basis states into computational 
basis states, and extend by linearity.
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The general quantum 
computational process

Uf
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The general quantum 
computational process

Uf
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y

m
 bits

n bits

x

U" # $⨂ & ' = # $ &⨁*(#) '

y⨁*(#)

e.g: 1101⨁0111= 1010, bitwise XOR



The general quantum 
computational process

Uf
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U" # $⨂ 0 ' = # $ )(#) '

)(#)

Regardless of initial value of y, the input register remains in 
its initial state #



XOR test
If x and y are two arbitrary n-bit strings, what is	x⨁x⨁y ⨁y	

A) The	n	bit	string	x B)The n bit string y

C)The n bit string x ⨁ y D) the n bit string with all 0



The general quantum 
computational process

This	inspires	the	most	important	trick	of	
quantum	computation:	If	we	apply	H	to	
each	qubit	in	the	2-Qubit	state	| ⟩0 | ⟩0 we	
get	a	uniform	superposition	of	
everything!

UDUD E F G H = JK E F G⨁M(E) H
= E F G⨁M(E)⨁M(E) H= E F G H

Uf is invertible, in fact it is its own inverse!



The general quantum 
computational process

� !⨂#=H ⨂H… ⨂H, n times

H⨂H 0 ⨂ 0 = ! 0 ! 0 =
=( '

( 0 + '
( 1 )(

'
( 0 + '

( 1 ) =
= '
( ( 00 + 01 + 10 + 11 )

Generalizes to n-fold tensor product of n Hadamards

!⨂# 0 # = '
(-// ∑1234(- 5 #



The general quantum 
computational process

� If	we	then	apply	Uf to	that	
superposition,	with	0	in	the	output	
register,	we	get	by	linearity

78(:⨂<⨂1>) 0 < 0 > = A
BC/E

∑GHIJBC 78( K < 0 >)=
1
2</B

M
GHIJBC

K < N(K) >



Quantum Parallelism

� Is this a miracle?
� We get all possible evaluations of f.
� For even 100 qubits, there are 2100,a 

billion billion trillion evaluations. 
� This magic is called Quantum 

Parallelism



Quantum Parallelism

� We cannot say that the result of the 
calculation is all 2n evaluations of f.

� No way to find out what the state is 
unless we measure

� In which case the state collapses in 
one value!!



Quantum Parallelism
� When we measure the input register, with equal 

probability, we get any of the values of x.
� When we measure the output register, we get 

the value f(x) for that x. 
� So the result is learning a single value of f, as 

well as a signle random x0, at which f has that 
value.

� State collapses to !" # !"
� Nothing more we could learn, could have done 

this with a classical computer, choosing a 
random value of x and evaluating f



Quantum Parallelism

� Quantum “weirdness”: the selection 
of the random x for which f(x) was 
learned is only made after(!!) the 
computation has been carried out. 
Quite possibly long after

� No practical difference though.



No cloning

� If we could copy the output register, 
then we could learn values of f(x) for 
many random values of x with one 
computation. 

� No cloning for quantum!
� No cloning also for approximate 

state



No Cloning Theorem

“There is no unitary transformation U 
that takes the state ! " 0 " into 
! " ! " for arbitrary y!”

Proof is immediate consequence of 
linearity.



Linearity test
If	 $ %&' ( are	qubits	and	U	is	a	unitary	such	that	
U( $ 0 ) = $ $ and U( ( 0 ) = ( ( ,	
what	is	U( a $ + ? ( 0 )?

A) a $ 0 + ? ( 0 B) a $ $ + ? ( (

C) a $ $ + ? ( ( 0 D) (a $ + ? ( )(a $ + ? ( )



No Cloning Theorem

“There is no unitary transformation U 
that takes the state ! " 0 " into 
! " ! " for arbitrary y!”

It follows from linearity that 
U a ! + ' ( 0 = aU ! 0 +
'* ( 0 = a ! ! + ' ( (



No Cloning Theorem

“There is no unitary transformationU
that takes the state ! " 0 " into 
! " ! " for arbitrary y!”

But if U cloned arbitrary inputs, 
U a ! + ' ( 0 = a ! + ' (
a ! + ' ( = a* ! ! + '* ( ( +
ab ! ( + ,' ( !



No Cloning Theorem
By linearity: 

U a # + % & 0
= aU # 0 + %) & 0
= a # # + % & &

If U cloned arbitrary inputs:
U a # + % & 0 = a # + % &
a # + % & =

a* # # + %* & & + ab # & + ,% & #
Only possible if one of a, b is zero! 
Meaning I can only copy classical bits (duh!) 



No Approximate Cloning Theorem

The ability to clone to a reasonable 
degree of approximation would also be 
useful. But this is also impossible. 
Suppose U approximately cloned ! , "

U ! 0 ~ ! ! ,	U( " 0 ~ " "



Inner Product test
Assume	 ' , ) ,	 * ,	 + are	arbitrary	vectors.	
What	is	the	inner	product		( ' ⨂ * , ) ⨂ + ) ?

A) 0 B) ⟨) ' A ⟨* +

C) ⟨) + A ⟨' * D)⟨) * A ⟨' +



No Approximate Cloning Theorem
The ability to clone to a reasonable degree of 
approximation would also be useful. But this is 
also impossible. 
Suppose U approximately cloned ! , "

U ! 0 ~ ! ! ,	U( " 0 ~ " "
Since U preserves inner products, and	
⟨0 0 =1,	we	would	have	⟨" ! ~ ⟨" ! =.

This requires ⟨" ! to	be	either	close	to	1	or	0.	
So	this	can	work	only	if	the	two	states	are	very	
close	together	or	very	close	to	orthogonal.	



Is this it for Quantum? 

� We can be more clever, apply more 
unitaries to the qubits before or after 
applying Uf. 

� We can learn something about the 
relations between different values of f(x).

� We lose the information of f(x)
� This tradeoff of information is typical of 

physics: Uncertainty principle.



Summary: 

� Reversible Computation of functions
� Uniform superposition of everything
� How much information is in a quantum 

state?
� No cloning
� Uncertainty principle



Reading

� We have finished Chapter 2.1
� Please read 2.2-2.4 for Friday


