# Introduction To Quantum Computing 

## PHYS/CSCl 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

## Homework

- Please note that all 4 questions are required.


## Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X3I7.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy:Th I Iam-I2pm, ECAE 124.


## Last class

- Two bit gates
- Quantum bits (qubits)
- a qubit is a system that obeys Axioms

States
Dynamics
Measurements

## Today

We will talk more about gates and measurements on multiple qubit systems.

We'll look at more examples of one and two qubit gates and what they can do. This will be useful for studying computation.

## Axioms of Quantum Theory

Axiom I (states)
The state of a quantum system is a complex unit vector:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle, \quad|\alpha|^{2}+|\beta|^{2}=1
$$

2-dimensional vector: qubit d-dimensional vector: qudit

## Axioms of Quantum Theory

Axiom 2 (dynamics)

The evolution of a closed system is described by a unitary matrix $U^{t} U=I$, where $U^{t}$ is the conjugate transpose


## Axioms of Quantum Theory

## Axiom 3 (Measurements)

Can "measure" a system in any basis for its state space. If you measure

$$
|\psi\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle
$$

in the basis $\{|0\rangle,|1\rangle\}$, you get an outcome " $x$ " with probability $\left|\alpha_{x}\right|^{2}$.

Furthermore, the state of the system "collapses" to $|x\rangle$.
"Born rule"

## Axioms of Quantum Theory

Axiom 4 (Composite Systems) If
A has a state in $\operatorname{span}(|a\rangle), a=1 \ldots d_{a}$

B has a state in $\operatorname{span}(|b\rangle), \mathrm{b}=1 \ldots d_{b}$

AB has a state in $\operatorname{span}(|a\rangle \otimes|b\rangle)$

## Tensor products

$$
\begin{aligned}
& \left|\psi_{A}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right] \\
& \left|\phi_{B}\right\rangle=\beta_{0}|0\rangle+\beta_{1}|1\rangle=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
\left|\psi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle= \\
\alpha_{0} \beta_{0}|0\rangle \otimes|0\rangle+\alpha_{0} \beta_{1}|0\rangle \otimes|1\rangle+\alpha_{1} \beta_{0}|1\rangle \otimes|0\rangle+\alpha_{1} \beta_{1}|1\rangle \otimes|1\rangle \\
=\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle \\
{\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right] \otimes\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{l}
\alpha_{0} \beta_{0} \\
\alpha_{0} \beta_{1} \\
\alpha_{1} \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right]}
\end{gathered}
$$

## Tensor products

$$
\begin{aligned}
& \left|\psi_{A}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right] \\
& \left|\phi_{B}\right\rangle=\beta_{0}|0\rangle+\beta_{1}|1\rangle=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right] \otimes\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]=\left[\begin{array}{c|c}
\alpha_{0} \beta_{0} \\
\alpha_{0} & \beta_{1} \\
\alpha_{1} & \beta_{0} \\
\alpha_{1} \beta_{1}
\end{array}\right] \begin{aligned}
& \text { Anoctor } \\
& \text { veptor } 2 \text { nd } \\
& \text { Copy or 2nd } \\
& \text { vector }
\end{aligned}
$$

## Tensor products

$$
\begin{aligned}
& \left|\psi_{A}\right\rangle=\alpha_{0}|0\rangle+\alpha_{1}|1\rangle=\left[\begin{array}{l}
\alpha_{0} \\
\alpha_{1}
\end{array}\right] \\
& \left|\phi_{B}\right\rangle=\beta_{0}|0\rangle+\beta_{1}|1\rangle=\left[\begin{array}{l}
\beta_{0} \\
\beta_{1}
\end{array}\right]
\end{aligned}
$$

First entry


## Concept test: tensor products

$$
|\psi\rangle=|+\rangle \otimes|0\rangle
$$

(Recall $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ )
What is $|\psi\rangle$ written as a vector?
A) $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right]$
В) $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right]$
C) $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$
D)
$\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$

## Concept test: tensor products

$$
|\psi\rangle=|+\rangle \otimes|0\rangle
$$

(Recall $|+\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle$ )
What is $|\psi\rangle$ written as a vector?
A) $\left[\begin{array}{l}\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right] \quad$ B) $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \\ 0\end{array}\right] \quad$ C) $\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right] \quad$ D) $\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right]$


$$
\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
0 \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]
$$

## Axioms

States
Dynamics
Measurements
Composite Systems

# What if I want to measure one qubit but not the other? 



Is there a rule/axiom to cover this?
Let's fix up axiom 3 to include this kind of thing.

## n qubit state

Any state on n qubits can be written as

$$
|\psi\rangle=\alpha_{0}|0\rangle \otimes\left|\psi_{0}\right\rangle+\alpha_{1}|1\rangle \otimes\left|\psi_{1}\right\rangle,
$$

where $\left|\psi_{i}\right\rangle$ are n -I qubit states and

$$
\left|\alpha_{0}\right|^{2}+\left|\alpha_{1}\right|^{2}=1
$$

## Axiom 3' partial measurement

You can "measure" the first qubit of the $n$ qubit state

$$
|\psi\rangle=\alpha_{0}|0\rangle \otimes\left|\psi_{0}\right\rangle+\alpha_{1}|1\rangle \otimes\left|\psi_{1}\right\rangle,
$$

in the $\{|0\rangle,|1\rangle\}$ basis.
You get " $x$ " with probability $\left|\alpha_{x}\right|^{2}$ and getting $x$ "collapses" the state into

$$
|x\rangle \otimes\left|\psi_{x}\right\rangle
$$

"Genearlized Born rule" or "Born rule"

## So what happens here:



## Arbitrary one qubit states

- Given a state $|\psi\rangle$, there is always a unitary $U$ such that $|\psi\rangle=U|0\rangle$
- So, you can prepare any one qubit state by starting with $|0\rangle$ and applying a unitary.


## Arbitary Two qubit States

Using one qubit gates is not enough to prepare an arbitrary two qubit state

$$
|\psi\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle .
$$

To see this, note that

$$
\begin{aligned}
& U|0\rangle \otimes V|0\rangle=\left(\alpha_{0}|0\rangle+\alpha_{1}|1\rangle\right) \otimes\left(\beta_{0}|0\rangle+\beta_{1}|1\rangle\right) \\
& =\alpha_{0} \beta_{0}|00\rangle+\alpha_{0} \beta_{1}|01\rangle+\alpha_{1} \beta_{0}|10\rangle+\alpha_{1} \beta_{1}|11\rangle,
\end{aligned}
$$

So for such a state $\frac{\alpha_{00}}{\alpha_{01}}=\frac{\alpha_{10}}{\alpha_{11}}=\frac{\beta_{0}}{\beta_{1}}$, which is not true in genearl

## Arbitrary two qubit state: one CNOT suffices

Let's figure out how to make
$|\sigma\rangle=\alpha_{00}|00\rangle+\alpha_{01}|01\rangle+\alpha_{10}|10\rangle+\alpha_{11}|11\rangle$
with one qubit unitaries and a single CNOT
First, note that

$$
|\sigma\rangle=|0\rangle \otimes|\psi\rangle+|1\rangle \otimes|\phi\rangle
$$

with $|\psi\rangle=\alpha_{00}|0\rangle+\alpha_{01}|1\rangle$ and $|\phi\rangle=\alpha_{10}|0\rangle+\alpha_{11}|1\rangle$.

Now, apply $U \otimes I$ with
$U|0\rangle=a|0\rangle+b|1\rangle$ and $U|1\rangle=-b^{*}|0\rangle+a^{*}|1\rangle$ to get

$$
U \otimes I|\sigma\rangle=|0\rangle \otimes|\psi\rangle+|0\rangle \otimes|\phi\rangle
$$

$$
\begin{gathered}
|\sigma\rangle=|0\rangle \otimes|\psi\rangle+|1\rangle \otimes|\phi\rangle \\
U \otimes I|\sigma\rangle=(a|0\rangle+b|1\rangle) \otimes|\psi\rangle+\left(-b^{*}|0\rangle+a^{*}|1\rangle\right) \otimes|\phi\rangle \\
=|0\rangle \otimes\left|\psi^{\prime}\right\rangle+|1\rangle \otimes\left|\phi^{\prime}\right\rangle
\end{gathered}
$$

Where $\left|\psi^{\prime}\right\rangle=a|\psi\rangle-b^{*}|\phi\rangle$ and $\left|\phi^{\prime}\right\rangle=b|\psi\rangle+a^{*}|\phi\rangle$.
We'll choose $a$ and $b$ so that $\left|\psi^{\prime}\right\rangle$ and $\left|\phi^{\prime}\right\rangle$ are orthogonal.

$$
0=\left\langle\phi^{\prime} \mid \psi^{\prime}\right\rangle=a^{2}\langle\phi \mid \psi\rangle-b^{* 2}\langle\psi \mid \phi\rangle+a b^{*}(\langle\psi \mid \psi\rangle-\langle\phi \mid \phi\rangle)
$$

if $\langle\phi \mid \psi\rangle=0$, they're already orthogonal so $\mathrm{U}=\mathrm{I}$. If not, this gives a quadratic equation for $\frac{a}{b^{*}}$ which we can solve for $a$ and $b$

Now we have a U such that
$U \otimes I|\sigma\rangle=|0\rangle \otimes\left|\psi^{\prime}\right\rangle+|1\rangle \otimes\left|\phi^{\prime}\right\rangle$ and $\left\langle\phi^{\prime} \mid \psi^{\prime}\right\rangle=0$
$\left|\psi^{\prime}\right\rangle$ and $\left|\phi^{\prime}\right\rangle$ are not properly normalized yet, but we can find real numbers $\mu$ and $\lambda$ so that $\left|\psi^{\prime \prime}\right\rangle=\frac{\left|\psi^{\prime}\right\rangle}{\lambda}$ and $\left|\phi^{\prime \prime}\right\rangle=\frac{\left|\phi^{\prime}\right\rangle}{\mu}$ are orthogonal unit vectors. Letting V be a unitary with
$\left|\psi^{\prime \prime}\right\rangle=V|0\rangle$ and $\left|\phi^{\prime \prime}\right\rangle=V|1\rangle$ we therefore have

$$
\begin{gathered}
|\sigma\rangle=\left(U^{\dagger} \otimes V\right)(\lambda|0\rangle \otimes|0\rangle+\mu|1\rangle \otimes|1\rangle) \\
=\left(U^{\dagger} \otimes V\right) \operatorname{CNOT}([\lambda|0\rangle+\mu|1\rangle] \otimes|0\rangle) \\
=\left(U^{\dagger} \otimes V\right) \operatorname{CNOT}([W|0\rangle] \otimes|0\rangle)
\end{gathered}
$$

So, we can make an arbitrary two qubit state from |0才's, one-qubit unitaries, and a single CNOT

More on CNOT
$|x\rangle$
$|y\rangle$

$|x\rangle$
$|y\rangle$

???

## More on CNOT



## CNOTs concept test



What gate is this?

## CNOTs concept test

State here is
$|x \oplus(x \oplus y)\rangle|x \oplus y\rangle=|y\rangle|x \oplus y\rangle$


## CNOTs concept test



## CNOTs concept test


$=$


## Summary:Axioms

States
Dynamics
Measurements
Composite Systems

## Summary:

- Tensor products
- I qubit unitaries plus I CNOT can prepare arbitrary 2 qubit state
- You NEED the CNOT
- CNOTS can combine in interesting ways.


## Reading

- We have finished Chapter I
- Please read 2.I-2.4 forWednesday (Monday is MLK day)

