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Come see us!

* Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, over zoom.

* Ariel Shlosberg: Tu/Th 2:00-4:00pm, over

Z00Mm

» Steven Kordonowy: Th | lam-12pm, over
zoom.

» Matteo Wilczak: Wednesday, |-2pm,
over zoom.



Today

» Take home final coming up later
today/early tomorrow.



Classical Complexity

 P: is a class of languages L € (o, 1)+,
decidable by a poly time deterministic

Turing Machine. +
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a class of languages L € (o, 1)*,
decidable by a poly time non-
deterministic Turing Machine. Also, class
of languages with short certificates.



Characterization of NP |
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L isan NP language if there is a poly time
algorithmV(.,.) and a polynomial p s.t.
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NP

e The class NP (non-deterministic polynomial time)
contains many thousand of the most important
computational problems.

e Of these problems, the vast majority are NP-
complete. This means that these are the hardest
problems in NP.

e By this we mean that, if anyone of them can be
solved by a polynomial time algorithm, then every
problem in NP can be solved by a polynomial
time algorithm. The cornerstone of this theory of
NP-completeness 1s the Cook-Levin theorem,
which states that 3-SAT 1s NP-complete.



Prover /Verifier view of NP
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Prover/verifier characterization of
NP

e Lisan NP language if there is a prover P
and a poly time verifier (algorithm) V(.,.)
D s.t.

X€ L = P has strategy to convince V.
x¢& L =P has no strategy to convince V.

 Strategy means the certificate of proof is
polynomially small.



Example: 3SAT

» 3SAT (Satisfiability) definition:

* Input is a formula ¢ in 3-CNF form.

*Eg ¢ = (x1VX3 VXy00) A (X7 VX5V
X10) - (X5 VX1 VX3) ...

* Each clause has three literals, and the
formula is the “AND” of the clauses

: oo - Co
* Q: when is the formula satisfied?d) 'f;”hzf%\e;
d?‘: C\I\C'LI\-...{\CW\



Example: 3SAT

» 3SAT (Satisfiability) definition:

* Input is a formula ¢ in 3-CNF form.

*Eg ¢ = (x1VX3 VXy00) A (X7 VX5V
X10) - (X5 VX1 VX3) ...

* Each clause has three literals, and the
formula is the “AND” of the clauses

e Q: Show that 3SAT is in NP



Example: 3SAT

» 3SAT (Satisfiability) definition:

* Input is a formula ¢ in 3-CNF form.

*Eg ¢ = (x1VX3 VXy00) A (X7 VX5V
X10) - (X5 VX1 VX3) ...

* Each clause has three literals, and the
formula is the “AND” of the clauses

e Intuitively: 3SAT is NP-""hard”
P(\joi Mee ¥ d\\‘——?QSS“\”\e o> '3M
P ~WN Vati e\ )

Fwp? O T



Proof system for 3SAT
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NP + interaction

e Theorem. NP+interaction =NP
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NP + randomness

* Definition. L is in MA if there exists a
probabilistic polynomial time machine V
such that: 3 J

4

x€ L = 3y Pr{V(x,y) accepts] =
x¢ L = VyPr[V(x,y) accepts] <

\

* It is conjectured that MA=NP. ©
O mone O P2 wA

e Definition. NP+randomness =MA



Hamiltonians

Recall that one postulate of quantum mechanics is that the
evolution of a closed quantum system is characterized by a
unitary transformation. That is, the state |¢) of the system at
time t; is related to the state |¢’) of the system at time t,
by a unitary operation U which depends only on time t4, t

|¢) = Ulg)

“Todaywe introduce a more refined version of this postulate,

which describes the evolution of a quantum system in
continuous time. |t is stated as follows:

The time evolution of a state of a closed quantum system is
described by Shro dinger’s equation:

H is afixed Hermitian operator known as the Hamiltonian of
the system. In specific, for an n-qubit system, its Hamiltonian
His a 2™ x2™ Hermitian matrix, i.e. H = Hf.



Hamiltonians

* Suppose H has a spectral decomposition
J71EI

with eigenvalues Aj’s and corresponding

eigenvectors |ej)’s.

* The states |ej)’s are conventionally referred

to as energy eigenstates, or stationary
states, and Aj is the energy of the state |gj).

e The lowest energy is known as the ground
state energy for the system, and the

corresponding energy eigenstate is known as
the ground state.
MEAv2 .
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Hamiltonians

*H=3,;%le)
* Now suppose that at time t = 0 the initial
state of the system is [¢(0)) = ‘e]-).

* Then a little calculus tells us that, at any

time t, the system’s state is given by
b (1)) =(g 14 tz‘e )SSO this explains why
e j ) are also called stationary states: their

only change in time is to acquires an
overall numerical factor.
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* Generally, suppose th/[t at time t = 0 the
initial state is |p(0)) = 2, i4; |e-> then at
any time t the state of the system is given

vy | (t))= U(t)|¢(0)> 2; “@
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e Where U(t) = e~ Ht = Y g4t ‘9j>(9j|



Local Hamiltonians

* Not all Hamiltonians can be easily
implemented.

e The realistic Hamiltonians are local
Hamiltonians.

* They are the Hamiltonian that can be
written as a sum over many local
Interactions.



Local Hamiltonians

» Specifically, suppose for a system of n
particles H = ) H;, where each Hj acts on at

most a constant ¢ number of particles (i.e. Hj
= Aj @ | for some c-particle operator Aj).

e Then we say that H is c-local.

 Such locality is quite physically reasonable,
and originates in many systems from the fact
that most interactions fall off with increasing
distance of difference in energy.

* Local Hamiltonians and quantum circuits can
(approximately) simulate each other with
polynomial over- head.




