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Come see us!

� Alexandra Kolla/ Graeme Smith: Friday 
3:00-4:00 pm, over zoom.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm, over 
zoom

� Steven Kordonowy: Th 11am-12pm, over 
zoom.

� Matteo Wilczak: Wednesday, 1-2pm, 
over zoom.



Today

� Take home final coming up later 
today/early tomorrow.



Classical Complexity

� P: is a class of languages L ⊆ (0, 1)∗, 
decidable by a poly time deterministic 
Turing Machine.

� NP: is a class of languages L ⊆ (0, 1)∗, 
decidable by a poly time non-
deterministic Turing Machine. Also, class 
of languages with short certificates.



Characterization of NP

� L is an NP language if there is a poly time 
algorithm V(.,.) and a polynomial p s.t.
x∈ L ⇔
∃%, |y|≤p(|x|) ()* + ,, % (--./01

� Alternatively,
x∈ L ⇒ ∃%, |y|≤p(|x|) ()* + ,, % (--./01
x∉ L ⇒ ∀%, |y|≤p(|x|) + ,, % 5.6.-01
Completeness and soundness resp.



NP
� The class NP (non-deterministic polynomial time) 

contains many thousand of the most important 
computational problems. 

� Of these problems, the vast majority are NP-
complete. This means that these are the hardest 
problems in NP. 

� By this we mean that, if anyone of them can be 
solved by a polynomial time algorithm, then every 
problem in NP can be solved by a polynomial 
time algorithm. The cornerstone of this theory of 
NP-completeness is the Cook-Levin theorem, 
which states that 3-SAT is NP-complete. 



Prover /Verifier view of NP



Prover/verifier characterization of 
NP
� L is an NP language if there is a prover P 

and a poly time verifier (algorithm) V(.,.) 
p s.t.

x∈ L ⇒ P has strategy to convince V. 
x∉ L ⇒P has no strategy to convince V.

� Strategy means the certificate of proof is 
polynomially small.



Example: 3SAT

� 3SAT (Satisfiability) definition:
� Input is a formula ! in 3-CNF form.
� E.g. ! = ($%∨ $' ∨ $%(() ∧ ($% ∨ $+ ∨
$%()… ($+ ∨ $% ∨ $-)…

� Each clause has three literals, and the 
formula is the “AND” of the clauses

� Q: when is the formula satisfied? 



Example: 3SAT

� 3SAT (Satisfiability) definition:
� Input is a formula ! in 3-CNF form.
� E.g. ! = ($%∨ $' ∨ $%(() ∧ ($% ∨ $+ ∨
$%()… ($+ ∨ $% ∨ $-)…

� Each clause has three literals, and the 
formula is the “AND” of the clauses

� Q: Show that 3SAT is in NP



Example: 3SAT

� 3SAT (Satisfiability) definition:
� Input is a formula ! in 3-CNF form.
� E.g. ! = ($%∨ $' ∨ $%(() ∧ ($% ∨ $+ ∨
$%()… ($+ ∨ $% ∨ $-)…

� Each clause has three literals, and the 
formula is the “AND” of the clauses

� Intuitively: 3SAT is NP-``hard’’



Proof system for 3SAT

! !



NP + interaction

� Theorem. NP+interaction =NP



NP + randomness

� Definition. L is in MA if there exists a 
probabilistic polynomial time machine V 
such that:

x∈ L ⇒ ∃% &' ( ), % +,,-./0 ≥ 2
3

x∉ L ⇒ ∀% Pr ( ), % +,,-./0 ≤ 9
3

� It is conjectured that MA=NP. 

� Definition. NP+randomness =MA



Hamiltonians
� Recall that one postulate of quantum mechanics is that the 

evolution of a closed quantum system is characterized by a 
unitary transformation. That is, the state ! of the system at 
time "# is related to the state !′ of the system at time "%
by a unitary operation U which depends only on time "#, "%

� !′ = ( !
� Today we introduce a more refined version of this postulate, 

which describes the evolution of a quantum system in 
continuous time. It is stated as follows:
The time evolution of a state of a closed quantum system is 
described by Shro ̈dinger’s equation: 

� ) * +
*, = - !

� H is a fixed Hermitian operator known as the Hamiltonian of 
the system. In specific, for an n-qubit system, its Hamiltonian 
H is a 2/×2/ Hermitian matrix, i.e. H = H†. 



Hamiltonians

� Suppose H has a spectral decomposition 
! = ∑$ %$ &$

with eigenvalues λj’s and corresponding 
eigenvectors |ej⟩’s. 
� The states |ej⟩’s are conventionally referred 

to as energy eigenstates, or stationary 
states, and λj is the energy of the state |ej⟩. 

� The lowest energy is known as the ground 
state energy for the system, and the 
corresponding energy eigenstate is known as 
the ground state. 



Hamiltonians

� ! = ∑$ %$ &$
� Now suppose that at time t = 0 the initial 

state of the system is '(0) = &$ . 
� Then a little calculus tells us that, at any 

time t, the system’s state is given by 
'(+) = &,-./0 &$ . So this explains why 

|e j ⟩ are also called stationary states: their 
only change in time is to acquires an 
overall numerical factor. 



Hamiltonians

� Generally, suppose that at time t = 0 the 
initial state is !(0) = ∑' (' )' , then at 
any time t the state of the system is given 
by !(*) =  U t !(0) = ∑' (')-./01
)'

� Where U t = )-.21 = ∑)-./01 )' ⟨)'|



Local Hamiltonians

� Not all Hamiltonians can be easily 
implemented. 

� The realistic Hamiltonians are local 
Hamiltonians. 

� They are the Hamiltonian that can be 
written as a sum over many local 
interactions. 



Local Hamiltonians
� Specifically, suppose for a system of n 

particles ! = ∑!$, where each Hj acts on at 
most a constant c number of particles (i.e. Hj
= Aj ⊗ I for some c-particle operator Aj). 

� Then we say that H is c-local. 
� Such locality is quite physically reasonable, 

and originates in many systems from the fact 
that most interactions fall off with increasing 
distance of difference in energy. 

� Local Hamiltonians and quantum circuits can 
(approximately) simulate each other with 
polynomial over- head. 


