# Quantum SearchingGrover, Optimality 

## PHYS/CSCl 3090

Prof. Alexandra Kolla

## Alexandra.Kolla@Colorado.edu ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

## Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, over zoom.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, over zoom
- Steven Kordonowy:Th I lam-I2pm, over zoom.
- Matteo Wilczak:Wednesday, I-2pm, over zoom.


## Today

- Homework out, due next Monday at noon on Canvas


## Today

- Optimality of Grover


## The start of one iteration



## The start of one iteration



$$
\begin{aligned}
& |\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n} \\
& |e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
\end{aligned}
$$

## After $V$

$|a\rangle$


## After $V$

Corresponds to a flip over $|e\rangle$

$$
|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
$$



$\mathrm{V}|\psi\rangle$

## After W

$$
\mathrm{W}=2|\phi\rangle\langle\phi|-I
$$

Corresponds to a flip over $|\phi\rangle$


## After W

$$
\mathrm{W}=2|\phi\rangle\langle\phi|-I
$$

Corresponds to a flip over $|\phi\rangle$


## Putting it together $\quad|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0 \lll N}|x\rangle_{n}$ <br> $|a\rangle$ <br> $|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$


$|e\rangle$

## Putting it together $\quad|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0 \lll N}|x\rangle_{n}$ <br> $|a\rangle$ <br> $|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$


$V|\psi\rangle$

$$
\begin{aligned}
\text { Putting it together } & |\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n} \\
|a\rangle & |e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
\end{aligned}
$$


$V|\psi\rangle$

## Putting it together <br> $|\phi\rangle=\frac{1}{\sqrt{ } N} \sum_{0<x \leq N}|x\rangle_{n}$ <br> |a) <br> $|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$


$V|\psi\rangle$

## Putting it together

$|a\rangle$

$|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n}$
$|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$

## In the end

$$
|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
$$



## The Algorithm

- We concluded that V corresponds to a reflection over $|e\rangle$ (perp to $|a\rangle$ ) and W corresponds to a reflection over $|\phi\rangle$ (uniform superposition, and also starting state).
- If we define $\theta$ as the angle between $|\phi\rangle$ and $|e\rangle$, and $\phi$ as the angle between $|\psi\rangle$ and $|e\rangle$ (where $|\psi\rangle$ is the state at the current iteration), we see that the transformations perform the following rotations:
- $\phi \stackrel{V}{\rightarrow}-\phi \xrightarrow{W} \phi+2 \theta$


## The Algorithm

- After one iteration, we rotate the state vector by $2 \theta=2 \arcsin \left(\frac{1}{\sqrt{N}}\right) \sim 2 / \sqrt{ } N$
- Since we start out at state $|\phi\rangle$ (uniform) almost orthogonal to $|a\rangle$, (Assuming N is large), we need to rotate by $\frac{\pi}{2}$.
- So we need about $\left[\frac{\frac{\pi}{2}-\theta}{2 \theta}\right) \sim \theta(\sqrt{N})$ applications of the algorithm.


## The Algorithm-Is it optimal?

- Why can't we design another quantum algorithm with less queries?
- How do we even prove optimality?
- To prove optimality, we show that any sequence of unitary operators (combined with calls to the oracle) that distinguish between the function that has o everywhere and the function which is 1 at the $a^{\prime}$ th position requires at least $Q(\sqrt{N})$ calls of the oracle.


## The Algorithm-Is it optimal?

- Let $U_{1}, U_{2}, \ldots$ be some unitaries and $U_{f}$ the oracle corresponding to a function f .
- Let $\left|v_{f, k}\right\rangle=U_{k} U_{f} U_{k-1} U_{f} \ldots U_{1}|\phi\rangle$ be the state of the input register after $k$ iterations of this new algorithm.
- Let $\left|\phi_{k}\right\rangle=\frac{U_{k} U_{k-1} \ldots U_{1}|\phi\rangle}{\text { 1iteration: UiUf }}$


## The Algorithm-Is it optimal?

- Let $U_{1}, U_{2}, \ldots$ be some unitaries and $U_{f}$ the oracle corresponding to a function f .
(1) - Let $\left|v_{f_{k}, k}\right\rangle=U_{k} U_{f_{a}} U_{k-1} U_{f_{\mathrm{q}}}^{\prime} \ldots U_{1}|\phi\rangle$ be the state of the input register after $k$ iterations of this new algorithm.
(2) - Let $\left|\phi_{k}\right\rangle=U_{k} U_{k-1} \ldots U_{1}|\phi\rangle$
- Question: For what f is $\left|v_{f, k}\right\rangle=\left|\phi_{k}\right\rangle$ ?

Answer: Uf:I勿与=fo

$$
\begin{aligned}
& f_{0} \rightarrow U_{f_{0}}=I_{s} \\
& f_{a} \rightarrow U_{f_{a}}=I-\text { 2 } \mid \text { Ka| } \mid
\end{aligned}
$$

## The Algorithm-Is it optimal?

- Let $U_{1}, U_{2}, \ldots$ be some unitaries and $U_{f}$ the oracle corresponding to a function f .
- Let $\left|v_{f, k}\right\rangle=U_{k} U_{f} U_{k-1} U_{f} \ldots U_{1}|\phi\rangle$ be the state of the input register after $k$ iterations of this new algorithm.
- Let $\left|\phi_{k}\right\rangle=U_{k} U_{k-1} \ldots U_{1}|\phi\rangle$
- Question: For what f is $\left|v_{f, k}\right\rangle=\left|\phi_{k}\right\rangle$ ?
- $\left|\phi_{k}\right\rangle$ corresponds to the function which is zero everywhere (no marked element)


## The Algorithm-Is it optimal?

- Let $U_{1}, U_{2}, \ldots$ be some unitaries and $U_{f}$ the oracle corresponding to our "marked element" function $\mathrm{f}, \mathrm{f}(\mathrm{a})=1$.
- Let $\left|v_{f_{2}, k}\right\rangle=U_{k} U_{f_{a}} U_{k-1} U_{f_{a}} \ldots U_{1}|\phi\rangle$ be the state of the input register after $k$ iterations of this new algorithm.
- Let $\left|\phi_{k}\right\rangle=U_{k} U_{k-1} \ldots U_{1}|\phi\rangle$
- Question: is $\left|\phi_{k}\right\rangle$ independent of $a$ ?


## The Algorithm-Is it optimal?

- Let $U_{1}, U_{2}, \ldots$ be some unitaries and $U_{f}$ the oracle corresponding to our "marked element" function $\mathrm{f}, \mathrm{f}(\mathrm{a})=1$.
- Let $\left|v_{f, k}\right\rangle=U_{k} U_{f} U_{k-1} U_{f} \ldots U_{1}|\phi\rangle$ be the state of the input register after $k$ iterations of this new algorithm.
- Let $\left|\phi_{k}\right\rangle=U_{k} U_{k-1} \ldots U_{1}|\phi\rangle$
- Since the oracle depends on a, $U_{f}$ changes with a, and so does $\left|v_{f, k}\right\rangle$.
- Since no measurement is done till the end, we can get no information about a before measuring, so the $U_{i}$ are independent of a, and so is $\left|\phi_{k}\right\rangle$.


## The Algorithm-Is it optimal?

- $\left|v_{f, k}\right\rangle=U_{k} U_{f} U_{k-1} U_{f} \ldots U_{1}|\phi\rangle,\left|\phi_{k}\right\rangle=$ $U_{k} U_{k-1} \ldots U_{1}|\phi\rangle$ fa $\quad \underbrace{\text { Ko }}$
- Define $\left.t_{a, k}=\| v_{f_{f, k}}\right\rangle-\left|\phi_{k}\right\rangle \mid$.
- Measures the error between a run of the algorithm where $f$ is zero everywhere, or 1 at a marked element a.


# Optimality Proof- Big picture 

We will show:

$$
\text { Claim 1: } \left.t_{a, k}=\| v_{f, k}\right\rangle-\left|\phi_{k}\right\rangle \mid \leq \sum_{i=1 \text { to } k} 2\left\langle a, \phi_{i}\right\rangle
$$

- Assume our new algorithm runs for T steps.
- Since our algorithm needs to distinguish between the function which is zero everywhere and the one which has 1 at $a, t_{a, T}$ must be large.
- Recall $t_{a, T}$ is the difference between the output vectors when these two functions (zero everywhere, or 1 at a) are used as inputs.
- So for the sake or argument say that we need $\bar{t}_{a, T}>1 / 2$ for the algorithm to be successful.


## Optimality Proof

- Assume Claim 1:

$$
\begin{gathered}
\left.t_{a, k}=\| v_{f_{a}, k}\right\rangle-\left|\phi_{k}\right\rangle \mid \leq \sum_{i=1 \text { to } k} 2\left\langle a, \phi_{i}\right\rangle \\
\frac{y}{k-s k p s \text { ago }},\left|\phi_{i}\right\rangle=v_{i} v_{i-1} v_{1}|b\rangle
\end{gathered}
$$

- Show that we need at least $\mathrm{T}=\Omega(\sqrt{N})$ iterations (invocations of $U_{f}$ ) to achieve $t_{a, T}>1 / 2$.


## Optimality Proof-Main Tool

- Cauchy-Schwartz Inequality

Version 1: For any two vectors $|v\rangle,|u\rangle$ the following is true:

$$
|\langle v, u\rangle| \leq\|v\|\|u\|
$$

Version 2 (for reals): $=\sqrt{\omega_{0}^{2}} \quad \sqrt{20 r^{2}}$

$$
\sum_{i=1}^{n} v_{i} u_{i} \leq \sqrt{\sum_{i=1}^{n} v_{i}^{2}} \sqrt{\sum_{i=1}^{n} u_{i}^{2}}
$$

Question: derive Version 2 from Version 1.


Optimality Proof

- Assume Claim 1:

$$
\left.t_{a, k}=\| v_{f, k}\right\rangle-\left|\phi_{k}\right\rangle \mid \leq \sum_{i=1 \text { to } k} 2\left\langle a, \phi_{i}\right\rangle
$$

- Show that we need at least $\mathrm{T}=\Omega(\sqrt{N})$ iterations (invocations of $U_{f}$ ) to achieve $t_{a, T}>$

Proof

$$
\begin{aligned}
& \text { 1/2. } \frac{1}{2}<t_{0, T}{ }^{\text {cain } 1} \leq \sum_{i=1}^{T-1} 2\langle v_{i} \underbrace{u_{i}}_{\left.i, \phi_{i}\right\rangle} \leq \\
& \leq \sqrt{\sum_{i=1}^{T-1} 4} \cdot \sqrt{\left.v_{i} u_{i} \leq \sqrt{2 v_{i}^{2}} \cdot \sqrt{\sum u_{i}^{2}}\right)} \\
& \leq\left\langle a_{i} \phi_{i}\right\rangle^{2}=2 \sqrt{T-1} \cdot \sqrt{\sum_{i=1}^{-1}\left\langle a_{i} \phi_{i}\right\rangle^{2}}
\end{aligned}
$$

## Optimality Proof

- Assume Claim 1:

$$
\left.t_{a, k}=| | v_{f, k}\right\rangle-\left|\phi_{k}\right\rangle \mid \leq \sum_{i=1 \text { to } k} 2\left\langle a, \phi_{i}\right\rangle
$$

- Show that we need at least $\mathrm{T}=\Omega(\sqrt{N})$ iterations (invocations of $U_{f}$ ) to achieve $t_{a, T}>1 / 2$.
- Proof:
$\frac{1}{2}<t_{a, T} \leq \sum_{i=1} 2\left\langle a, \phi_{i}\right\rangle \leq \sqrt{\sum_{i=1}^{T-1} 2^{2}} \sqrt{\sum_{i=1}^{T-1}\left\langle a, \phi_{i}\right\rangle^{2}} \leq$
$2 \sqrt{T-1} \sqrt{\sum_{i=1}^{T-1}\left\langle a, \phi_{i}\right\rangle^{2}}$


## Optimality Proof

Assume Claim 1:

$$
\left.t_{a, k}=| | v_{f, k}\right\rangle-\left|\phi_{k}\right\rangle \mid \leq \sum_{i=1 \text { to } k} 2\left\langle a, \phi_{i}\right\rangle
$$

- Show that we need at least $\mathrm{T}=\Omega(\sqrt{N})$ iterations (invocations of $U_{f}$ ) to achieve $t_{a, T}>$ 1/2.
- Proof:

$$
\frac{1}{2}<t_{a, T} \leq 2 \sqrt{T-1} \sqrt{\sum_{i=1}^{T-1}\left\langle a, \phi_{i}\right\rangle^{2}}
$$

Question: how to bound $\sqrt{\sum_{i=1}^{T-1}\left\langle a, \phi_{i}\right\rangle^{2}}$ ?

## Optimality Proof

Question:
Assume we are given that $\left\{\left|a_{1}\right\rangle, \ldots,\left|a_{N}\right\rangle\right\}$ is an orthonormal basis for the N -dimensional Hilbert space. Let $|\phi\rangle$ be an arbitrary unit vector on this space. What is $\sum_{i=1}^{N}\left\langle a_{i}, \phi\right\rangle^{2}$ ?

$$
=1
$$

$$
\Leftrightarrow\|\phi\|=1
$$

## Optimality Proof

$$
\begin{aligned}
& \frac{1}{2}<t_{a, T} \leq 2 \sqrt{T-1} \sum_{i=1}^{T-1}\left\langle a, \phi_{i}\right\rangle^{2} \\
& \text { Question: how to bound } \sqrt{\sum_{i=1}^{T-1}\left\langle\underline{a}, \phi_{i}\right\rangle^{2}} \text { ? }
\end{aligned}
$$

## Optimality Proof

$\sum_{a}\left\langle a, \phi_{i}\right\rangle^{2}=1$ for all $i$
Grum over all $n$-bit rectors, $\{a\}$
So $\underbrace{\sum_{i=1 \text { to } T-1} \underbrace{\left.\sum_{a}\left\langle a, \phi_{i}\right\rangle^{2}\right\}^{-2}}_{\sum_{i=1}^{n} 1}=T-1}_{=}=T$
$\sum_{i=1 \text { to } T-1} \sum_{a}\left\langle a, \phi_{i}\right\rangle^{2}=\sum^{\sum_{a} \sum_{i}}\left\langle a, \phi_{i}\right\rangle^{2}=T-1$
Thus there exists an(@) such that
$\sum_{i}\left\langle a, \phi_{i}\right\rangle^{2}<\frac{T-1}{N}$
Chose that a as our worst case for the algorithm.

## Optimality Proof

$$
\frac{1}{2}<t_{a, T} \leq 2 \sqrt{T-1} \underbrace{\sum_{i=1}^{T-1}\left\langle a, \phi_{i}\right\rangle^{2}}
$$

For the worst case a we chose:
$\frac{1}{2}<t_{a, T} \leq 2 \sqrt{T-1}\left(\frac{T-1}{N}=\frac{T-1}{\sqrt{N}} \Vdash\right.$
$T-1) \sqrt{1 / 2} / 2$
$T \gg 1$
We need to take $T=\Omega(\sqrt{N})$ as desired.

