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Come see us!

* Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, over zoom.

* Ariel Shlosberg: Tu/Th 2:00-4:00pm, over

Z00Mm

» Steven Kordonowy:Th | lam-12pm, over
zoom.

* Matteo Wilczak:Wednesday, |-2pm, over
Zoom.



Today

* Grover’s algorithm, continued.
» Optimality v N=



The problem

» Suppose we know that exactly one n-bit
integer satisfies some condition.

* Namely, we have a special "marked” item a,
such that, for some function f:{0,1}"* — {0,1}
f(x)=1 iff x=a and o otherwise.



The setup
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* We have a function f(x) = {1 l({ox; a



The Unitary for Grover
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e See this operator as “amplifying” the amplitude
of |a)

o If we amplify the negative vectors enough then
we could measure the required state with high
probability.

* More of an “amplification” algorithm than search.



The Algorithm

* Start by preparing uniform superposition
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* Signifies maximal ignorance of special
element a.

* The action of V on |¢)?




The Algorithm
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The Algorithm

 We now introduce the Grover diffusion

operator. Recall |¢p) = \/LNZOQSNIx)n

*W=2|pNp| -1

e Question: Let x be a standard basis
vector. What is (|¢p){(¢|)|x)?



The Algorithm

 We now introduce the Grover diffusion
operator.

*W=2|pNp| -1

» One iteration of the algorithm consists of
applying the operator]A = W Vithat is,
querying the oracle and then applying

oV

the diffusion operator). - %\Pv 5 W)
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The Algorithm
W =2|pNp| =1,V =1 = 2]a)al

o After one iteration:
WVig) = Q2leXe| — DU — 2|a)a|)|¢p) =
2|lpXp| + 2|a)al — —I¢>(al —D)|¢) =

1—— |¢>+—|J

* We see that after one iteration, the
probability of measuring a has increased.




The Algorithm

* |t can be checked that the operation

rotates the state vector by Type

. 2,/(N-1) 2
equation here. T
* Since we start out almost orthogonal to

|la) (Assuming N is large), we need to
rotate by%.

e So we need about %ﬁ applications of the

algorithm.



The start of one iteration

* We can visualize the operators in Grover’s
algorithm as reflections in state space.
Consider the target vector |a) and the

hyperplane of all other vectors |e) =
1

m2x¢a|x>n
e Assume the algorithm is at state |y) at
. . | |
the current iteration




The start of one iteration
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The start of one iteration
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AfterV - class exercise in 2D

|a) V=1-2laXa|

- Xy M
¥)=x1lat) + y1la) vy '),‘)
Y, —~~-—-—-,~,‘ \/\@ﬂ?,')

What operator on the plane is V = I — 2|a){a|?
(Draw the vector V|[y) on the plane)



AfterV - class exercise in 2D
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AfterV - class exercise in 2D

|a)
wt
) = x1a* + y4la)
4 )
V=1-2|a)a|
Corresponds to a flip over |e) = \/%inalx)n
Which is perpendicular to |a)
¢ \_ Y,

‘¢> lat)

VIy) = x1la*) — yi|a)
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Corresponds to a flip over |e) x#a
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After WV - class exercise in 2D

W= 2|pNp| -1

) )= x11¢) + y1l¢)

What operator on the plane is W= 2|¢p){(¢| — I?
(Draw the vector W|y) on the plane)



After WV - class exercise in 2D

W= 2[¢pXp| -1

|¢J—> WZ(N,‘O\\
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What operator on the plane is W= 2|¢p){(¢| — I?
(Draw the vector W|y) on the plane)



After WV - class exercise in 2D

W= 2|pXo| — 1
Corresponds to a flip over |¢)
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After W - class exercise in 2D
[ W= 21¢)(g| — I ]
Corresponds to a flip over |¢)
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Putting it together




Putting it together
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Putting it together




Putting it together
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Putting it together
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In the end
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The Algorithm

» We concluded thatV corresponds to a
reflection over |e) (perp to |a)) and W
corresponds to a reflection over |¢) (uniform
superposition, and also starting state).

* If we define B as the angle between |¢) and |e),
and ¢ as the angle between |y) and |e) (where
|Q) is the state at the current iteration), we see
that the transformations perform the following
rotations:



The Algorithm

» We concluded thatV corresponds to a
reflection over |e) (perp to |a)) and W
corresponds to a reflection over
|&) (uniform superposition, and also
starting state).

* If we define 0 as the angle between |¢) and
le), and ¢ as the angle between [P) and |e)
(where |) is the state at the current
iteration), we see that the transformations
perform the following rotations:
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The Algorithm

* Question: what is 8 (the angle between
uniform superposition and uniform
superposition minus a)?
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The Algorithm

» After one iteration, we rotate the state
vector by 20 = 2 arcsm( ) 2/VN

e Since we start out at state |¢)(uniform)
almost orthogonal to |a) ,(Assuming N is

large), we need to rotate byz.
7'L' \A? /-9\"‘”“’:’('
* So we need about 2 ~0(\/_) L

applications of the algorlthm.
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