Quantum SearchingGrover

PHYS/CSCl 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu

 ECES 122Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, over zoom.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, over zoom
- Steven Kordonowy:Th I lam-I2pm, over zoom.
- Matteo Wilczak:Wednesday, I-2pm, over zoom.

Today

- Grover's algorithm, continued.
- Optimality $\sqrt{N}, N=2^{n}$

The problem

- Suppose we know that exactly one n-bit integer satisfies some condition.
- Namely, we have a special "marked" item a, such that, for some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ $f(x)=1$ iff $x=a$ and o otherwise.

The setup

- We have a function $f(x)=\left\{\begin{array}{c}1 \text { if } x=a \\ 0 \text { o.w. }\end{array}\right.$

The Unitary for Grover

- $V=I-2|a\rangle\langle a|$

$$
V|Y\rangle=V \sum_{0<x \leq 2^{n}}|x\rangle\langle x \mid Y\rangle=|Y\rangle-2|a\rangle\langle a \mid Y\rangle
$$

- See this operator as "amplifying" the amplitude of $|a\rangle$
- If we amplify the negative vectors enough then we could measure the required state with high probability.
- More of an "amplification" algorithm than search.

The Algorithm

- Start by preparing uniform superposition $|\phi\rangle=H^{\otimes n}|0\rangle_{n}=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n}$
- $\left(N=2^{n}\right)$
- Signifies maximal ignorance of special element a.
- The action of V on $|\phi\rangle$?

The Algorithm

$$
\begin{aligned}
& \text { - } V|\phi\rangle=(I-2|a\rangle\langle a|)|\phi\rangle= \\
& |\phi\rangle-2|a\rangle\langle a||\phi\rangle=|\phi\rangle-\frac{2}{\sqrt{N}}|a\rangle= \\
& \frac{1}{\sqrt{N}}\left(\sum_{x \neq a}|x\rangle_{n}\right) \underbrace{-\frac{1}{\sqrt{N}}|a\rangle}_{0.9|a|+b|a\rangle}
\end{aligned}
$$

- Applying the oracle to the initial state negates the amplitude of the satisfying element!

The Algorithm

- We now introduce the Grover diffusion operator. Recall $|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n}$
- $\mathrm{W}=2|\phi\rangle\langle\phi|-I$
- Question: Let x be a standard basis vector. What is $(|\phi\rangle\langle\phi|)|x\rangle$?

The Algorithm

- We now introduce the Grover diffusion operator.
- $\mathrm{W}=2|\phi\rangle\langle\phi|-I$
- One iteration of the algorithm consists of applying the operator $A=W V$ that is, querying the oracle and then applying the diffusion operator). $\tau\langle\mid \phi\rangle \xrightarrow{\text { mower }} W \||\phi\rangle$

$$
\text { how mow. }\left\{\begin{array}{l}
\text { grover } w V W V|\phi\rangle \\
\underset{\cdots}{c} \text { constant }|a|+b\left|a^{a}\right\rangle
\end{array}\right.
$$

The Algorithm

$\mathrm{W}=2|\phi\rangle\langle\phi|-I, V=I-2|a\rangle\langle a|$

- After one iteration:
$W V|\phi\rangle=(2|\phi\rangle\langle\phi|-I)(I-2|a\rangle\langle a|)|\phi\rangle=$
$\left(2|\phi\rangle\langle\phi|+2|a\rangle\langle a|-\frac{4}{\sqrt{N}}|\phi\rangle\langle a|-I\right)|\phi\rangle=$
$\left(1-\frac{4}{N}\right)|\phi\rangle+\frac{2}{\sqrt{N}}|a\rangle$
- We see that after one iteration, the probability of measuring a has increased.

The Algorithm

- It can be checked that the operation rotates the state vector by Type equation here. $\frac{2 \sqrt{(N-1)}}{N} \sim \frac{2}{\sqrt{N}}$
- Since we start out almost orthogonal to $|a\rangle$ (Assuming N is large), we need to rotate by $\frac{\pi}{2}$.
- So we need about $\frac{\pi \sqrt{N}}{4}$ applications of the algorithm.

The start of one iteration

- We can visualize the operators in Grover's algorithm as reflections in state space. Consider the target vector $|a\rangle$ and the hyperplane of all other vectors $|e\rangle=$ $\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$
- Assume the algorithm is at state $|\psi\rangle$ at the current iteration

The start of one iteration
start iteration: $|\psi\rangle$ do $w V|\psi\rangle$

The start of one iteration

$$
\begin{aligned}
& |\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n} \\
& |e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
\end{aligned}
$$

After V - class exercise in 2D

$|a\rangle$

$$
V=I-2|a\rangle\langle a|
$$

Question: What operator on the plane is $V=I-2|a\rangle\langle a|$? (Draw the vector $V|\psi\rangle$ on the plane)

After V - class exercise in 2D
$|a\rangle$

After V - class exercise in 2D

$|a\rangle$

After V

Corresponds to a flip over $|e\rangle$

$$
|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
$$

$\mathrm{V}|\psi\rangle$

After W - class exercise in 2D

$$
\mathrm{W}=2|\phi\rangle\langle\phi|-I
$$

Question: What operator on the plane is $\mathrm{W}=2|\phi\rangle\langle\phi|-I$?
(Draw the vector $\mathrm{W}|\psi\rangle$ on the plane)

After W - class exercise in 2D

Question: What operator on the plane is $\mathrm{W}=2|\phi\rangle\langle\phi|-I$?
(Draw the vector $\mathrm{W}|\psi\rangle$ on the plane)

After W - class exercise in 2D

$$
W=2|\phi\rangle\langle\phi|-I
$$

Corresponds to a flip over $|\phi\rangle$

After W - class exercise in 2D

$$
\mathrm{W}=2|\phi\rangle\langle\phi|-I
$$

Corresponds to a flip over $|\phi\rangle$
$\left|\phi^{\perp}\right\rangle$

Putting it together $\quad|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0 \lll N}|x\rangle_{n}$
 $|a\rangle$
 $|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$

$|e\rangle$

Putting it together
 $$
|\phi\rangle=\frac{1}{\sqrt{ } N} \sum_{0<x \leq N}|x\rangle_{n}
$$
 $$
|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
$$

$V|\psi\rangle$

Putting it together
 $|\phi\rangle=\frac{1}{\sqrt{ } N} \sum_{0<x \leq N}|x\rangle_{n}$
 $|a\rangle$
 $|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$

$V|\psi\rangle$

Putting it together
 $|\phi\rangle=\frac{1}{\sqrt{ } N} \sum_{0<x \leq N}|x\rangle_{n}$
 |a)
 $|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}$

$V|\psi\rangle$

Putting it together $\mid(\rangle)=\frac{1}{\sqrt{w_{0}} \sum_{\infty} w_{w n}}$
 $|a\rangle$

$|e\rangle$

In the end

$$
|e\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq a}|x\rangle_{n}
$$

The Algorithm

- We concluded that V corresponds to a reflection over $|e\rangle$ (perp to $|a\rangle$) and W corresponds to a reflection over $|\phi\rangle$ (uniform superposition, and also starting state).
- If we define θ as the angle between $|\phi\rangle$ and $|e\rangle$, and ϕ as the angle between $|\psi\rangle$ and $|e\rangle$ (where $|\psi\rangle$ is the state at the current iteration), we see that the transformations perform the following rotations:

The Algorithm

- We concluded that V corresponds to a reflection over $|e\rangle$ (perp to $|a\rangle$) and W corresponds to a reflection over $|\phi\rangle$ (uniform superposition, and also starting state).
- If we define θ as the angle between $|\phi\rangle$ and $|e\rangle$, and ϕ as the angle between $|\psi\rangle$ and $|e\rangle$ (where $|\psi\rangle$ is the state at the current iteration), we see that the transformations perform the following rotations:
- $\phi \stackrel{V}{\rightarrow}-\phi \xrightarrow{W} \phi+2 \theta$

The Algorithm

- Question: what is θ (the angle between uniform superposition and uniform superposition minus a)?

$$
\begin{aligned}
& { }^{\mid}|a\rangle \\
& \cos ^{2} \theta=\left\langle p_{,} e\right\rangle^{2} \\
& \sin ^{2} \theta=1-\cos ^{2} \theta=1-\langle\phi, e\rangle^{2} \\
& \sin \theta=\sqrt{1-\left\langle\phi_{,},\right\rangle^{2}} \\
& \Rightarrow \theta=\underset{.\langle\phi, c\rangle}{\arcsin \gamma}=?
\end{aligned}
$$

$$
\begin{aligned}
& |p\rangle \approx|e\rangle \\
& \sqrt{\frac{m 1}{N}}(\text { ex. }) \\
& \sqrt{1-\left\langle\phi, e^{2}\right.}=\sqrt{1 / \omega} \\
& |e\rangle=\frac{1}{-\sqrt{m+1}} \sum_{x=a}|x\rangle \\
& 0=\arcsin 1 / \pi \sim 1 / \omega \\
& \theta \sim 1 / 2 n
\end{aligned}
$$

The Algorithm

- After one iteration, we rotate the state vector by $2 \theta=2 \arcsin \left(\frac{1}{\sqrt{N}}\right) \sim 2 / \sqrt{ } N$
- Since we start out at state $|\phi\rangle$ (uniform) almost orthogonal to $|a\rangle$, (Assuming N is large), we need to rotate by $\frac{\pi}{2}$.
- So we need about $\frac{\frac{\pi}{2}-\theta}{2 \theta} \sim O(\sqrt{N})$ applications of the algorithm.

$$
\text { Algo: } \quad \underbrace{W v V \ldots . w v}_{0(\sqrt{N}) \text { times }} \text { get a why. }
$$

