
Quantum Searching-
Grover

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Come see us!

� Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, over zoom.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm, over
zoom

� Steven Kordonowy: Th 11am-12pm, over
zoom.

� Matteo Wilczak: Wednesday, 1-2pm, over
zoom.

Today

� Grover’s algorithm, continued.
� Optimality

The problem
� Suppose we know that exactly one n-bit

integer satisfies some condition.
� Namely, we have a special “marked” item a,

such that, for some function !: 0,1 & → {0,1}
f(x)=1 iff x=a and 0 otherwise.

The setup

Uf

! n
bi

ts
1

bi
t

" 1bit
n bits

!

"⨁$(!)

• We have a function $! = (1 *$! = +
0 -./.

The Unitary for Grover

� ! = # − 2 & ⟨&|

� See this operator as “amplifying” the amplitude
of &

� If we amplify the negative vectors enough then
we could measure the required state with high
probability.

� More of an “amplification” algorithm than search.

Uf

) n
bi

t
1

bi
t

* 1 bit
n bit)

*⨁,())

! / = ! 0
123456

))|/ = / − 2 & ⟨&| ⟩/

The Algorithm
� Start by preparing uniform superposition
! = #⨂% 0 % = '

√) ∑+,-.) / %
� (0 = 2%)
� Signifies maximal ignorance of special

element a.
� The action of V on ! ?

The Algorithm

� ! " = (% − 2 (⟨(|) " =

" − 2 (⟨(| " = " − ,
√. (=

/
√. (∑123 4 5) − /

√. (

• Applying the oracle to the initial state negates
the amplitude of the satisfying element!

The Algorithm

� We now introduce the Grover diffusion
operator. Recall ! = #

√% ∑'()*% + ,

�W = 2 ! ⟨!| − 2

� Question: Let x be a standard basis
vector. What is (! ⟨!|) + ?

The Algorithm

� We now introduce the Grover diffusion
operator.

�W = 2 $ ⟨$| − (

� One iteration of the algorithm consists of
applying the operator A = W V (that is,
querying the oracle and then applying
the diffusion operator).

The Algorithm
W = 2 $ ⟨$| − (,) = (− 2 * ⟨*|

� After one iteration:
+) $ = (2 $ ⟨$| − ()((− 2 * ⟨*|) $ =
(2 $ ⟨$| + 2 * ⟨*| − /

0 $ ⟨*| − () $ =
1 − /

0 $ + 2
0 *

� We see that after one iteration, the
probability of measuring a has increased.

The Algorithm

� It can be checked that the operation
rotates the state vector by Type
equation here. / (123)

1 ~ /
1

� Since we start out almost orthogonal to
6 (Assuming N is large), we need to

rotate by 7/ .

� So we need about 7 1
8 applications of the

algorithm.

The start of one iteration
� We can visualize the operators in Grover’s

algorithm as reflections in state space.
Consider the target vector |a⟩ and the
hyperplane of all other vectors " =
$
%&$∑()* + ,

� Assume the algorithm is at state - at
the current iteration

The start of one iteration

!

The start of one iteration
! = 1

√% &
'()*+

, -

. = 1
% − 1&)01

, -

!

After V - class exercise in 2D
! = # − 2 & ⟨&|

Question: What operator on the plane is ! = # − 2 & ⟨&|?
(Draw the vector ! * on the plane)

&

* = +, &- + /, &

&-

0

After V - class exercise in 2D
!

" = $%!& + (% !

!&

)

−)

+ " = $% !& − (% !

After V - class exercise in 2D

! = # − 2 & ⟨&|
Corresponds to a flip over) = *

+,*∑./0 1 2
Which is perpendicular to &

&

3 = 1*&4 + 6* &

&4

7

−7

! 3 = 1* &4 − 6* &

After V

V !

" = $ − 2 ' ⟨'|
Corresponds to a flip over *

* = 1
, − 1-./0

1 2

3

After W - class exercise in 2D
W= 2 # ⟨#| − '

Question: What operator on the plane is W= 2 # ⟨#| − '?
(Draw the vector W * on the plane)

+

* = ,- # + /- #0

+0

#
#

1

#0

1

After W - class exercise in 2D
W= 2 # ⟨#| − '

Question: What operator on the plane is W= 2 # ⟨#| − '?
(Draw the vector W * on the plane)

* = +, # + ., #/

− 0

#/

After W - class exercise in 2D
W= 2 # ⟨#| − '
Corresponds to a flip over #

(=)* # + ,* #-

− .

#-

−(# − .)

1 (=)* # − ,* #-

After W - class exercise in 2D
W= 2 # ⟨#| − '
Corresponds to a flip over #

(=)* # + ,* #-

− .

#-

−(# − .)

1 (=)* # − ,* #-

Putting it together
!

"

#

$
$

%

$ = 1
√) *

+,-./
0 1

= 1
) − 1*-34

0 1

Putting it together
!

"

#

$
$

%

$ = 1
√) *

+,-./
0 1

= 1
) − 1*-34

0 1

−$

5 "

Putting it together
!

"

#

$
$

%

$ = 1
√) *

+,-./
0 1

= 1
) − 1*-34

0 1

−$

5 "

Putting it together
!

"

#

$
$

%

$ = 1
√) *

+,-./
0 1

= 1
) − 1*-34

0 1

−$

5 "

Putting it together
!

"

#

$
$

%

$ = 1
√) *

+,-./
0 1

= 1
) − 1*-34

0 1

2%

67 "

In the end
! = 1

$ − 1&'()
* +

The Algorithm
� We concluded that V corresponds to a

reflection over ! (perp to ") and W
corresponds to a reflection over $ (uniform
superposition, and also starting state).

� If we define θ as the angle between $ and |e⟩,
and φ as the angle between |ψ⟩ and |e⟩ (where
|ψ⟩ is the state at the current iteration), we see
that the transformations perform the following
rotations:

The Algorithm
� We concluded that V corresponds to a

reflection over ! (perp to ") and W
corresponds to a reflection over
$ (uniform superposition, and also

starting state).
� If we define θ as the angle between $ and

|e⟩, and φ as the angle between |ψ⟩ and |e⟩
(where |ψ⟩ is the state at the current
iteration), we see that the transformations
perform the following rotations:

� $ →' − $→) $ + 2,

The Algorithm

� Question: what is ! (the angle between
uniform superposition and uniform
superposition minus a)?

"

The Algorithm

� After one iteration, we rotate the state

vector by 2! = 2 arcsin *
+ ~ 2/√/

� Since we start out at state 0 (uniform)
almost orthogonal to 1 ,(Assuming N is
large), we need to rotate by 23 .

� So we need about
5
678
38 ~9(/)

applications of the algorithm.

