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Come see us!

� Alexandra Kolla/ Graeme Smith: Friday 
3:00-4:00 pm, over zoom.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm, over 
zoom

� Steven Kordonowy: Th 11am-12pm, over 
zoom.

� Matteo Wilczak: Wednesday, 1-2pm, over 
zoom.



Today

� Grover’s algorithm, continued.
� Optimality 



The problem
� Suppose we know that exactly one n-bit 

integer satisfies some condition. 
� Namely, we have a special “marked” item a, 

such that, for some function !: 0,1 & → {0,1}
f(x)=1 iff x=a and 0 otherwise.



The setup
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• We have a function $ ! = (1 *$ ! = +
0 -./.



The Unitary for Grover

� ! = # − 2 & ⟨&|

� See this operator as “amplifying” the amplitude 
of &

� If we amplify the negative vectors enough then 
we could measure the required state with high 
probability. 

� More of an “amplification” algorithm than search. 
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The Algorithm
� Start by preparing uniform superposition 
! = #⨂% 0 % = '

√) ∑+,-.) / %
� (0 = 2%)
� Signifies maximal ignorance of special 

element a.
� The action of  V on ! ?



The Algorithm

� ! " = (% − 2 ( ⟨(|) " =
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• Applying the oracle to the initial state negates 
the amplitude of the satisfying element!



The Algorithm

� We now introduce the Grover diffusion 
operator. Recall ! = #

√% ∑'()*% + ,

�W = 2 ! ⟨!| − 2

� Question:  Let x be a standard basis 
vector. What is ( ! ⟨!|) + ?



The Algorithm

� We now introduce the Grover diffusion 
operator.

�W = 2 $ ⟨$| − (

� One iteration of the algorithm consists of 
applying the operator A = W V (that is, 
querying the oracle and then applying 
the diffusion operator). 



The Algorithm
W = 2 $ ⟨$| − (, ) = ( − 2 * ⟨*|

� After one iteration: 
+) $ = (2 $ ⟨$| − ()(( − 2 * ⟨*|) $ =
(2 $ ⟨$| + 2 * ⟨*| − /

0 $ ⟨*| − () $ =
1 − /

0 $ + 2
0 *

� We see that after one iteration, the 
probability of measuring a has increased. 



The Algorithm

� It can be checked that the operation 
rotates the state vector by Type
equation here. / (123)

1 ~ /
1

� Since we start out almost orthogonal to 
6 (Assuming N is large), we need to 

rotate by 7/ .

� So we need about 7 1
8 applications of the 

algorithm.



The start of one iteration
� We can visualize the operators in Grover’s 

algorithm as reflections in state space. 
Consider the target vector |a⟩ and the 
hyperplane of all other vectors " =
$
%&$∑()* + ,

� Assume the algorithm is at state - at 
the current iteration



The start of one iteration
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The start of one iteration
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After V - class exercise in 2D
! = # − 2 & ⟨&|

Question:  What operator on the plane is ! = # − 2 & ⟨&|?
(Draw the vector ! * on the plane)
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After V - class exercise in 2D
!
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After V - class exercise in 2D

! = # − 2 & ⟨&|
Corresponds to a flip over ) = *

+,*∑./0 1 2
Which is perpendicular to &

&

3 = 1*&4 + 6* &

&4

7

−7

! 3 = 1* &4 − 6* &



After V

V !

" = $ − 2 ' ⟨'|
Corresponds to a flip over *

* = 1
, − 1-./0
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After W - class exercise in 2D
W= 2 # ⟨#| − '

Question:  What operator on the plane is W= 2 # ⟨#| − '?
(Draw the vector W * on the plane)
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After W - class exercise in 2D
W= 2 # ⟨#| − '

Question:  What operator on the plane is W= 2 # ⟨#| − '?
(Draw the vector W * on the plane)

* = +, # + ., #/

# − 0 #

#/



After W - class exercise in 2D
W= 2 # ⟨#| − '
Corresponds to a flip over #

( = )* # + ,* #-
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After W - class exercise in 2D
W= 2 # ⟨#| − '
Corresponds to a flip over #

( = )* # + ,* #-

# − . #
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1 ( = )* # − ,* #-



Putting it together 
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Putting it together 
!

"

#

$
$

%

$ = 1
√) *

+,-./
0 1

# = 1
) − 1*-34

0 1

2%

67 "



In the end
! = 1

$ − 1&'()
* +



The Algorithm
� We concluded that V corresponds to a 

reflection over ! (perp to " ) and W 
corresponds to a reflection over $ (uniform 
superposition, and also starting state).

� If we define θ as the angle between $ and |e⟩, 
and φ as the angle between |ψ⟩ and |e⟩ (where 
|ψ⟩ is the state at the current iteration), we see 
that the transformations perform the following 
rotations: 



The Algorithm
� We concluded that V corresponds to a 

reflection over ! (perp to " ) and W 
corresponds to a reflection over 
$ (uniform superposition, and also 

starting state).
� If we define θ as the angle between $ and 

|e⟩, and φ as the angle between |ψ⟩ and |e⟩
(where |ψ⟩ is the state at the current 
iteration), we see that the transformations 
perform the following rotations: 

� $ →' − $→) $ + 2,



The Algorithm

� Question: what is ! (the angle between 
uniform superposition and uniform 
superposition minus a)?

"



The Algorithm

� After one iteration, we rotate the state 

vector by 2! = 2 arcsin *
+ ~ 2/√/

� Since we start out at state 0 (uniform) 
almost orthogonal to 1 ,(Assuming N is 
large), we need to rotate by 23 .

� So we need about 
5
678
38 ~9( /)

applications of the algorithm.


