Quantum SearchingGrover

PHYS/CSCl 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu

 ECES 122Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, over zoom.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, over zoom
- Steven Kordonowy:Th I lam-I2pm, over zoom.
- Matteo Wilczak:Wednesday, I-2pm, over zoom.

Today

- Searching for a marked item
- Grover's algorithm.

The problem

- Suppose we know that exactly one n-bit integer satisfies some condition.
- Namely, we have a special "marked" item a, such that, for some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ $f(x)=1$ iff $x=a$ and o otherwise.

The setup

- We have a function $f(x)=\left\{\begin{array}{c}1 \text { if } x=a \\ 0 \text { o.w. }\end{array}\right.$

The Unitary for Grover

- See this operator as "amplifying" the amplitude of $|a\rangle$
- If we amplify the negative vectors enough then we could measure the required state with high probability.
- More of an "amplification" algorithm than search.

The Algorithm

- Start by preparing uniform superposition

$$
|\phi\rangle \triangleq \underbrace{H^{\otimes n}|0\rangle_{n}}=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n} \begin{gathered}
\text { maximal } \\
\text { ignition }
\end{gathered}
$$

- $\left(N=2^{n}\right)$
- Signifies maximal ignorance of special element a.
- The action of \vee on $|\phi\rangle$? $V \triangleq$ Griever operator

$$
\begin{aligned}
& V|\phi\rangle=(I-2|a| a \mid)|\phi\rangle=I|\phi\rangle-2|a x a||\phi\rangle \\
& \left.={ }_{\prime \prime}^{\prime \prime}\left|-\frac{2}{\sqrt{N}}\right| a\right\rangle=\frac{1}{\sqrt{N}} \sum_{x \neq a}|x\rangle_{n}-\frac{1}{\sqrt{r}}|a\rangle
\end{aligned}
$$

The Algorithm

$$
\begin{aligned}
& \cdot V|\phi\rangle=(I-2|a\rangle\langle a|)|\phi\rangle= \\
& |\phi\rangle-2|a\rangle\langle a||\phi\rangle=|\phi\rangle-\frac{2}{\sqrt{ } N}|a\rangle= \\
& \frac{1}{\sqrt{ } N}\left(\sum_{x \neq a}|x\rangle_{n}\right)-\frac{1}{\sqrt{ } N}|a\rangle
\end{aligned}
$$

- Applying the oracle to the initial state negates the amplitude of the satisfying element!

The Algorithm

- We now introduce the Grover diffusion operator. Recall $|\phi\rangle=\frac{1}{\sqrt{N}} \sum_{0<x \leq N}|x\rangle_{n}$
- $\mathrm{W}=2|\phi\rangle\langle\phi|-I$

$$
P_{v o j_{|l\rangle}}=|\phi X p|
$$

- Question: Let x be a standard basis vector. What is $(|\phi\rangle\langle\phi|)|x\rangle$?

$$
|\phi x \underbrace{\phi|x\rangle}=\langle\phi \mid x\rangle| \phi\rangle=\frac{1}{\sqrt{N}}|\phi\rangle
$$

The Algorithm

- We now introduce the Grover diffusion operator.
- $\mathrm{W}=2|\phi\rangle\langle\phi|-I$
- One iteration of the algorithm consists of applying the operator $A=W \underset{V}{V}$ (that is, querying the oracle and then applying the diffusion operator). $\quad W V|\phi\rangle=1$ rieation.

The Algorithm

$$
\mathrm{W}=2|\phi\rangle\langle\phi|-I, V=I-2|a\rangle\langle a|
$$

- After one iteration:

$$
\begin{aligned}
W & \vee|\phi\rangle=\left(2|\phi \times \phi|-\frac{I}{)}(I-2|a \times a|)|\phi\rangle\right. \\
& =\underbrace{\left(2|\phi X \phi|+2|a \times a|-\frac{4}{\sqrt{N}}|\phi \times a|-I\right)}|\phi\rangle \\
& \left.=2|\phi X| \phi|\phi\rangle+2|a \times a| \phi\rangle-\frac{4}{\sqrt{N}}|\phi \times a| \phi\right\rangle-I|\phi\rangle \\
& =2|\phi\rangle+\frac{2}{\sqrt{N}}|a\rangle-\frac{4}{N}|\phi\rangle-|\phi\rangle \\
& =(1-4 / N| | \phi\rangle+\underbrace{\frac{2}{\sqrt{N}}|a\rangle}
\end{aligned}
$$

The Algorithm

$\mathrm{W}=2|\phi\rangle\langle\phi|-I, V=I-2|a\rangle\langle a|$

- After one iteration:
$W V|\phi\rangle=(2|\phi\rangle\langle\phi|-I)(I-2|a\rangle\langle a|)|\phi\rangle=$
$\left(2|\phi\rangle\langle\phi|+2|a\rangle\langle a|-\frac{4}{\sqrt{N}}|\phi\rangle\langle a|-I\right)|\phi\rangle=$
$\left(1-\frac{4}{N}\right)|\phi\rangle+\frac{2}{\sqrt{N}}|a\rangle$
- We see that after one iteration, the probability of measuring a has increased.

The Algorithm

wv

- It can be checked that the operation rotates the state vector by Type wiel monday

$$
2 \sqrt{(N-1)} \quad 2 \text { see on }
$$ equation here. $\frac{2 \sqrt{(N-1)}}{N} \sim \frac{2}{\sqrt{N}}$

- Since we start out almost orthogonal to $|a\rangle$ (Assuming N is large), we need to rotate by $\left(\frac{\pi}{2} .90^{\circ}\right.$
- So we need about $\frac{\pi \sqrt{N}}{4}$ applications of the algorithm

The Algorithm

- It can be checked that the operation rotates the state vector by Type equation here.

$$
\frac{2 \sqrt{(N-1)}}{N} \sim \frac{2}{\sqrt{N}}
$$

- Since we start out almost orthogonal to $|a\rangle$ (Assuming N is large), we need to rotate by $\frac{\pi}{2}$.
- How many times do I need to run the algorithm to measure $|a\rangle$ w.h.p?

The Algorithm

- It can be checked that the operation rotates the state vector by Type equation here. $\frac{2 \sqrt{(N-1)}}{N} \sim \frac{2}{\sqrt{N}}$
- Since we start out almost orthogonal to $|a\rangle$ (Assuming N is large), we need to rotate by $\frac{\pi}{2}$.
- So we need about $\frac{\pi \sqrt{N}}{4}$ applications of the algorithm.

