Breaking RSA

encryption-Shor's Algorithm

PHYS/CSCl 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X3I7.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy:Th I Iam-I2pm, ECAE 124.
- Matteo Wilczak:Wednesday, I-2pm, DUANG2B90 (physics help room)

Exam coming up!

- Midterm 2 March I8! (next week, on Wednesday)
- Focused on Chapter 6 and 3.

Last Class

- Finishing period Finding
- In class exercise without the offset

Today

- Finish Period finding correctness
- Reduce Factoring to Period Finding
- Intro to Cryptography

The Algorithm

- Lemma:

Suppose I take s independent samples drawn uniformly from $0, \frac{N}{r}, \ldots, \frac{(r-1) N}{r}$. Then with
probability at least $1-\frac{r}{2^{s^{\prime}}}$ the GCD of these samples is N / r.

Factoring

- Definition:

A non-trivial square root of 1 mod N is any integer $x \neq \pm 1 \bmod N$, such that $x^{2}=$ $1 \bmod N$.

Claim: If we can find a non-trivial square root of $1 \bmod N$, then it is easy to decompose N into a product of two nontrivial factors and repeat

Factoring

Lemma: If x is a non-trivial square root of 1 $\bmod N$, then $\operatorname{gcd}(x+1, N)$ is a non-trivial factor of N

Factoring

Lemma: If x is a non-trivial square root of 1 $\bmod N$, then $\operatorname{gcd}(x+1, N)$ is a non-trivial factor of N

Example: find a non-trivial root of 1 for $\mathrm{N}=15$. Find the factors of N using above lemma

Factoring

- Definition:

The order of $\mathrm{x} \bmod \mathrm{N}$ is the smallest positive integer r such that $x^{r}=1 \bmod N$.

Claim:
Let N be an odd composite, with at least two distinct prime factors. Let x be chosen uniformly at random between 0 and $N-1$. If $\operatorname{gcd}(x, N)=1$, then with probability at least $1 / 2$, the order r of $x \bmod \mathrm{~N}$ is even, and moreover, $x^{r / 2}$ is a nontrivial square root of $1 \bmod \mathrm{~N}$.

Factoring

- The claim implies that if we could compute the order r of a randomly chosen element x $\bmod \mathrm{N}$, then there's a good chance that this order is even and that $\operatorname{gcd}\left(x^{r / 2}+1, N\right)$ is a factor of N .

Some number theory.

What is $575(\bmod 7)$

A) 1
B) 3
C) 5
D) 0

Cryptography warm-up

One of the earliest known cryptographic ciphers was used by Julius Caesar.
His strategy was to shift each letter of the alphabet forward 3 places, wrapping around when you get to the end.
In this scheme, for example: $\mathrm{A} \mapsto \mathrm{D}, \mathrm{K} \mapsto \mathrm{N}, \mathrm{Y} \mapsto \mathrm{B}$
This is often called a Caesar Cipher or a Shift Cipher.

- Mathematically, we can accomplish this by assigning to each letter a number between 0 and 25. For example:

$$
A \mapsto 0, K \mapsto 10, Y \mapsto 24
$$

- The encoding can be done by passing the value through a shift function modulo 26:

$$
f(p)=(p+3) \bmod 26
$$

Cryptography warm-up

In general, for a shift k we can use the function

$$
f(p)=(p+k) \bmod 26
$$

We can encode a message by:
I. Convert letters to numbers between 0 and 25
2. Pass each value through $f(p)$

- Example: Encode HELLO WORLD using a shift=5 cipher

Cryptography warm-up

In general, for a shift k we can use the function

$$
f(p)=(p+k) \bmod 26
$$

We can encode a message by:
I. Convert letters to numbers between 0 and 25
2. Pass each value through $f(p)$

- Example: Encode HELLO WORLD using a shift=5 cipher
I. Convert to numbers: HELLO WORLD $\rightarrow 74$ || || |4 22 |4 |7 || 3

2. Shift: 129 I6 I6 I9 I I9 22 I6 8

The encoded message is: MJQQT BTWQI

Cryptography warm-up

- How do we decode a message like MJQQT BTWQI ?
- If we know the shift, then it's easy - just run the message through the inverse:

$$
f^{-1}(p)=(p-k) \bmod 26
$$

- Why is this not a very secure cipher?

Cryptography warm-up

The Affine Cipher

- Instead of only shifting, multiply and then shift

$$
f(p)=(a p+b) \bmod 26
$$

where a and b are integers with $\operatorname{gcd}(a, 26)=1$

- S'pose we know a and b (i.e., we have the key) - how could we decode a message?

$$
f(p)=(a p+b) \bmod 26
$$

Some crypto

S'pose we know a and b (i.e., we have the key) - how could we decode a character c (say p is the original character that got encoded to c)?
A) $p=a^{-1}(c-b) \bmod 26$
B) $p=a^{-1} b \bmod 26$
C) $p=a^{-1} c \bmod 26$
D) $p=(c-b) \bmod 26$

Cryptography warm-up

S'pose we know a and b (i.e., we have the key) - how could we decode a message?

- S'pose we have an encrypted character c that we know must satisfy

$$
c \equiv a p+b(\bmod 26)
$$

- Then we need to solve this congruence for p. So subtract b from both sides $c-b \equiv a p(\bmod 26)$
- Now we need the inverse of a (modulo 26), which we know exists because $\operatorname{gcd}(a, 26)=1$. Call the inverse \bar{a}, and we have

$$
p \equiv \bar{a}(c-b)(\bmod 26)
$$

Some crypto.

Use an affine cipher with $a=7$ and $b=13$ to encrypt the letter K.
A) A
B) W
C) H
D)F

Cryptography warm-up

Example: Use an affine cipher with $a=7$ and $b=13$ to encrypt the letter K.

Example: Find a decryption formula for this affine cipher and use it to decrypt the character F.

Cryptography warm-up

Example: Use an affine cipher with $a=7$ and $b=13$ to encrypt the letter K.
Solution: The numerical value for K is 10 , so we have
$K \mapsto a \cdot 10+b=7 \cdot 10+13=83 \equiv 5(\bmod 26) \mapsto F$

Example: Find a decryption formula for this affine cipher and use it to decrypt the character F.

Solution: Recall from earlier that we had the formula: $p \equiv \bar{a}(c-b)(\bmod 26)$
So we need the inverse of $a=7$ (modulo 26)

Cryptography warm-up

Example: Find a decryption formula for this affine cipher and use it to decrypt the character F.

Cryptography warm-up

Example: Find a decryption formula for this affine cipher and use it to decrypt the character F.

So we need the inverse of $a=7$ (modulo 26):

$$
\begin{aligned}
& 26=3 \cdot 7+5 \\
& 7=1 \cdot 5+2 \\
& 5=2 \cdot 2+1
\end{aligned}
$$

... and in reverse ...

$$
\begin{aligned}
& I=5-2 \cdot 2 \\
= & 5-2 \cdot(7-\mid \cdot 5)=3 \cdot 5-2 \cdot 7 \\
= & 3 \cdot(26-3 \cdot 7)-2 \cdot 7=3 \cdot 26-1 \mid \cdot 7
\end{aligned}
$$

So the inverse of 7 (modulo 26) is - I I

Cryptography warm-up

Example: Find a decryption formula for this affine cipher and use it to decrypt the character F.

So the inverse of 7 (modulo 26) is - 11
Plugging into the decryption formula we have: (with character $F \mapsto 5$)
\bar{a}

$$
\begin{aligned}
p & \equiv(c-b)(\bmod 26) \\
& \equiv-11 \cdot(5-13)(\bmod 26)
\end{aligned}
$$

$\equiv 88(\bmod 26)$
(note: $26 \cdot 3=78$)

$$
\equiv 10(\bmod 26) \mapsto K
$$

Cryptography warm-up

Example: Find a decryption formula for this affine cipher and use it to decrypt the character F.

So the inverse of 7 (modulo 26) is -11
Plugging into the decryption formula we have: (with character $F \mapsto 5$)
$p \equiv \bar{a}^{(c-b)(\bmod 26)}$
$\equiv-| | \cdot(5-\mid 3)(\bmod 26)$
$\equiv 88(\bmod 26)$
(note: $26 \cdot 3=78$)
$\equiv I 0(\bmod 26) \mapsto K$

FYOG: Encrypt HELLO WORLD with an affine cipher with $a=5$ and $b=I 7$. Derive the decryption formula and check that your encrypted message decrypts back properly.

Systems of congruences and Cryptography-Lite

We need:

- Back substitution and Chinese Remainder Theorem provide two avenues to solve systems of congruences
- Fermat's Little Theorem offers a nice way to calculate giant numbers quickly
- Affine and shift cyphers -- two relatively simple examples for encoding/decoding messages; based on shifting and multiplying your intended message

Next time:

- Cryptography-Heavy and bringing it all this number theory together: RSA

