Breaking RSA

encryption-Shor's Algorithm

PHYS/CSCl 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X3I7.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy:Th I Iam-I2pm, ECAE 124.
- Matteo Wilczak:Wednesday, I-2pm, DUANG2B90 (physics help room)

Exam coming up!

- Midterm 2 March I8! (next week, on Wednesday)
- Focused on Chapter 6 and 3.

Last Class

- Finishing period Finding
- In class exercise without the offset

Today

- Finish Period finding in class
- Finish correctness argument
- Start on connections with Factoring

DFT

- Let $\omega=e^{2 \pi i / N}$ a primitive N -th root of unity
- $f=(f(0), f(1), \ldots, f(N-1))$ a function
- The Discrete Fourier Transform of f is defined as

$$
\mathrm{F}=(F(0), F(1), \ldots, F(N-1))
$$

- Where $F(k)=\sum_{n} \omega^{k n} f(n)$

QFT

- Say we have n qubits. (So 2^{n} possible basis vectors).
- $\omega=e^{\frac{2 \pi i}{2^{n}}}$
- $U_{F T}|x\rangle_{n}=\frac{1}{2^{\frac{n}{2}}} \sum_{y} \omega^{x y}|y\rangle_{n}$

QFT

- $f=(f(0), f(1), \ldots, f(N-1)), \mathrm{N}=2^{\mathrm{n}}$
- $f=\sum_{x} f(x)|x\rangle_{n}$
- $U_{F T}\left(\sum_{x} f(x)|x\rangle_{n}\right)=\sum_{y} F(y)|y\rangle_{n}$
$\notin F(y)=\frac{1}{2^{\frac{n}{2}} \sum_{x} \omega^{x y} f(x)}$
- So $U_{F T}\left(\sum_{x} f(x)|x\rangle_{n}\right)=$
$\frac{1}{2^{\frac{n}{2}}} \sum_{y} \sum_{x} \omega^{x y} f(x)|y\rangle_{n}$

The Algorithm

- Assume, for now, that r divides N .
- The superposition $\left(\sum_{k}\left|x_{0}+k r\right\rangle\right)$ consists of N / r different multiples of r .
- So my state after collapse is

$$
\frac{1}{\sqrt{\frac{N}{r}}}\left(\sum_{k=0 \text { to } \frac{N}{r}}\left|x_{0}+k r\right\rangle\right)
$$

The Algorithm

- Theorem:

Suppose the input to QFT is periodic with period r, for some r that divides N. Then the output will be a multiple of N / K, and it is equally likely to be any of the r multiples of N / r.

- Now we repeat the experiment a few times and take GCD of all the indices returned, we get N / r (and thus r) w.h.p.

The Algorithm

Carbitram
 $\sqrt{\frac{N}{r}}$ assume $N / r \in \mathbb{N}$ assume $x_{0}=0$.

- Claim (ex. in class):

If $|a\rangle=\frac{1}{\sqrt{\frac{N}{r}}}\left(\sum_{j}|j r\rangle\right)$ then

$$
U_{F T}(|a\rangle)=|\beta\rangle=\frac{1}{\sqrt{r}}\left(\sum_{j=0 \text { tor }-1}\left|\frac{j N}{r}\right\rangle\right)
$$

Sums of roots of unity.

What is the sum $1+\omega^{j r}+\omega^{2 j r}+\omega^{3 j r}+\cdots+\omega^{\left(\frac{N}{r}-1\right) j r}$, where $\omega=e^{2 \pi i / N}$
$1+\omega^{j r}+\omega^{2 j r}+\omega^{3 j r}+\cdots+\omega^{\left(\frac{N}{r}-1\right) j r}=\frac{\mathrm{N}}{\mathrm{r}}$ if $j r=0 \bmod N$
$1+\omega^{j r}+\omega^{2 j r}+\omega^{3 j r}+\cdots+\omega^{\left(\frac{N}{r}-1\right) j r}=0$ otherwise

$$
\begin{aligned}
|a\rangle & \left.=\sum_{j=0}^{N / r-1} \sqrt{r} / N r\right\rangle=\sum_{j=0}^{N / r-1} \sqrt{r}|j r\rangle+\sum_{x} 0 .|x\rangle \\
& =\sum_{x} f(x)|x\rangle \\
& f_{r}(x)= \begin{cases}0 & x \neq 0 \bmod r \\
\sqrt{r} / N & \text { ow }\end{cases}
\end{aligned}
$$

claim: $\quad|a\rangle=\sum f_{r}(x)|x\rangle=\sum_{x=\text { ovolr }} f_{r}(x)|x\rangle+$

$$
\begin{array}{ll}
\sum_{F T}\left(\sum f_{6}(x)(x\rangle\right)=\sum F_{r}(y)|y\rangle, & F_{r}(y)=\sum_{j} \omega_{r}^{j y} f_{r}(j)
\end{array}
$$

$$
\begin{aligned}
& f_{r}(y)=\frac{1}{\sqrt{N}} \sum_{l} f_{r}(l) \omega^{l y} \quad f r(l)= \begin{cases}0 & \text { ow } \\
\sqrt{\frac{r}{N}} & \text { if } l_{\text {lim }}=0 \text { i }\end{cases} \\
& \operatorname{Fr}(y)=\frac{1}{\sqrt{N}} \cdot \sqrt[r]{\frac{r}{N}} \sum_{i=0}^{r / 2} \omega^{\frac{1}{1}} \omega^{i r y}=\frac{\operatorname{Fr}}{N}\left(1+\omega^{y r}+\omega^{2 y r}+\cdots\right) \\
& \left.\sum f_{r}(y)|y\rangle\right\rangle_{-}^{(l=i r)} \begin{array}{ll}
0 & \text { if } y r \neq 0 \bmod N \\
r & \sum_{i=0}^{r-1}|i N / r\rangle
\end{array}\left\{\begin{aligned}
\frac{\sqrt{r}}{N} \cdot \frac{N}{r} & \text { if } y r=\operatorname{lnod} N \\
=1 / \sqrt{r} & \text { for } y=i \cdot N / r
\end{aligned}\right.
\end{aligned}
$$

Some probability.

If I take a sample from the uniform distribution on $\{0,1 \ldots, r-1\}$, what is the probability (at most) that the number I get is a multiple of an integer j ?
A) 0
B) $1 / \mathrm{j}$
C) 1
D) 1 don't know

The Algorithm

- Lemma:

Suppose I take s independent samples drawn uniformly from $0, \frac{N}{r}, \ldots, \frac{(r-1) N}{r}$. Then with probability at least $1-\frac{r}{2^{s^{\prime}}}$ the GCD of these samples is N / r.
egg: $\mu / r=3$
$4 . N / \mathrm{r} \quad 8 \cdot \mathrm{~N} / \mathrm{r}(\mathrm{baO})$
$r=100$

Some more probability.

Suppose I flip s coins, each of which has probability of heads *less* than p. What is upper bound on the the probability that all of them come out heads? (the smallest)
A) p
B) p^{s}
C) $1-p$
D) $1-p^{s}$

Some more more probability.
Suppose I have a set of r bad events, $\left\{E_{j}\right\}_{j=0}^{r-1}$, and each of the E_{j} happens with probability at most p. What is and upper bound on the probability that a+ lon
sue
Es miqut be dependent
A) p
B) $r p$
C) $1-p$
D) p^{r}
union banal

The Algorithm

- Lemma:

Suppose I take s independent samples drawn uniformly from $0, \frac{N}{r}, \ldots, \frac{(r-1) N}{r}$. Then with
probability at least $1-\frac{r}{2^{s^{\prime}}}$ the GCD of these samples is N / r.

