
Breaking RSA
encryption-Shor’s
Algorithm

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Come see us!

� Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE
124.

� Matteo Wilczak: Wednesday, 1-2pm,
DUANG2B90 (physics help room)

Last Class

� Period finding, DFT, QFT

Today

� Finish Period finding

The problem
� One is told that f is periodic under ordinary

addition, ! " = ! $, if " = &' + $, for any
integer k.

� i.e x and y differ by an integral multiple or
period r.

� The problem is to find the period r.

DFT

� Let ω = #!"#/% a primitive N-th root of
unity

� $ = $ 0 , $ 1 ,… , $) − 1 a function
� The Discrete Fourier Transform of $ is

defined as
F = , 0 , , 1 ,… , ,) − 1

� Where , - = ∑&/'&$(1)

QFT

� Say	we	have	n	qubits.	(So	2! possible	
basis	vectors).

� 9 = ;
!"#
!$

� <"# = $ = %
&
$
!
∑'9(' ? $

QFT

� ! = ! 0 , ! 1 ,… , ! ' − 1 , N = 2!
� ! = ∑" !(-) - #
� /$%(∑" !(-) - #) = ∑& 0(1) 1 #
� 0 1 = '

(
!
"
∑"2"&!(-)

� So /$%(∑" !(-) - #) =
'
(
!
"
∑&∑"2"&!(-) 1 #

QFT in matrix form

!(0)
!(1)…

!(' − 1)
=

!
√#

1 1 …
1 * *$
1
1
1

*$
*%
*#&!

*'
*$%

*$(#&!)

1 1 1
… *#&$ *#&!
…
…
…

…
……

*$(#&!)
*(#&!)%

*(#&!)(#&!)

+(0)
+(1)…

+(' − 1)

QFT in matrix form

� Suggests an N2 algorithm. Classical FFT is performed in
O(NlogN) steps
� Quantum FT exponentially faster, !(log!&) !
� Wait, how can an algorithm run in time less than the size of

input??

Smaller than input size?

A)Quantum computers achieve
exponential speedup

C) Input size is actually logN D)Some serious magic happening

We know that no algorithm can run in time less than linear in the input size n, since
it at least has to read the input in Ω(#) time.
How can the QFT run in time log N?

B)QFT does not need to
read the whole input like binary search

QFT in matrix form

� Suggests an N2 algorithm. Classical FFT is performed in
O(NlogN) steps
� Quantum FT exponentially faster, !(log!&) !
� Wait, how can an algorithm run in time less than the size of

input??
� Classical FFT always outputs the whole Fourier transorm. While

Quantum FT is more like Sampling. Measure F(k) with some
probability.

The Algorithm
� 1) Prepare: ("⨂"⨂I) 0 " 0 "! =#
$"/$∑%&'($") " 0 "

� 2) Single application of oracle (can be done
efficiently for our f):

U)(#
$"/$∑%&'($") " 0 "!)=

#
$"/$∑%&'($") " +()) "!

� 3)Measure output register: If I get some value of f,
say f(x0), then input register is #* ∑+)% + -.

The Algorithm
� 4) Apply QFT to !" ∑# "$ + $%

How many multiples of r?

A) N

C) r D) It depends on x0

Assume that r divides N.
The superposition ∑! "" + $% consists of how many different multiples of r?

B) N/r

The Algorithm
� Assume, for now, that r divides N.
� The superposition ∑! "" + $% consists of

N/r different multiples of r.
� So my state after collapse is

#
!
"

∑!$" %&!"
"" + $%

The Algorithm
� Theorem:
Suppose the input to QFT is periodic with
period r, for some r that divides N. Then the
output will be a multiple of N/k, and it is equally
likely to be any of the r multiples of N/r.

� Now we repeat the experiment a few times
and take GCD of all the indices returned, we
get N/r (and thus r) w.h.p.

The Algorithm
� 4) Apply QFT to !

!
"

∑" "# + $% . First

assume "# = 0.
� Claim (ex. in class):

If) = !
!
"

∑" $% then

*$%) = |,⟩ = 1
% /

"&# '()*!

$0
%

Sums of roots of unity.

A) N/r-1

C) 1 D) It depends on jr mod (N)

What is the sum 1 + #!" +##!" +#$!" +⋯+#(!"&')!" , where # = &#)*/,

B) 0

