
Breaking RSA
encryption-Shor’s
Algorithm

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Come see us!

� Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE
124.

� Matteo Wilczak: Wednesday, 1-2pm,
DUANG2B90 (physics help room)

Last Last Last Class

� Simon’s problem, dealing with periodic
functions under bitwise addition mod 2

Today

� Shor’s problem

� Find the period r of a function f on the
integers that is periodic under ordinary
addition.

The problem
� One is told that f is periodic under ordinary

addition, ! " = ! $, if " = &' + $, for any
integer k.

� i.e x and y differ by an integral multiple or
period r.

� The problem is to find the period r.

The problem
� Finding the period is not always easy.
� The function can be virtually random within the

period r
� Best known classical algorithms take time

exponential (!(2$
!
")), where n is the number of

bits of r.
� Shor’s algorithm takes time a little less than &'.
� Any computer that can efficiently find periods,

breaks RSA
� Would be enormous threat to the security of

military and commercial communications.

Primes

A) Linear in the input size. B)Exponential in the input size

C) Quadratic in the input size D) Polynomial in the input size.

I am given a number N and I want to determine if N is a prime.
Consider the following algorithm:
For all integers ! from 1 #$ %/2, check if ! divides N.
If I find an ! that divides N, output “NO”
Otherwise, output “YES”.

The running time of this algorithm is

Periodic?

A) Yes B)No

C) Maybe D) It depends on b.

Assume we have a function ! " = $% &'() , for some integers b and N
Is f periodic?

Periodic?

A) Yes B)No

C) Maybe D) It depends on b.

Assume we have a function ! " = $% &'() , for some integers b and N
With gcd (b,N)=1. Is f periodic?

Some number theory
• Assume we have a function ! " = $% &'() ,
for some integers b and N that are coprime.
• Fact: there is an integer r such that $+ ≡ 1 &'()
• So ! " + / = $%0+ = $%$+ = $% = ! " &'()

• Also, ! " + 1/ = !(") for any multiple k of r. (ex)

Congruences

A) 6 ≡ 1 #$% 4 B) 5 ≡ 0 #$% 4

C) 15 ≡ 3 #$% 4 D) 12 ≡ 1 #$% 4

Which of the following congruences is true?

The setup

Uf

! n
bi

ts
n

bi
t

" n bit
n

bits

!

"⨁$(!)

• We have a function ! " = $' (&'()), which is
periodic with some period r.

• We want to find r fast.
• Classically?
• Try to find two different values x, y that f(x)=f(y).
• Will learn something about the period this way

(x,y differ by multiple of the period)
• Really inefficient even classically!!

Number Theoretic Preliminaries
• We have a function ! " = $! (&'()), which is

periodic with some period r.
• We want to find r fast.
• Let N=pq, the product of two primes. Assume it

can be represented with n0 bits (2", is smallest
power of 2 that exceeds N).

• If N is a 500 digit number, as in popular crypto
applications, then n0 ~1700

• To have an appreciable probability of finding r by
random searching, we would need to evaluate f an
exponential number of times in n0

• Quantum parallelism gets us very close to
evaluating Uf only once!

• And can solve the problem exactly in polynomial
in n0 time.

The Algortihm
� 1) Prepare: ("⨂$⨂I) 0 $ 0 $! =)
"/$∑,-./" 0 $ 0 $

� 2) Single application of oracle (can be done
efficiently for our f):

U2()
"/$∑,-./" 0 $ 0 $!)=

)
"/$∑,-./" 0 $ 3(0) $!

� 3)Measure output register: If I get some value
of f, say f(x0), then input register is…

The collapse step

A) !" #$ + #$ + & B) !' ∑) #$ + *&

C) #$ D) !
"!/#∑$+,-"! # .

Assume x0 is the smallest value such that f(x0)=f0.
What is the input register after we measure the output register and we get a
value, say f0?

The Algorithm
� 1) Prepare: ("⨂$⨂I) 0 $ 0 $! =)
"/$∑,-./" 0 $ 0 $

� 2) Single application of oracle (can be done
efficiently for our f):

U2()
"/$∑,-./" 0 $ 0 $!)=

)
"/$∑,-./" 0 $ 3(0) $!

� 3)Measure output register: If I get some value of f,
say f(x0), then input register is)4 ∑5 0, + 78

Reminder: The Algortihm for
Simon’s
� 1) Prepare: ("⨂$⨂I) 0 $ 0 $ =)
!/#∑,-./! 0 $ 0 $

� 2) Orace: U2()
!/#∑,-./! 0 $ 0 $)=

)
!/#∑,-./! 0 $ 3(0) $

� 3)Measure output register: If I get some
value of f, say f(x0), then input is)* ()

0, +
0, ⊕ 6

Simons

3)Measure output register: If I get some
value of f, say f(x0), then input is !" (

)
+

##⊕&

Simons

� 3) Measure output register: If I get some value
of f, say f(x0), then input is !" !# + !#⊕$

� 4)Apply %⨂% to input register

&'($)): %⨂% ! % = !
",/. ∑&'#

",(! −1 &⋅* 2 %

%⨂% !
" !# + !#⊕$ =

!
"(,45)/. ∑&'#

",(!(−1 &⋅*7 + −1 &⋅(*7⊕-)) 2 %

Simons

!⨂# $
% &' + &' ⊕ * =

$
%("#$)/'∑,-'

%".$(−1 ,⋅3(+ −1 ,⋅(3(⊕4)) 6 #

� Since −1 ,⋅(3(⊕4) = −1 ,⋅3(−1 ,⋅4, the
coefficient of 6 is zero if 6 ⋅ * = 1 and 2 −1 ,⋅3(
if 6 ⋅ * = 0

� State is: $
%(")$)/'∑,⋅4-' −1

,⋅3(6 #,

� Only the y’s such that * ⋅ 6 = 0 survive!
� If we measure the input register, we learn with

equal probability any of the values of y such that
* ⋅ 6 = 0.

Number Theoretic Preliminaries
• For Simon’s problem, we moved the information

of the “period” a to the phase.
• Can we do something similar here?
• The answer is Quantum Fourier Transform! (to

be continued…)

