encryption-Shor's Algorithm

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X3I7.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy:Th I Iam-I2pm, ECAE 124.
- Matteo Wilczak:Wednesday, I-2pm, DUANG2B90 (physics help room)

Last Last Last Class

- Simon's problem, dealing with periodic functions under bitwise addition mod 2

Today

- Shor's problem
- Find the period r of a function f on the integers that is periodic under ordinary addition.

The problem

One is told that f is periodic under ordinary addition, $f(y)=f(x)$, if $y=k r+x$, for any integer k.

- i.e x and y differ by an integral multiple or period r.
- The problem is to find the period r.

The problem

- Finding the period is not always easy.
- The function can be virtually random within the period r
- Best known classical algorithms take time exponential $\left(O\left(2^{n \overline{3}}\right)\right)$, where n is the number of bits of r.
- Shor's algorithm takes time a little less than n^{3}.
- Any computer that can efficiently find periods, breaks RSA
- Would be enormous threat to the security of military and commercial communications.

Primes

I am given a number N and I want to determine if N is a prime.
Consider the following algorithm:
For all integers i from 1 to $N / 2$, check if i divides N .
If I find an i that divides N , output "NO" Otherwise, output "YES".

The running time of this algorithm is
$\begin{array}{ll}\text { A) Linear in the input size. } & \text { B) Exponential in the input size }\end{array}$
C) Quadratic in the input size
D) Polynomial in the input size.

Periodic?

Assume we have a function $f(x)=b^{x}(\bmod N)$, for some integers b and N Is f periodic?
A) Yes
B) No
C) Maybe
D) It depends on b.

Periodic?

Assume we have a function $f(x)=b^{x}(\bmod N)$, for some integers b and N With gcd (b,N)=I. Is f periodic?
A) Yes
B) No
C) Maybe
D) It depends on b.

Some number theory

- Assume we have a function $f(x)=b^{x}(\bmod N)$, for some integers b and N that are coprime.
- Fact: there is an integer r such that $b^{r} \equiv 1(\bmod N)$
- So $f(x+r)=b^{x+r}=b^{x} b^{r}=b^{x}=f(x)(\bmod N)$
- Also, $f(x+k r)=f(x)$ for any multiple k of r . (ex)

Congruences

Which of the following congruences is true?
A) $6 \equiv 1(\bmod 4)$
B) $5 \equiv 0(\bmod 4)$
C) $15 \equiv 3(\bmod 4)$
D) $12 \equiv 1(\bmod 4)$

The setup

- We have a function $f(x)=b^{x}(\bmod N)$, which is periodic with some period r.
- We want to find r fast.
- Classically?
- Try to find two different values x, y that $f(x)=f(y)$.
- Will learn something about the period this way (x, y differ by multiple of the period)
- Really inefficient even classically!!

NumberTheoretic Preliminaries

- We have a function $f(x)=b^{x}(\bmod N)$, which is periodic with some period r.
- We want to find r fast.
- Let $N=p q$, the product of two primes.Assume it can be represented with n_{0} bits ($2^{n_{0}}$ is smallest power of 2 that exceeds N).
- If N is a 500 digit number, as in popular crypto applications, then $n_{0} \sim 1700$
- To have an appreciable probability of finding r by random searching, we would need to evaluate f an exponential number of times in n_{0}
- Quantum parallelism gets us very close to evaluating Uf only once!
- And can solve the problem exactly in polynomial in n_{0} time.

The Algortihm

- I) Prepare: $\left(H^{\otimes n} \otimes \mathrm{I}\right)|0\rangle_{n}|0\rangle_{n_{0}}=$
$\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}$
- 2) Single application of oracle (can be done efficiently for our f):
$\mathrm{U}_{\mathrm{f}}\left(\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n_{0}}\right)=$
$\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|f(x)\rangle_{n_{0}}$
- 3)Measure output register: If I get some value of f, say $f\left(x_{0}\right)$, then input register is...

The collapse step

Assume x_{0} is the smallest value such that $f\left(x_{0}\right)=f_{0}$. What is the input register after we measure the output register and we get a value, say f_{0} ?
A) $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0}+r\right\rangle\right)$
B) $\frac{1}{\sqrt{m}}\left(\sum_{k}\left|x_{0}+k r\right\rangle\right)$
C) $\left|x_{0}\right\rangle$
D) $\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}$

The Algorithm

- I) Prepare: $\left(H^{\otimes n} \otimes \mathrm{I}\right)|0\rangle_{n} \quad|0\rangle_{n_{0}}=$ $\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}$
- 2) Single application of oracle (can be done efficiently for our f):

$$
\begin{aligned}
& \mathrm{U}_{\mathrm{f}}\left(\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n_{0}}\right)= \\
& \frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|f(x)\rangle_{n_{0}}
\end{aligned}
$$

- 3)Measure output register: If I get some value of f, say $\mathrm{f}\left(\mathrm{x}_{0}\right)$, then input register is $\frac{1}{\sqrt{m}}\left(\sum_{k}\left|x_{0}+k r\right\rangle\right)$

Reminder: The Algortihm for

 Simon's- I) Prepare: $\left(H^{\otimes n} \otimes \mathrm{I}\right)|0\rangle_{n} \quad|0\rangle_{n}=$ $\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}$
-2) Orace: $\mathrm{U}_{\mathrm{f}}\left(\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}\right)=$
$\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|f(x)\rangle_{n}$
- 3)Measure output register: If I get some value of f, say $f\left(\mathrm{x}_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\right.$ $\left.\left|x_{0} \oplus a\right\rangle\right)$

Simons

3)Measure output register: If I get some value of f, say $f\left(x_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\right.$ $\left.\left|x_{0} \oplus a\right\rangle\right)$

Simons

- 3) Measure output register: If I get some value of f, say $f\left(x_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right.$
- 4)Apply $H^{\otimes n}$ to input register

Recall: $H^{\otimes n}|x\rangle_{n}=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1}(-1)^{y \cdot x}|y\rangle_{n}$
$H^{\otimes n} \frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right)=$
$\frac{1}{2^{(n+1) / 2}} \sum_{y=0}^{2^{n}-1}\left((-1)^{y \cdot x_{0}}+(-1)^{y \cdot\left(x_{0} \oplus a\right)}\right)|y\rangle_{n}$

Simons

$H^{\otimes n} \frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right)=$
$\frac{1}{2^{(n+1) / 2}} \sum_{y=0}^{2^{n}-1}\left((-1)^{y \cdot x_{0}}+(-1)^{y \cdot\left(x_{0} \oplus a\right)}\right)|y\rangle_{n}$

- Since $(-1)^{y \cdot\left(x_{0} \oplus a\right)}=(-1)^{y \cdot x_{0}}(-1)^{y \cdot a}$, the coefficient of $|y\rangle$ is zero if $y \cdot a=1$ and $2(-1)^{y \cdot x}$ if $y \cdot a=0$
- State is: $\frac{1}{2^{(n-1) / 2}} \sum_{y \cdot a=0}(-1)^{y \cdot x_{0}}|y\rangle_{n \prime}$
- Only the y's such that $a \cdot y=0$ survive!
- If we measure the input register, we learn with equal probability any of the values of y such that $a \cdot y=0$.

Number Theoretic Preliminaries

- For Simon's problem, we moved the information of the "period" a to the phase.
- Can we do something similar here?
- The answer is Quantum Fourier Transform! (to be continued...)

