Simon’s Problem

PHYS/CSCI 3090

Prof. Alexandra Kolla
Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html
Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X317.
- Ariel Shlosberg: Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy: Th 11am-12pm, ECAE 124.
- Matteo Wilczak: Wednesday, 1-2pm, DUANG2B90 (physics help room)
Midterm 1

- Midterm 1 in class in 2 days (Feb 12)
- 2pm in JILA X325, which is right next to X317
Last Class

- Bernstein-Vazirani
- Start of Simon’s
Today

- Simon’s problem
- While Bernstein Vazirani gets linear speedup on quantum computer, we can achieve exponential speedup for Simon’s problem
Simon’s problem

• One is told that f is periodic under bitwise modulo-2 addition, $f(x \oplus a) = f(x)$, for all x
• The problem is to find the period a.
• Precursor to Shor’s factoring, where we are interested in functions that are periodic under ordinary addition (decimal).
The setup

Steps:
- Prepare the input register in uniform superposition
- Apply U_f
- Measure output register
The Algorithm

1) Prepare: \((H^\otimes n \otimes I) \ket{0}_n = \frac{1}{2^{n/2}} \sum_{0<x\leq 2^n} \ket{x}_n \ket{0}_n \)

2) Oracle: \(U_f(\frac{1}{2^{n/2}} \sum_{0<x\leq 2^n} \ket{x}_n \ket{0}_n) = \frac{1}{2^{n/2}} \sum_{0<x\leq 2^n} \ket{x}_n \ket{f(x)}_n \)

3) Measure output register: If I get some value of \(f \), say \(f(x_0) \), then input is \(\frac{1}{\sqrt{2}} (\ket{x_0} + \ket{x_0 \oplus a}) \)
The Algorithm

3) Measure output register: If I get some value of \(f \), say \(f(x_0) \), then input is \(\frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) \)
The Algorithm, cont

3) Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle)$.

4) Apply $H^\otimes n$ to input register

Recall: $H^\otimes n |x\rangle_n = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{y \cdot x} |y\rangle_n$

\[
H^\otimes n \frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) = \frac{1}{2^{(n+1)/2}} \sum_{y=0}^{2^n-1} ((-1)^{y \cdot x_0} + (-1)^{y \cdot (x_0 \oplus a)}) |y\rangle_n
\]
The Algorithm, cont

\[H^\otimes n \frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) = \]
\[\frac{1}{2^{(n+1)/2}} \sum_{y=0}^{2^n-1} ((-1)^{y \cdot x_0} + (-1)^{y \cdot (x_0 \oplus a)}) |y\rangle_n \]

- Since \((-1)^{y \cdot (x_0 \oplus a)} = (-1)^{y \cdot x_0} (-1)^{y \cdot a}\), the coefficient of \(|y\rangle\) is zero if \(y \cdot a = 1\) and \(2(-1)^{y \cdot x_0}\) if \(y \cdot a = 0\).
- State is: \(\frac{1}{2^{(n-1)/2}} \sum_{y \cdot a=0} (-1)^{y \cdot x_0} |y\rangle_n\).
- Only the \(y\)'s such that \(a \cdot y = 0\) survive!
- If we measure the input register, we learn with equal probability any of the values of \(y\) such that \(a \cdot y = 0\).
Analysis of the Algorithm

- With each invocation of U_f, we learn a random y satisfying
 \[a \cdot y = \sum_{i=0}^{n-1} y_i a_i = 0 \mod 2. \]
- If we call U_f m times, we learn m independently selected random numbers y with this property.
- Need to do some math to see how this helps.
Analysis of the Algorithm

Definition: a set of vectors $y^{(1)}, \ldots, y^{(m)}$ is linearly independent, if there is no subset of those vectors such that

$y^{(i_1)} \oplus \cdots \oplus y^{(i_j)} = 0 \mod 2$
Assume I have m linear equations (mod 2) of the form $\sum_{i=0}^{n-1} y_i^{(k)} a_i = 0 \mod 2$. For m different vectors $y^{(1)}, \ldots, y^{(m)}$. Assume, moreover, that the $y^{(k)}$ are all linearly independent. What does m need to be in order to completely determine a?

A) n
B) 1
C) $n - 1$
D) n^2
Analysis of the Algorithm

- With each invocation of U_f, we learn a random y satisfying $a \cdot y = \sum_{i=0}^{n-1} y_i a_i = 0 \mod 2$.
- If we call U_f m times, we learn m independently selected random numbers y with this property.
- We have to invoke the subroutine enough times to give us high probability of coming up with $n-1$ linearly independent y.
Analysis of the Algorithm

- Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i.
How many elements?

Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. Assume $D_i = k$. How many elements does S_i have? In other words, what is $|S_i|$?

A) 2^n
B) 2^k

C) k
D) n
Conditional Probability

Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. What is $P(D_{i+1} = k + 1|D_i = k)$?

A) $\frac{2^n - |S_i|}{2^n}$

B) 1

C) $\frac{n-k}{2^n}$

D) $\frac{n-k}{n}$
Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. What is $P(D_{i+1} = k|D_i = k)$?

A) $\frac{|S_i|}{2^n}$

B) 0

C) $\frac{k}{2^n}$

D) $\frac{k}{n}$
Analysis of the Algorithm

- Let \(S_i = Span\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\} \) and \(D_i \) the dimension of \(S_i \).
- Note that \(P(D_{i+1} = k + 1 | D_i = k) = \frac{2^n - |S_i|}{2^n} \)
- Since each vector has probability \(\frac{1}{2^n} \) of being picked.
- Also, \(P(D_{i+1} = k | D_i = k) = \frac{|S_i|}{2^n} \)
- There is no other value \(D_{i+1} \) can take.
Analysis of the Algorithm with coin flipping

- Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i.

- $P(D_{i+1} = k | D_i = k) = \frac{|S_i|}{2^n}$

- $|S_i| = 2^k$, if $D_i = k$.

- Assume we are at iteration i, with $D_i = k$.

- Toss a coin with probability of failure $\frac{2^k}{2^n}$

- On failure, D_{i+1} remains k, on success it gets updates to $k+1$.
How many times to flip a coin?

Assume I have a biased coin, with probability of landing tails (failure) p, and probability of landing heads (success), $1-p$.

How many times do I need to flip the coin in expectation to land heads?

A) $1 - p$
B) p

C) $\frac{1}{1-p}$
D) $\frac{1}{p}$
Analysis of the Algorithm with coin flipping

- Toss a coin with probability of failure $p = \frac{2^k}{2^n}$.

Thus $1 - p = \frac{2^n - 2^k}{2^n}$

- On failure, D_{i+1} remains k, on success it gets updates to $k+1$.

- The expected waiting time at state k (how many times do I need to flip the coin to get heads?) is $\frac{2^n}{2^n - 2^k}$.

- Hence total expected time to hit $n-1$ is
The expected waiting time at state k (how many tries until we reach state $k-1$) is $\frac{2^n}{2^{n-2k}}$. What is the total expected time of the algorithm until we reach state $n-1$?

A) $\frac{2^n}{2^{n-2k}}$

B) $\sum_{k=0}^{n-1} \frac{2^n}{2^{n-2k}}$

C) $n - 1$

D) idk
Analysis of the Algorithm with coin flipping

- Toss a coin with probability of failure \(p = \frac{2^k}{2^n} \).

 Thus \(1-p = \frac{2^n - 2^k}{2^n} \).

- On failure, \(D_{i+1} \) remains \(k \), on success it gets updates to \(k+1 \).

- The expected waiting time at state \(k \) (how many times do I need to flip the coin to get heads?) is \(\frac{2^n}{2^n - 2^k} \).

- Hence total expected time to hit \(n-1 \) is

\[
\sum_{k=0}^{n-1} \frac{2^n}{2^n - 2^k} < \sum_{k=0}^{n-1} 2 < 2n
\]
Talk on quantum supremacy later today