Simon’s Problem

PHYS/CSCI 3090

Prof. Alexandra Kolla
Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html
Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X317.
- Ariel Shlosberg: Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy: Th 11am-12pm, ECAE 124.
- Matteo Wilczak: Wednesday, 1-2pm, DUANG2B90 (physics help room)
Last Class

- Bernstein-Vazirani
- Start of Simon’s
Today

- Simon’s problem
- While Bernstein Vazirani gets linear speedup on quantum computer, we can achieve exponential speedup for Simon’s problem
Simon’s problem is concerned with a function $f: \{0,1\}^n \rightarrow \{0,1\}^{n-1}$ that is two-to-one, as follows:

$$f(x) = f(y) \text{ if and only if the } n\text{-bit integers } x \text{ and } y \text{ are related by } x = y \oplus a, \text{ or, equivalently, } x \oplus y = a$$
Simon’s problem

- One is told that \(f \) is periodic under bitwise modulo-2 addition, \(f(x \oplus a) = f(x) \), \textit{for all } \(x \).
- The problem is to find the period \(a \).
- Precursor to Shor’s factoring, where we are interested in functions that are periodic under ordinary addition (decimal).
Simon’s problem

- Classically?
- Ask different x_i until we stumble upon two x_i, x_j that give the same value of f.
- After asking for m different values of x, I have eliminated at most $\frac{1}{2}m(m-1)$ values for a, since $a \neq x_i \oplus x_j$ for any pair of those values.
- There are total $2^n - 1$ possibilities for a, so I am unlikely to succeed until m becomes of the order of 2^n.
- So the number of times I need to run the subroutine grows exponentially with n.
Simon’s problem

- Quantumly?
- We will see we can determine a with very high probability, only with a linear number of times (not much more than n times)
The setup

Steps:
• Prepare the input register in uniform superposition
• Apply U_f
• Measure output register
The Second Trick

1) Prepare: \((H^\otimes n \otimes I) |0\rangle_n = \frac{1}{2^{\frac{n}{2}}} \sum_{0 < x \leq 2^n} |x\rangle_n |0\rangle_n\)

2) Orace: \(U_f(\frac{1}{2^{\frac{n}{2}}} \sum_{0 < x \leq 2^n} |x\rangle_n |0\rangle_n) = \frac{1}{2^{\frac{n}{2}}} \sum_{0 < x \leq 2^n} |x\rangle_n |f(x)\rangle_n\)

3) Measure output register:
Measuring 2-to-1 functions

- What is the state of the input register, after we measure the output register and get (say) \(f(x_0) \)?

A) \(\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \)

B) \(\frac{1}{\sqrt{2}} (|x_0\rangle - |x_0 \oplus a\rangle) \)

C) \(|x_0\rangle \)

D) \(\frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) \)
The Algorithm

1) Prepare: \((H^\otimes n \otimes I) \ket{0}_n \ket{0}_n = \frac{1}{2^{n/2}} \sum_{0 < x \leq 2^n} \ket{x}_n \ket{0}_n\)

2) Orace: \(U_f(\frac{1}{2^{n/2}} \sum_{0 < x \leq 2^n} \ket{x}_n \ket{0}_n) = \frac{1}{2^{n/2}} \sum_{0 < x \leq 2^n} \ket{x}_n \ket{f(x)}_n\)

3) Measure output register: If I get some value of \(f\), say \(f(x_0)\), then input is \(\frac{1}{\sqrt{2}} (\ket{x_0} + \ket{x_0 \oplus a})\)
The Algorithm

- Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle)$
- Superposition of two integers that differ by a!
- Direct measurement only gives us a random x (either x_0 or $x_0 \oplus a$)
- Repeating the experiment, we most likely get different random values, same as classically!
- The a we want to know appears in the relation between x_0 and $x_0 \oplus a$.
- Like before, we can sacrifice learning the value of $f(x_0)$ for relational information!
The Algorithm, cont

- 3) Measure output register: If I get some value of f, say f(x₀), then input is \(\frac{1}{\sqrt{2}} (|x₀\rangle + |x₀ \oplus a\rangle) \).

- 4) Apply \(H^{\otimes n} \) to input register.

Recall: \(H^{\otimes n} |x\rangle_n = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{y \cdot x} |y\rangle_n \)
3) Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle)$.

4) Apply $H^\otimes n$ to input register

Recall: $H^\otimes n |x\rangle_n = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{y \cdot x} |y\rangle_n$

$$H^\otimes n \frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) = \frac{1}{2^{(n+1)/2}} \sum_{y=0}^{2^n-1} ((-1)^{y \cdot x_0} + (-1)^{y \cdot (x_0 \oplus a)}) |y\rangle_n$$
Amplitude calculation

Consider the state of the algorithm:

$$\frac{1}{2^{(n+1)/2}} \sum_{y=0}^{2^n-1} ((-1)^{y \cdot x_0} + (-1)^{y \cdot (x_0 \oplus a)}) |y\rangle_n$$

What is the amplitude of the $|y\rangle$ such that $y \cdot a = 1$?

A) $(-1)^{y \cdot x_0}$

B) $2(-1)^{y \cdot x_0}$

C) 0

D) $\frac{1}{2^{(n+1)/2}}$
The Algorithm, cont

\[H^\otimes n \frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) = \]

\[\frac{1}{2^{(n+1)/2}} \sum_{y=0}^{2^n-1} ((-1)^y x_0 + (-1)^y (x_0 \oplus a)) |y\rangle_n \]

- Since \((-1)^y (x_0 \oplus a) = (-1)^y x_0 (-1)^y a\), the coefficient of \(|y\rangle\) is zero if \(y \cdot a = 1\) and \(2(-1)^y x_0\) if \(y \cdot a = 0\).

- State is: \(\frac{1}{2^{(n-1)/2}} \sum_{y \cdot a = 0} (-1)^y x_0 |y\rangle_n\).

- Only the y’s such that \(a \cdot y = 0\) survive!

- If we measure the input register, we learn with equal probability any of the values of y such that \(a \cdot y = 0\).
Analysis of the Algorithm

- With each invocation of U_f, we learn a random y satisfying $a \cdot y = \sum_{i=0}^{n-1} y_i a_i = 0 \mod 2$.
- If we call U_f m times, we learn m independently selected random numbers y with this property.
- Need to do some math to see how this helps.
- Definition: a set of vectors $y^{(1)}, \ldots, y^{(m)}$ is linearly independent, if there is no subset of those vectors such that $y^{(i_1)} \oplus \cdots \oplus y^{(i_j)} = 0 \mod 2$.
Assume I have m linear equations (mod 2) of the form $\sum_{i=0}^{n-1} y_i^{(k)} a_i = 0 \mod 2$. For m different vectors $y^{(1)}, \ldots, y^{(m)}$. Assume, moreover, that the $y^{(k)}$ are all linearly independent. What does m need to be in order to completely determine a?

A) n B) 1

C) $n - 1$ D) n^2
Analysis of the Algorithm

- With each invocation of U_f, we learn a random y satisfying $a \cdot y = \sum_{i=0}^{n-1} y_i a_i = 0 \mod 2$.
- If we call U_f m times, we learn m independently selected random numbers y with this property.
- We have to invoke the subroutine enough times to give us high probability of coming up with $n-1$ linearly independent y.
Analysis of the Algorithm

Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i.
Let $S_i = Span\{ y^{(1)}, y^{(2)}, \ldots, y^{(i)} \}$ and D_i the dimension of S_i after the i-th iteration. What is $P(D_{i+1} = k + 1 | D_i = k)$?

A) $\frac{2^n - |S_i|}{2^n}$
B) 1
C) $\frac{n-k}{2^n}$
D) $\frac{n-k}{n}$
Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. What is $P(D_{i+1} = k | D_i = k)$?

A) $\frac{|S_i|}{2^n}$
B) 0
C) $\frac{k}{2^n}$
D) $\frac{k}{n}$
Analysis of the Algorithm

- Let \(S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\} \) and \(D_i \) the dimension of \(S_i \).
- Note that \(P(D_{i+1} = k + 1|D_i = k) = \frac{2^n - |S_i|}{2^n} \)

Since each vector has probability \(\frac{1}{2^n} \) of being picked.
- Also, \(P(D_{i+1} = k|D_i = k) = \frac{|S_i|}{2^n} \)
- There is no other value \(D_{i+1} \) can take.
How many elements?

Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. Assume $D_i = k$. How many elements does S_i have? In other words, what is $|S_i|$?

A) 2^n B) 2^k

C) k D) n
Analysis of the Algorithm with coin flipping

Let $S_i = \text{Span}\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\}$ and D_i the dimension of S_i.

- $P(D_{i+1} = k | D_i = k) = \frac{|S_i|}{2^n}$
- $|S_i| = 2^k$, if $D_i = k$.
- Assume we are at iteration i, with $D_i = k$.
- Toss a coin with probability of failure $\frac{2^k}{2^n}$
- On failure, D_{i+1} remains k, on success it gets updates to $k+1$.
How many times to flip a coin?

Assume I have a biased coin, with probability of landing tails (failure) p, and probability of landing heads (success), $1-p$.

How many times do I need to flip the coin in expectation to land heads?

A) $1 - p$
B) p

C) $\frac{1}{1-p}$
D) $\frac{1}{p}$
Analysis of the Algorithm with coin flipping

- Toss a coin with probability of failure $p = \frac{2^k}{2^n}$.

 Thus $1 - p = \frac{2^n - 2^k}{2^n}$.

- On failure, D_{i+1} remains k, on success it gets updates to $k+1$.

- The expected waiting time at state k (how many times do I need to flip the coin to get heads?) is $\frac{2^n}{2^n - 2^k}$.

- Hence total expected time to hit $n-1$ is

 $\sum_{i=0}^{n-1} \frac{2^n}{2^n - 2^k} < \sum_{i=0}^{n-1} 2 < 2n$.