

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122 Prof. Graeme Smith

Graeme.Smith@Colorado.edu JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCl3090.html

Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X317.
- Ariel Shlosberg: Tu/Th 2:00-4:00pm,
 DUANG2B90 (physics help room)
- Steven Kordonowy: Th I lam-I2pm, ECAE I24.
- Matteo Wilczak: Wednesday, I-2pm, DUANG2B90 (physics help room)

Last Class

- Bernstein-Vazirani
- Start of Simon's

Today

- Simon's problem
- While Bernstein Vazirani gets linear speedup on quantum computer, we can achieve exponential speedup for Simon's problem

Two-to-one functions

Simon's problem is concerned with a function $f: \{0,1\}^n \to \{0,1\}^{n-1}$ that is two-to-one, as follows:

f(x) = f(y) if and only if the n-bit integers x and y are related by $x = y \oplus a$, or, equivalently, $x \oplus y = a$

Simon's problem

- One is told that f is periodic under bitwise modulo-2 addition, $f(x \oplus a) = f(x)$, for all x
- The problem is to find the period a.
- Precursor to Shor's factoring, where we are interested in functions that are periodic under ordinary addition (decimal).

Simon's problem

- Classically?
- Ask different x_i until we stumble upon two x_i, x_j that give the same value of f.
- After asking for m different values of x, I have eliminated at most $\frac{1}{2}m(m-1)$ values for a, since $a \neq x_i \oplus x_j$ for any pair of those values.
- There are total $2^n 1$ possibilities for a, so I am unlikely to succeed until m becomes of the order of $2^{\frac{n}{2}}$.
- So the number of times I need to run the subroutine grows exponentially with n.

Simon's problem

- Quantumly?
- We will see we can determine a with very high probability, only with a linear number of times (not much more than n times)

The setup

Steps:

• Prepare the input register in uniform superposition

Apply Uf

Measure output register

The Second Trick

• I) Prepare:
$$(H^{\otimes n} \otimes I) |0\rangle_n |0\rangle_n = \frac{1}{2^{n/2}} \sum_{0 < x \le 2^n} |x\rangle_n |0\rangle_n$$

• 2) Orace:
$$U_f(\frac{1}{2^{n/2}}\sum_{0< x \le 2^n}|x\rangle_n |0\rangle_n) = \frac{1}{2^{n/2}}\sum_{0< x \le 2^n}|x\rangle_n |f(x)\rangle_n$$

• 3)Measure output register:

Measuring 2-to-I functions

• What is the state of the input register, after we measure the output register and get (say) $f(x_0)$?

A)
$$\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$\mathsf{B})^{\frac{1}{\sqrt{2}}}(|x_0\rangle - |x_0 \oplus a\rangle)$$

C)
$$|x_0\rangle$$

$$D)\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus a\rangle)$$

The Algortihm

• I) Prepare: $(H^{\otimes n} \otimes I) |0\rangle_n |0\rangle_n = \frac{1}{2^{n/2}} \sum_{0 < x \le 2^n} |x\rangle_n |0\rangle_n$

• 2) Orace:
$$U_f(\frac{1}{2^{n/2}}\sum_{0< x\leq 2^n}|x\rangle_n|0\rangle_n) = \frac{1}{2^{n/2}}\sum_{0< x\leq 2^n}|x\rangle_n|f(x)\rangle_n$$

• 3)Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus a\rangle)$

The Algortihm

- Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus a\rangle)$
- Superposition of two integers that differ by a!
- Direct measurement only gives us a random x (either x_0 or $x_0 \oplus a$)
- Repeating the experiment, we most likely get different random values, same as classically!
- The a we want to know appears in the relation between x_0 and $x_0 \oplus a$.
- Like before, we can sacrifice learning the value of $f(x_0)$ for relational information!

The Algortihm, cont

- 3) Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus a\rangle$
- 4)Apply $H^{\otimes n}$ to input register

Recall:
$$H^{\otimes n} |x\rangle_n = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{y \cdot x} |y\rangle_n$$

The Algortihm, cont

- 3) Measure output register: If I get some value of f, say $f(x_0)$, then input is $\frac{1}{\sqrt{2}}(|x_0\rangle + |x_0 \oplus a\rangle)$
- 4)Apply $H^{\otimes n}$ to input register

Recall:
$$H^{\otimes n} |x\rangle_n = \frac{1}{2^{n/2}} \sum_{y=0}^{2^n-1} (-1)^{y \cdot x} |y\rangle_n$$

$$H^{\otimes n} \frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) = \frac{1}{2(n+1)/2} \sum_{y=0}^{2^{n}-1} ((-1)^{y \cdot x_0} + (-1)^{y \cdot (x_0 \oplus a)}) |y\rangle_n$$

Amplitude calculation

Consider the state of the algorithm :
$$\frac{1}{2^{(n+1)/2}}\sum_{y=0}^{2^n-1}((-1)^{y\cdot x_0}+(-1)^{y\cdot (x_0\oplus a)})|y\rangle_n$$
 What is the amplitude of the $|y\rangle$ such that $y\cdot a=1$?

A
$$(-1)^{y \cdot x_0}$$

B)
$$2(-1)^{y \cdot x_0}$$

D)
$$\frac{1}{2(n+1)/2}$$

The Algortihm, cont

$$H^{\otimes n} \frac{1}{\sqrt{2}} (|x_0\rangle + |x_0 \oplus a\rangle) = \frac{1}{2^{(n+1)/2}} \sum_{y=0}^{2^n-1} ((-1)^{y \cdot x_0} + (-1)^{y \cdot (x_0 \oplus a)}) |y\rangle_n$$

- Since $(-1)^{y\cdot(x_0\oplus a)}=(-1)^{y\cdot x_0}(-1)^{y\cdot a}$, the coefficient of $|y\rangle$ is zero if $y\cdot a=1$ and $2(-1)^{y\cdot x}$ if $y\cdot a=0$
- State is: $\frac{1}{2^{(n-1)/2}} \sum_{y \cdot a=0} (-1)^{y \cdot x_0} |y\rangle_{n}$
- Only the y's such that $a \cdot y = 0$ survive!
- If we measure the input register, we learn with equal probability any of the values of y such that $a \cdot y = 0$.

Analysis of the Algorithm

- With each invocation of U_f, we learn a random y satisfying $a\cdot y=\sum_{i=0}^{n-1}y_ia_i=0\ mod\ 2$.
- If we call U_f m times, we learn m independently selected random numbers y with this property.
- Need to do some math to see how this helps.
- Definition: a set of vectors $y^{(1)}, ..., y^{(m)}$ is linearly independent, if there is no subset of those vectors such that $y^{(i_1)} \oplus \cdots \oplus y^{(i_j)} = 0 \bmod 2$

Linear independence

Assume I have m linear equations (mod 2) of the form $\sum_{i=0}^{n-1} y_i^{(k)} a_i = 0 \mod 2$. For m different vectors $y^{(1)}, \dots, y^{(m)}$. Assume, moreover, that the $y^{(k)}$ are all linearly independent. What does m need to be in order to completely determine a?

A) *n*

B) 1

C) n - 1

D) n^2

Analysis of the Algorithm

- With each invocation of U_f, we learn a random y satisfying $a\cdot y=\sum_{i=0}^{n-1}y_ia_i=0\ mod\ 2$.
- If we call U_f m times, we learn m independently selected random numbers y with this property.
- We have to invoke the subroutine enough times to give us high probability of coming up with n-1 linearly independent y.

Analysis of the Algorithm

• Let $S_i = Span\{y^{(1)}, y^{(2)}, ..., y^{(i)}\}$ and D_i the dimension of S_i .

Conditional Probability

Let $S_i = Span\{y^{(1)}, y^{(2)}, ..., y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. What is $P(D_{i+1} = k+1 | D_i = k)$?

$$\mathsf{A})\,\frac{2^n-|S_i|}{2^n}$$

B) 1

$$C)\frac{n-k}{2^n}$$

D) $\frac{n-k}{n}$

Conditional Probability II

Let $S_i = Span\{y^{(1)}, y^{(2)}, ..., y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. What is $P(D_{i+1} = k | D_i = k)$?

A)
$$\frac{|S_i|}{2^n}$$

B) 0

$$C)\frac{k}{2^n}$$

D) $\frac{k}{n}$

Analysis of the Algorithm

- Let $S_i = Span\{y^{(1)}, y^{(2)}, ..., y^{(i)}\}$ and D_i the dimension of S_i .
- Note that $P(D_{i+1} = k + 1 | D_i = k) = \frac{2^n |S_i|}{2^n}$

Since each vector has probability $\frac{1}{2^n}$ of being picked.

- Also, $P(D_{i+1} = k | D_i = k) = \frac{|S_i|}{2^n}$
- There is no other value D_{i+1} can take.

How many elements?

Let $S_i = Span\{y^{(1)}, y^{(2)}, ..., y^{(i)}\}$ and D_i the dimension of S_i after the i-th iteration. Assume D_i =k. How many elements does S_i have? In other words, what is $|S_i|$?

A) 2^{n}

B) 2^k

C)k

D) *n*

Analysis of the Algorithm with coin flipping

- Let $S_i = Span\{y^{(1)}, y^{(2)}, ..., y^{(i)}\}$ and D_i the dimension of S_i .
- $P(D_{i+1} = k | D_i = k) = \frac{|S_i|}{2^n}$
- $|S_i| = 2^k$, if $D_i = k$.
- Assume we are at iteration i, with $D_i = k$.
- Toss a coin with probability of failure $\frac{2^k}{2^n}$
- On failure, D_{i+1} remains k, on success it gets updates to k+1.

How many times to flip a coin?

Assume I have a biased coin, with probability of landing tails (failure) p, and probability of landing heads (success), 1-p.

How many times do I need to flip the coin in expectation to land heads?

A)
$$1 - p$$

$$C)\frac{1}{1-n}$$

D)
$$\frac{1}{n}$$

Analysis of the Algorithm with coin flipping

• Toss a coin with probability of failure $p = \frac{2^k}{2^n}$.

Thus 1-p =
$$\frac{2^n - 2^k}{2^n}$$

- On failure, D_{i+1} remains k, on success it gets updates to k+1.
- The expected waiting time at state k (how many times do I need to flip the coin to get heads?) is $\frac{2^n}{2^n-2^k}$.
- Hence total expected time to hit n-1 is

$$\sum_{i=0}^{n-1} \frac{2^n}{2^{n-2k}} < \sum_{i=0}^{n-1} 2 < 2n$$