## Simon's Problem

## PHYS/CSCl 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Prof. Graeme Smith
Graeme.Smith@Colorado.edu JILA S326

## Come see us!

- Alexandra Kolla/ Graeme Smith: Friday 3:00-4:00 pm, JILA X3I7.
- Ariel Shlosberg:Tu/Th 2:00-4:00pm, DUANG2B90 (physics help room)
- Steven Kordonowy:Th I Iam-I2pm, ECAE 124.
- Matteo Wilczak:Wednesday, I-2pm, DUANG2B90 (physics help room)


## Last Class

- Bernstein-Vazirani
- Start of Simon's


## Today

- Simon's problem
- While Bernstein Vazirani gets linear speedup on quantum computer, we can achieve exponential speedup for Simon's problem


## Two-to-one functions

Simon's problem is concerned with a function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n-1}$ that is two-to-one, as follows:
$f(x)=f(y)$ if and only if the n -bit integers x and y are related by $x=y \oplus a$, or, equivalently, $x \oplus y=a$

## Simon's problem

One is told that f is periodic under bitwise modulo- 2 addition, $\mathrm{f}(\mathrm{x} \oplus a)=f(x)$, for all $x$

- The problem is to find the period a.
- Precursor to Shor's factoring, where we are interested in functions that are periodic under ordinary addition (decimal).


## Simon's problem

Classically?

- Ask different $x_{i}$ until we stumble upon two $x_{i}, x_{j}$ that give the same value of $f$.
- After asking for $m$ different values of $x, I$ have eliminated at most $\frac{1}{2} m(m-1)$ values for a, since $a \neq x_{i} \oplus x_{j}$ for any pair of those values.
- There are total $2^{n}-1$ possibilities for $a$, so $I$ am unlikely to succeed until $m$ becomes of the order of $2^{\frac{n}{2}}$.
- So the number of times I need to run the subroutine grows exponentially with $n$.


## Simon's problem

## Quantumly?

- We will see we can determine $a$ with very high probability, only with a linear number of times (not much more than n times)


## The setup



Steps:

- Prepare the input register in uniform superposition
- Apply Uf
- Measure output register


## The Second Trick

- I) Prepare: $\left(H^{\otimes n} \otimes \mathrm{I}\right)|0\rangle_{n} \quad|0\rangle_{n}=$ $\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}$
-2) Orace: $\mathrm{U}_{\mathrm{f}}\left(\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}\right)=$
$\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|f(x)\rangle_{n}$
- 3)Measure output register:


## Measuring 2-to-I functions

- What is the state of the input register, after we measure the output register and get (say) $f\left(x_{0}\right)$ ?
A) $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
B) $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle-\left|x_{0} \oplus a\right\rangle\right)$
C) $\left|x_{0}\right\rangle$

$$
\text { D) } \frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right)
$$

## The Algortihm

- I) Prepare: $\left(H^{\otimes n} \otimes \mathrm{I}\right)|0\rangle_{n} \quad|0\rangle_{n}=$ $\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}$
-2) Orace: $\mathrm{U}_{\mathrm{f}}\left(\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|0\rangle_{n}\right)=$
$\frac{1}{2^{n / 2}} \sum_{0<x \leq 2^{n}}|x\rangle_{n}|f(x)\rangle_{n}$
- 3)Measure output register: If I get some value of $f$, say $f\left(\mathrm{x}_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\right.$ $\left.\left|x_{0} \oplus a\right\rangle\right)$


## The Algortihm

- Measure output register: If I get some value of $f$, say $f\left(x_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\right.$ $\left.\left|x_{0} \oplus a\right\rangle\right)$
- Superposition of two integers that differ by a!
- Direct measurement only gives us a random x (either $x_{0}$ or $x_{0} \oplus a$ )
- Repeating the experiment, we most likely get different random values, same as classically!
- The a we want to know appears in the relation between $x_{0}$ and $x_{0} \oplus a$.
- Like before, we can sacrifice learning the value of $\mathrm{f}\left(x_{0}\right)$ for relational information!


## The Algortihm, cont

- 3) Measure output register: If I get some value of $f$, say $\mathrm{f}\left(\mathrm{x}_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right.$
- 4)Apply $H^{\otimes n}$ to input register

Recall: $H^{\otimes n}|x\rangle_{n}=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1}(-1)^{y \cdot x}|y\rangle_{n}$

## The Algortihm, cont

- 3) Measure output register: If I get some value of $f$, say $f\left(\mathrm{x}_{0}\right)$, then input is $\frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right.$
- 4)Apply $H^{\otimes n}$ to input register

Recall: $H^{\otimes n}|x\rangle_{n}=\frac{1}{2^{n / 2}} \sum_{y=0}^{2^{n}-1}(-1)^{y \cdot x}|y\rangle_{n}$
$H^{\otimes n} \frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right)=$
$\frac{1}{2^{(n+1) / 2}} \sum_{y=0}^{2^{n}-1}\left((-1)^{y \cdot x_{0}}+(-1)^{y \cdot\left(x_{0} \oplus a\right)}\right)|y\rangle_{n}$

## Amplitude calculation

Consider the state of the algorithm : $\frac{1}{2^{(n+1) / 2}} \sum_{y=0}^{2^{n}-1}\left((-1)^{y \cdot x_{0}}+(-1)^{y \cdot\left(x_{0} \oplus a\right)}\right)|y\rangle_{n}$ What is the amplitude of the $|y\rangle$ such that $y \cdot a=1$ ?
$\mathrm{A}(-1)^{y \cdot x_{0}}$
B) $2(-1)^{y \cdot x_{0}}$
C) 0
D) $\frac{1}{2^{(n+1) / 2}}$

## The Algortihm, cont

$H^{\otimes n} \frac{1}{\sqrt{2}}\left(\left|x_{0}\right\rangle+\left|x_{0} \oplus a\right\rangle\right)=$
$\frac{1}{2^{(n+1) / 2}} \sum_{y=0}^{2^{n}-1}\left((-1)^{y \cdot x_{0}}+(-1)^{y \cdot\left(x_{0} \oplus a\right)}\right)|y\rangle_{n}$

- Since $(-1)^{y \cdot\left(x_{0} \oplus a\right)}=(-1)^{y \cdot x_{0}}(-1)^{y \cdot a}$, the coefficient of $|y\rangle$ is zero if $y \cdot a=1$ and $2(-1)^{y \cdot x}$ if $y \cdot a=0$
- State is: $\frac{1}{2^{(n-1) / 2}} \sum_{y \cdot a=0}(-1)^{y \cdot x_{0}}|y\rangle_{n,}$
- Only the y's such that $a \cdot y=0$ survive!
- If we measure the input register, we learn with equal probability any of the values of $y$ such that $a \cdot y=0$.


## Analysis of the Algorithm

- With each invocation of $\mathrm{U}_{\mathrm{f}}$, we learn a random y satisfying $a \cdot y=\sum_{i=0}^{n-1} y_{i} a_{i}=$ $0 \bmod 2$.
- If we call $U_{f} m$ times, we learn $m$ independently selected random numbers y with this property.
- Need to do some math to see how this helps.
- Definition: a set of vectors $y^{(1)}, \ldots, y^{(m)}$ is linearly independent, if there is no subset of those vectors such that $y^{\left(i_{1}\right)} \oplus \cdots \oplus$ $y^{\left(i_{j}\right)}=0 \bmod 2$


## Linear independence

Assume I have m linear equations $(\bmod 2)$ of the form $\sum_{i=0}^{n-1} y_{i}^{(k)} a_{i}=0 \bmod 2$. For $m$ different vectors $y^{(1)}, \ldots, y^{(m)}$. Assume, moreover, that the $y^{(k)}$ are all linearly independent. What does $m$ need to be in order to completely determine $a$ ?
A) $n$
B) 1
C) $n-1$
D) $n^{2}$

## Analysis of the Algorithm

- With each invocation of $U_{f}$, we learn a random y satisfying $a \cdot y=\sum_{i=0}^{n-1} y_{i} a_{i}=$ $0 \bmod 2$.
- If we call $U_{f} m$ times, we learn $m$ independently selected random numbers y with this property.
- We have to invoke the subroutine enough times to give us high probability of coming up with $n-1$ linearly independent $y$.

Analysis of the Algorithm

- Let $S_{i}=\operatorname{Span}\left\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\right\}$ and $D_{i}$ the dimension of $S_{i}$.


## Conditional Probability

Let $S_{i}=\operatorname{Span}\left\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\right\}$ and $D_{i}$ the dimension of $S_{i}$ after the i-th iteration. What is $P\left(D_{i+1}=k+1 \mid D_{i}=k\right)$ ?
A) $\frac{2^{n}-\left|S_{i}\right|}{2^{n}}$
B) 1
C) $\frac{n-k}{2^{n}}$
D) $\frac{n-k}{n}$

## Conditional Probability II

Let $S_{i}=\operatorname{Span}\left\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\right\}$ and $D_{i}$ the dimension of $S_{i}$ after the i-th iteration. What is $P\left(D_{i+1}=k \mid D_{i}=k\right)$ ?
A) $\frac{\left|S_{i}\right|}{2^{n}}$
B) 0
C) $\frac{k}{2^{n}}$
D) $\frac{k}{n}$

## Analysis of the Algorithm

- Let $S_{i}=\operatorname{Span}\left\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\right\}$ and $D_{i}$ the dimension of $S_{i}$.
- Note that $P\left(D_{i+1}=k+1 \mid D_{i}=k\right)=\frac{2^{n}-\left|S_{i}\right|}{2^{n}}$ Since each vector has probability $\frac{1}{2^{n}}$ of being picked.
- Also, $P\left(D_{i+1}=k \mid D_{i}=k\right)=\frac{\left|s_{i}\right|}{2^{n}}$
- There is no other value $D_{i+1}$ can take.


## How many elements?

Let $S_{i}=\operatorname{Span}\left\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\right\}$ and $D_{i}$ the dimension of $S_{i}$ after the i-th iteration. Assume $D_{i}=$ k. How many elements does $S_{i}$ have? In other words, what is $\left|S_{i}\right|$ ?
A) $2^{n}$
B) $2^{k}$
C) $k$
D) $n$

Analysis of the Algorithm with coin flipping

- Let $S_{i}=\operatorname{Span}\left\{y^{(1)}, y^{(2)}, \ldots, y^{(i)}\right\}$ and $D_{i}$ the dimension of $S_{i}$.
- $P\left(D_{i+1}=k \mid D_{i}=k\right)=\frac{\left|S_{i}\right|}{2^{n}}$
- $\left|S_{i}\right|=2^{k}$, if $D_{i}=k$.
- Assume we are at iteration i, with $D_{i}=k$.
- Toss a coin with probability of failure $\frac{2^{k}}{2^{n}}$
- On failure, $D_{i+1}$ remains $k$, on success it gets updates to $\mathrm{k}+1$.


## How many times to flip a coin?

Assume I have a biased coin, with probability of landing tails (failure) p, and probability of landing heads (success), 1-p.
How many times do I need to flip the coin in expectation to land heads?
A) $1-p$
B) $p$
C) $\frac{1}{1-p}$
D) $\frac{1}{p}$

Analysis of the Algorithm with coin flipping

- Toss a coin with probability of failure $\mathrm{p}=\frac{2^{k}}{2^{n}}$. Thus 1- $\mathrm{p}=\frac{2^{n}-2^{k}}{2^{n}}$
- On failure, $D_{i+1}$ remains $k$, on success it gets updates to $\mathrm{k}+1$.
- The expected waiting time at state $k$ (how many times do I need to flip the coin to get heads?) is $\frac{2^{n}}{2^{n}-2^{k}}$.
- Hence total expected time to hit $\mathrm{n}-1$ is

$$
\sum_{i=0}^{n-1} \frac{2^{n}}{2^{n}-2^{k}}<\sum_{i=0}^{n-1} 2<2 n
$$

