
Simon’s Problem

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Come see us!

� Alexandra Kolla/ Graeme Smith: Friday
3:00-4:00 pm, JILA X317.

� Ariel Shlosberg: Tu/Th 2:00-4:00pm,
DUANG2B90 (physics help room)

� Steven Kordonowy: Th 11am-12pm, ECAE
124.

� Matteo Wilczak: Wednesday, 1-2pm,
DUANG2B90 (physics help room)

Last Class

� Bernstein-Vazirani
� Start of Simon’s

Today

� Simon’s problem
� While Bernstein Vazirani gets linear

speedup on quantum computer, we can
achieve exponential speedup for Simon’s
problem

Two-to-one functions

Simon’s	problem	is	concerned	with	a	
function	6: 0,1 ; → 0,1 ;=> that	is	two-

to-one,	as	follows:

6 @ = 6(C) if and only if the n-bit integers
x and y are related by @ = C⊕ F, or,

equivalently, @ ⊕ C = F

Simon’s problem
� One is told that f is periodic under bitwise

modulo-2 addition, f x ⊕ $ = & ' , &)* $++ '
� The problem is to find the period a.
� Precursor to Shor’s factoring, where we are

interested in functions that are periodic under
ordinary addition (decimal).

Simon’s problem
� Classically?
� Ask different xi until we stumble upon two xi,xj

that give the same value of f.
� After asking for m different values of x, I have

eliminated at most !"# # − 1 values for a,
since & ≠ () ⊕ (+ for any pair of those values.

� There are total 2- − 1 possibilities for &, so I am
unlikely to succeed until m becomes of the order
of 2

/
0 .

� So the number of times I need to run the
subroutine grows exponentially with n.

Simon’s problem
� Quantumly?
� We will see we can determine ! with very

high probability, only with a linear number of
times (not much more than n times)

The setup

Uf

! n
bi

ts
n

bi
t

" n bit
n

bits

!

"⨁$(!)

Steps:
• Prepare the input register in uniform superposition

• Apply Uf

• Measure output register

The Second Trick

� 1) Prepare: ("⨂$⨂I) 0 $ 0 $ =
)

+/- ∑/012+ 3 $ 0 $

� 2) Orace: U5()
+/- ∑/012+ 3 $ 0 $)=

)
+/- ∑/012+ 3 $ 6(3) $

� 3)Measure output register:

Measuring 2-to-1 functions

� What is the state of the input register,
after we measure the output register and
get (say) f(x0)?

A) !
" 0 + 1 B) !" &' − &' ⊕ *

C) &' D) !" &' + &' ⊕ *

The Algortihm

� 1) Prepare: ("⨂$⨂I) 0 $ 0 $ =)
+/- ∑/012+ 3 $ 0 $

� 2) Orace: U5()
+/- ∑/012+ 3 $ 0 $)=

)
+/- ∑/012+ 3 $ 6(3) $

� 3)Measure output register: If I get some
value of f, say f(x0), then input is)* ()

3/ +
3/ ⊕ 9

The Algortihm
� Measure output register: If I get some value

of f, say f(x0), then input is !" ()
%& +

%& ⊕)
� Superposition of two integers that differ by a!
� Direct measurement only gives us a random x

(either %& or %& ⊕))
� Repeating the experiment, we most likely get

different random values, same as classically!
� The a we want to know appears in the

relation between %& and %& ⊕).
� Like before, we can sacrifice learning the

value of f(%&) for relational information!

The Algortihm, cont

� 3) Measure output register: If I get some value
of f, say f(x0), then input is !" #$ + #$ ⊕ '

� 4)Apply (⨂* to input register

+,-'..: (⨂* # * = !
"1/3 ∑56$

"17! −1 5⋅; < *

The Algortihm, cont

� 3) Measure output register: If I get some value
of f, say f(x0), then input is !" #$ + #$ ⊕ '

� 4)Apply (⨂* to input register

+,-'..: (⨂* # * = !
"1/3 ∑56$

"17! −1 5⋅; < *

(⨂* !
" #$ + #$ ⊕ ' =

!
"(1>?)/3 ∑56$

"17!(−1 5⋅;A + −1 5⋅(;A⊕B)) < *

Amplitude calculation

A −1 #⋅%& B) 2 −1 #⋅%&

C) 0 D))
*(,-.)/1

Consider the state of the algorithm :)
*(,-.)/1 ∑#34

*,5)(−1 #⋅%& + −1 #⋅(%&⊕8)) 9 :
What is the amplitude of the 9 such that 9 ⋅ ; = 1?

The Algortihm, cont

!⨂# $
% &' + &' ⊕ * =

$
%(,-.)/1 ∑34'

%,5$(−1 3⋅9: + −1 3⋅(9:⊕;)) < #

� Since −1 3⋅(9:⊕;) = −1 3⋅9: −1 3⋅;, the
coefficient of < is zero if < ⋅ * = 1 and 2 −1 3⋅9:
if < ⋅ * = 0

� State is: $
%(,@.)/1 ∑3⋅;4' −1

3⋅9: < #,

� Only the y’s such that * ⋅ < = 0 survive!
� If we measure the input register, we learn with

equal probability any of the values of y such that
* ⋅ < = 0.

Analysis of the Algorithm
� With each invocation of Uf, we learn a

random y satisfying ! ⋅ # = ∑&'()*+ #&!& =
0 -./ 2 .

� If we call Uf m times, we learn m
independently selected random numbers y
with this property.

� Need to do some math to see how this
helps.

� Definition: a set of vectors #(+), … , #(5) is
linearly independent, if there is no subset of
those vectors such that #(&6) ⊕⋯⊕
&9 = 0 -./ 2

Linear independence

A) ! B) 1

C) ! − 1 D) !$

Assume I have m linear equations (mod 2) of the form ∑&'()*+ ,&
(.) 0& = 0 345 2.

For m different vectors ,(+), … , ,(:). Assume, moreover, that the ,(.) are all
linearly independent. What does m need to be in order to completely determine a?

Analysis of the Algorithm
� With each invocation of Uf, we learn a

random y satisfying ! ⋅ # = ∑&'()*+ #&!& =
0 -./ 2 .

� If we call Uf m times, we learn m
independently selected random numbers y
with this property.

� We have to invoke the subroutine enough
times to give us high probability of coming
up with n-1 linearly independent y.

Analysis of the Algorithm
� Let !" = !$%&{((*), ((-), … , ((")} and 0" the

dimension of !".

Conditional Probability

A) !
"# $%
!" B) 1

C)'#(!" D) '#('

Let)* =),-.{0(2), 0(!), … , 0(*)} and 7* the dimension of)* after the i-th iteration.
What is 8 7*92 = : + 1 7* = : ?

Conditional Probability II

A) !"#$ B) 0

C)&#$ D) &'

Let () = (+,-{/(1), /(#), … , /())} and 6) the dimension of () after the i-th iteration.
What is 7 6)81 = 9 6) = 9 ?

Analysis of the Algorithm
� Let !" = !$%&{((*), ((-), … , ((")} and 0" the

dimension of !".
� Note that 1 0"2* = 3 + 1 0" = 3 = -67 89

-6

Since each vector has probability *
-6 of being

picked.

� Also, 1 0"2* = 3 0" = 3 = 89
-6

� There is no other value 0"2* can take.

How many elements?

A) 2" B) 2#

C)$ D) %

Let &' = &)*%{,(.), ,(1), … , ,(')} and 4' the dimension of &' after the i-th iteration.
Assume 4'=k. How many elements does &' have? In other words, what is |&' |?

Analysis of the Algorithm with coin
flipping

� Let !" = !$%&{((*), ((-), … , ((")} and 0" the
dimension of !".

� 1 0"2* = 3 0" = 3 = 45
-6

� !" = 28, 9: 0" = 3.
� Assume we are at iteration i, with0" = 3.

� Toss a coin with probability of failure -<
-6

� On failure,0"2* remains k, on success it gets
updates to k+1.

How many times to flip a coin?

A) 1 − # B) #

C) $
$%& D) $&

Assume I have a biased coin, with probability of landing tails (failure) p,
and probability of landing heads (success), 1-p.
How many times do I need to flip the coin in expectation to land heads?

Analysis of the Algorithm with coin
flipping

� Toss a coin with probability of failure p=!
"

!#.

Thus 1-p = !#$!"
!#

� On failure,%&'(remains k, on success it gets
updates to k+1.

� The expected waiting time at state k (how
many times do I need to flip the coin to get

heads?) is !#
!#$!".

� Hence total expected time to hit n-1 is

∑&*+,$(!#
!#$!" < ∑&*+,$(2<2/

