
Introduction To
Quantum Computing

PHYS/CSCI 3090

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu
ECES 122

Prof. Graeme Smith

Graeme.Smith@Colorado.edu
JILA S326

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

mailto:Alexandra.Kolla@Colorado.edu
mailto:Graeme.Smith@Colorado.edu
https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Why are we here?
� The world obeys Quantum Theory (old news!)
� Computers that fully harness quantum effects could

outperform classical ones.
� Building quantum computers is very hard, but not

ridiculously, impossibly hard.
� We are at a special moment: beginning to build

nontrivial quantum computers

� This class: you will learn what a quantum computer is,
why we think it’d be useful (quantum algorithms), and
why we think it can be built (quantum error
correction).

There are quantum computers

Superconducting qubits
Yale, Google, IBM, Rigetti

Ion traps
ionQ/UMD, NIST Boulder, Honeywell

Significant industrial effort in both hardware and software:
Amazon, Google, IBM, Microsoft, Rigetti, PsiQuantum, ionQ, Intel, Lockheed-Martin,
ColdQuanta, Zapata, QC Ware, Xanadu…

Our goal: What are these things (going to be) good for?

Today

� Logistics
◦ Who are we?
◦ Who are you?
◦ Clickers
◦ Grading
◦ Outline

� Assignment 0
◦ Due next Monday
◦ Covers linear algebra

Prof. Kolla
Affiliation: Computer Science
Office: ECES 122
Previously:
4 yrs at UIUC
Postdoc at Microsoft,
IAS Princeton

Research: Theoretical computer science,
spectral graph theory, statistical physic,
quantum computing.

Teaching: Complexity, Algorithms, Discrete math

Prof. Smith

Affiliation: Physics and JILA
Office: JILA S326
Previously:
9 yrs at IBM Research
Postdoc in CS, PhD Physics

Research: Theoretical quantum information,
and quantum computing. Esp. Error correction.

Teaching: Anything with Quantum Mechanics!

3090 Team
� Prof. Kolla and Prof. Smith
Alternate lectures by chapter covered.
Joint office hours Friday 3-4 JILA X317

Graders
Steven Kordonowy
Ariel Shlosberg (Phys Helproom 2-4pm Tues + Thurs)
Matteo Wilczak

Who Are You?

� Quantum Computing Enthusiasts!
� Majoring in: Physics, Computer Science,

Engineering Physics, Computer
Engineering, Math, Astrophysics, Applied
Math, Aero, EE, ….

� Took one of APPM 2360, APPM 3310,
CSCI 2820,MATH 2130, MATH 2135, or
something else covering linear algebra.

Clickers!
Audience participation system.
Excellent way to get feedback.
Helps us not to lose you!

Standard clicker at CU.

Some of you may have
or have seen these.

9

Fire ‘em up!
(push the On/Off button)

Should get Green light
If not, hold power until flashing green,
Then push DC. Should go green solid.

10

Clicker warm-up!

TRUE (A) or FALSE (B):

My clicker is set to DC, is
on, and is working.

11

Clicker experience.

I have used clickers before:

A) YES!
B) No
C) |YES>+|NO>
D) E=mc2

E) Look, it’s still not green!

12

13

Your iClicker

Put your name and contact
information on your clicker!

If you lose it, there is a chance it will be
returned.

Pro tip: You can put your contact
information on a piece of tape on the
clicker if you plan to return the iClicker in
the future

14

Your iClicker

Use only your own iClicker!
Responding with another student’s
iClicker is a violation of the Honor
Code and you are encouraged not to
do it.

15

Clicker Points!

� Participation points for each question
answered.

� Clicker points count for up to 2%
bonus points.

Grading Scheme

� 30% Weekly Problem sets
� 20% Midterm 1
� 20% Midterm 2
� 30% Final
� +2% bonus from clicking

Exams

� Midterm 1: February 12 (in class)
� Midterm 2: March 18 (in class)
� Final: TBD

There are no rescheduled exams, so please
put this in your calendar now.
Extra time midterm exams begin at same time in another location.

Typical Weekly Schedule

Monday Tuesday Wednesday Thursday Friday

12 noon–
HW due

2-2:50pm –
Lecture

4pm –
old HW
sol’n posted;
new HW
posted

2-2:50pm –
Lecture

2-2:50pm –
Lecture

3-4 Office
Hours
JILA X317

2-4
Ariel S. in
Physics
Helproom

2-4
Ariel S. in
Physics
Helproom

Class website
� https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html
� Has logistics, assignments, additional reading, etc
� Also, keep up to date on Canvas

https://home.cs.colorado.edu/~alko5368/indexCSCI3090.html

Weekly Assignments

� Submitted via Canvas
� Scanned pdfs

Textbook

Expected in bookstore
on 01/15

What we’ll cover
� Chapter 1: Classical and Quantum Bits and Circuits
� Chapter 2: Simple Algorithms (Deutsch, B-V, Simon)
� Chapter 6: Few-qubit Protocols (teleportation, dense

coding, quantum cryptography)
� Chapter 4: Quantum Search (Grover’s Algorithm)
� Chapter 3: Quantum Factoring (Shor’s Algorithm)
� Chapter 5: Quantum Error Correction

This week

� Wednesday: What’s a classical bit (c-bit),
and what’s a quantum bit (qubit)?
Reading: Mermin 1.1.-1.6

� Friday: Manipulating Quantum systems,
quantum circuits
Reading: Mermin 1.7-1.12

To Do

� Get your book
� Get your clicker
� Do Assignment 0 (due in ~45 hrs)

Why are we here?
� The world obeys Quantum Theory (old news!)
� Computers that fully harness quantum effects could

outperform classical ones.
� Building quantum computers is very hard, but not

ridiculously, impossibly hard.
� We are at a special moment: beginning to build

nontrivial quantum computers

� This course: you will learn what a quantum computer
is, why we think it’d be useful (quantum algorithms), and
why we think it can be built (quantum error
correction).

Add a picture.

What is a bit?

Anything that can be in one of two states!

Binary Digit

L R

What is a bit?

� Anything that can be in one of two states!

Might as well call these two states 0 and 1
Abstractly, a bit is just a variable that’s
either 0 or 1.

What is a bit?

Anything that can be in one of two states!

L R

H = 0
T = 1

Charged = 0
Uncharged = 1

U = 0, D = 1
L = 0, R = 1

What is a bit?

� Anything that can be in one of two states!

Might as well call these two states 0 and 1
Abstractly, a bit is just a variable that’s
either 0 or 1.

Q: X is a bit. How many states can it be in?

What is a bit?
� Anything that can be in one of two states!

Might as well call these two states 0 and 1
Abstractly, a bit is just a variable that’s
either 0 or 1.

Q: X is a bit. How many different states
could it be in?
A: two---either 0 or 1

Concept Question: Three Bits

� !" is a bit.
� !# is a bit.
� !$ is a bit.

� Q: How many possible values are there
for the bit string !"!#!$?

A) 1 B) 3 C) 8 D)∞

Concept Question: Three Bits

� !" is a bit.
� !# is a bit.
� !$ is a bit.

� Q: How many possible values are there
for the bit string !"!#!$?

A) 1 B) 3 C) 8 D)∞

Concept Question: Three Bits

Q: How many possible values are there for
the bit string !"!#!$?

A) 1 B) 3 C) 8 D)∞

� Here are the possible states:
000, 001, 010, 011,
100, 101, 110, 111

Note: 8 = 2$

Representing bit-strings as vectors

� One bit: 0 or 1
0 or 1

vectors: 0 = 1
0 or 0 = 0

1
� Two Bits: 00, 01, 10, 11

00 =
1
0
0
0
, 01 =

0
1
0
0

, 10 =
0
0
1
0

, 11 =
0
0
0
1

Tensor Products

�
!"
!# ⊗ %"

%# ⊗ &"
&# =

!"%"&"
!"%"&#!"%#&"
!"%#&#!#%"&"
!#%"&#!#%#&"
!#%#&#

Entries are 0’s and 1’s
Exactly one 1 in each vector on LHS means
exactly one 1 in big vector on RHS

Manipulating Bits

One bit operation: NOT

NOT(x) = 1 if x=0
0 if x = 1

NOT(x) just flips the bit x.

More compactly: !"# $ = $̅

Manipulating Bits

One bit operation: NOT

NOT(x) = 1 if x=0
0 if x = 1

NOT(x) just flips the bit x.

More compactly: !"# $ = $̅

Manipulating Bits
� When represented as a vector

� ! ∼ 1
0 or 01

� ! ∼ !%
!&

� !̅ ∼ 0 1
1 0

!%
!& =

!&
!%

� Call (= 0 1
1 0

� As Kets: !̅ = (|!⟩

Flipping a bit: circuit diagram

X|"⟩ |"̅⟩

Manipulating one bit

� If someone hands you a bit, there are two
ways you can process it to give another
bit:

1) Leave it alone
2) Flip it

That’s it. If we want more interesting
computations, we’d better have more bits.

Swapping Two bits

� Given two bits, what can we do?
Swap them!

|"⟩

|"⟩|$⟩

|$⟩

Swapping Two bits

� Given two bits, what can we do?
Swap them!

!"#
|%⟩

|%⟩|'⟩

|'⟩

Swapping Two bits
� Given two bits, what can we do?

Swap them!
!"# $ % = % |$⟩

As a matrix

!"# =
1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

Controlled NOT

CNOT: ! " → ! ! ⊕ "
where ! ⊕ " = ! + " '() 2

If x = 0, leaves y alone. If x = 1, flips y bit.

|!⟩

|! ⊕ "⟩|"⟩

|!⟩

Concept Test
CNOT: ! " → ! ! ⊕ "

What matrix represents CNOT?

A)

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

B)

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

C)

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

D)

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

Concept Test
CNOT: ! " → ! ! ⊕ "

What matrix represents CNOT?

A)

1 0
0 0

0 0
1 0

0 1
0 0

0 0
0 1

B)

1 0
0 1

0 0
0 0

0 0
0 0

1 0
0 1

C)

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

D)

0 0
0 0

0 1
1 0

0 1
1 0

0 0
0 0

Concept Test: solution

�

00
01
10
11

CNOT swaps 10 and 11

00à 00, 01à 01, 10à 11, 11à 10
The matrix that does this is

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

