Linear Algebra

Lecture 7

0

Prof. Alexandra Kolla

<u>Alexandra.Kolla@Colorado.edu</u> ECES 122

Today

- Finish independence-dimension inequality
- Orthogonality
- More on vector spaces
- Examples

Refresher on linear independence/basis

Show that the following vectors form a basis for R³ $\{\overrightarrow{v_1} = (1, 1, 1), \overrightarrow{v_2} = (1, 1, -1), \overrightarrow{v_3} = (1, -1, -1)\}$ On notos linearly indep? $\beta_i \vec{v}_i + \beta_2 \vec{v}_2 + \beta_s \vec{v}_3 = \vec{o}$] def of only holds for $\beta_i = \beta_2 = \beta_3 = \vec{o}$] L.I $= \frac{3}{2} \underbrace{\beta_{1}}_{P_{1}} \underbrace{\beta_{2}}_{P_{2}} \underbrace{\beta_{2}}_{P_{2}} + \underbrace{\beta_{3}}_{P_{3}} \underbrace{\beta_{3}}_{P_{3}} = (\underbrace{\beta_{1}}_{P_{1}}, \underbrace{\beta_{1}}_{P_{1}}, \underbrace{\beta_{2}}_{P_{2}}, \underbrace{\beta_{2}}_{P_{2}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{2}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{1}}_{P_{3}}, \underbrace{\beta_{2}}_{P_{3}}, \underbrace{\beta_{2}}, \underbrace{\beta_{2}$

Refresher on linear independence/basis

Express the 3-dim standard basis vectors $\overrightarrow{e_1}$, $\overrightarrow{e_2}$, $\overrightarrow{e_3}$ in the basis $\{\overrightarrow{v_1} = (1, 1, 1), \overrightarrow{v_2} = (1, 1, -1), \overrightarrow{v_3} = (1, -1, -1)\}$ $\vec{e}_1 = \begin{pmatrix} i \\ o \\ o \end{pmatrix}, \quad \vec{e}_2 = \begin{pmatrix} i \\ i \\ o \end{pmatrix}, \quad \vec{e}_3 = \begin{pmatrix} i \\ o \\ i \end{pmatrix}$ $\vec{e}_1 = \vec{p}_1 \vec{v}_1 + \vec{p}_2 \vec{v}_2 + \vec{p}_3 \vec{v}_3$ (what $\vec{p}_1, \vec{p}_2, \vec{p}_3$) Suggestion: B=1, B2=0, B3=0 $\begin{array}{c} \overbrace{e_{1}}^{2} = 1.\overline{v_{1}} + 0.\overline{v_{2}} + 0.\overline{v_{3}} = -\overline{v_{1}} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + v.\overline{v_{2}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} \frac{1}{2}}{12} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} \frac{1}{2}}{-12} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -12 \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} \frac{1}{2}}{12} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} 1\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} -\frac{1}{2}\\ -\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} 1\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \begin{bmatrix} 0\\ 0\\ -\frac{1}{2} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} 0\\ 0\\ \frac{1}{2}\\ \frac{1}{2}.\overline{v_{1}} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{3}} = \begin{bmatrix} 0\\ 0\\ 0\\ \frac{1}{2}.\overline{v_{1}} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{2}} = \frac{1}{2}.\overline{v_{1}} \end{bmatrix} \\ \overbrace{e_{1}}^{2} = \frac{1}{2}.\overline{v_{1}} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{2}} = \frac{1}{2}.\overline{v_{1}} + \frac{1}{2}.\overline{v_{1}} = \frac{1}{2}.\overline{v_{1}}$

Refresher on linear independence/basis

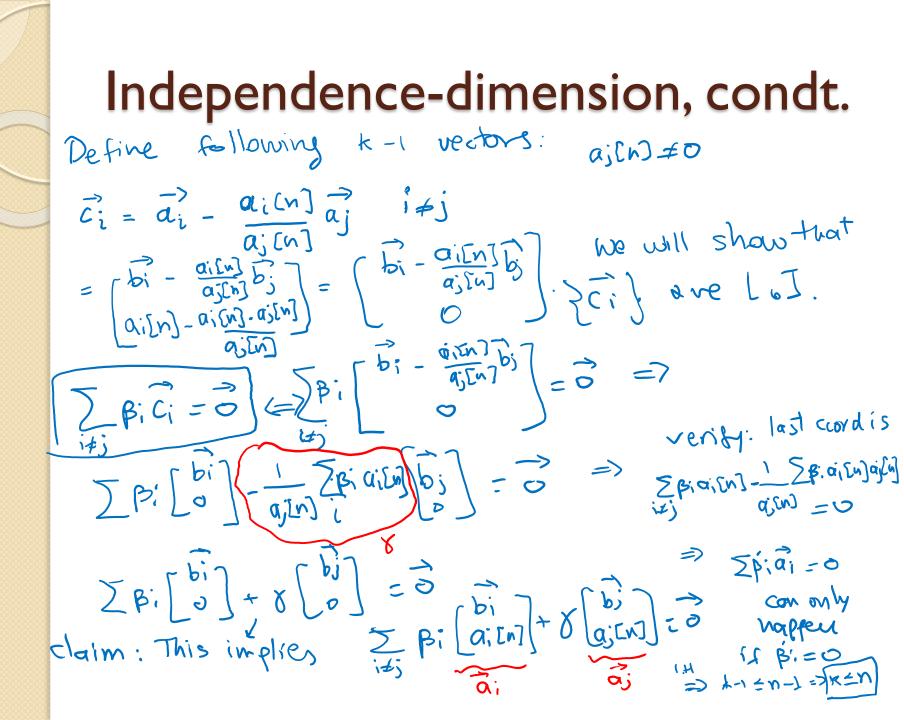
Assume we have a collection of k linearly independent 5-vectors $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_k}\}$, and let $\{\overrightarrow{b_1}, \overrightarrow{b_2}, \dots, \overrightarrow{b_k}\}$ be such that:

•
$$\overrightarrow{v_i} = \begin{bmatrix} \overrightarrow{b_i} \\ v_i[n] \end{bmatrix}$$
. Assume all the $v_i[n]$ =0 for all i.

- What is the dimension of the \vec{b}_i ?
- What can you say about the linear independence of the \vec{b}_i ?

Independence-dimension, condt.
"Howston L.I vectors in m dim"
Induction on dimension. Prove that is we have for,..., and
Base case: dim=1 2 ai,..., and of scolars
linearly indep => do not contain zero, arto => ai=(ai).a,
=> k=1 √
.I.H. Assume "red box" holds for dim 2 M
.I.Proof: show if for dim = n. privaim
2ai,..., al) L.I n-vectors,
$$a_i = \begin{bmatrix} b_i \\ a_i \in n \end{bmatrix}$$

cose 1: all ai [v]=0 => b_i 's L.I. since b_i 's are n-1
dim =>(by I.M) K=n-I < n.//



Orthogonality
Say that
$$[a_{1},...,a_{k}]$$
 is orthogonal
is $\overline{a}_{i} \perp \overline{a}_{i} \neq i \neq j$
. It is orthonormal if orthogonal and
 $\|a_{i}\| = 1$ $\forall i$
hornalized: \overline{a}_{i} thus norm 1
 $\|a_{i}\| = 1$ $\forall i$
 $\|a_$

Orthogonality observation: orthonormal vectors are ionearly indep. $\beta, \overline{a_1} + \cdots + \beta_k \overline{a_k} = \overline{0}$ need to show B=...= Ax=0 take inner preduct on both sides: <a i, p,a, t., tprai > = <a; ,0> = 0 Pi (aigi)+...+ Pi(aigi)+...+ PK(aigk) =0 $\langle q_1, p_1 q_1 + \dots + \beta k q k \rangle : 0 = \rangle \beta_1 = 0$ \bigcirc < 22, BP, 1 ... + Brak) = > P2 = 0 BK-O

Orthogonality Linear combinations of orthonormal codes $\vec{z} = \beta_1 \vec{a_1} + \dots + \beta_k \vec{a_k}$ on basis $\beta \vec{a_1}, \dots, \vec{a_k}$ what are the pi take inner product w. a; $\langle \overline{a_i}, \overline{a_i} \rangle = \langle \overline{a_i}, \overline{p_i} \overline{a_i} + \dots + \overline{p_k} \overline{q_k} \rangle$ = $\frac{p_i}{q_i} \langle \overline{a_i}, \overline{a_i} \rangle + \dots + \overline{p_i} \langle \overline{a_i}, \overline{q_i} \rangle + \dots + \overline{p_k} \langle \overline{a_i}, \overline{p_k} \rangle$ $\langle a_i, a \rangle = \langle B_b \rangle$ $\mathbf{x} = \langle \overline{a_i}, \overline{x} \rangle \overline{a_i} + \dots + \langle \overline{a_k}, \overline{z} \rangle \overline{a_k}$

 $\vec{v}_1 = \begin{bmatrix} G \\ -i \end{bmatrix}, \quad \vec{v}_2 = \frac{1}{\sqrt{s_2}} \begin{bmatrix} i \\ -i \end{bmatrix}, \quad \vec{v}_3 = \frac{1}{\sqrt{s_2}} \begin{bmatrix} -i \\ -i \end{bmatrix}$ orthonormal basis $\overline{)}$ $\overline{)}$ want: $\vec{x} = \beta_1 \vec{v}_1 + \beta_2 \vec{v}_2 + \beta_3 \vec{v}_3$ p, 62, 63 · RMS, Std, avg Pi = < Q, x > = 0.1+0.2-3 = -3 · Linear punctions [2= < v2, x) = 1/52 + 2/152 = 3752 - absolutely anything $(r_3 = \langle v_3, \tilde{x} \rangle = '(r_2 - 2/r_2 = -1/\sqrt{2})$ - notation Practice $\vec{x} = -3\vec{v_1} + 3/r_2\vec{v_2} - 1/r_2\vec{v_3}$ · nearest neighbor correlation · angles , norms · counchy. Schwartz

1.1 Definition A vector space (over \mathbb{R}) consists of a set V along with two operations '+' and '.' subject to the conditions that for all vectors $\vec{v}, \vec{w}, \vec{u} \in V$ and all scalars $r, s \in \mathbb{R}$:

- (1) the set V is closed under vector addition, that is, $ec{v}+ec{w}\in V$
- (2) vector addition is commutative, $\vec{v} + \vec{w} = \vec{w} + \vec{v}$
- (3) vector addition is associative, $(\vec{v} + \vec{w}) + \vec{u} = \vec{v} + (\vec{w} + \vec{u})$
- (4) there is a zero vector $\vec{0} \in V$ such that $\vec{v} + \vec{0} = \vec{v}$ for all $\vec{v} \in V$
- (5) each $\vec{v} \in V$ has an *additive inverse* $\vec{w} \in V$ such that $\vec{w} + \vec{v} = \vec{0}$
- (6) the set V is closed under scalar multiplication, that is, $r \cdot \vec{v} \in V$
- (7) scalar multiplication distributes over scalar addition, $(r+s) \cdot \vec{v} = r \cdot \vec{v} + s \cdot \vec{v}$
- (8) scalar multiplication distributes over vector addition, $\mathbf{r} \cdot (\vec{v} + \vec{w}) = \mathbf{r} \cdot \vec{v} + \mathbf{r} \cdot \vec{w}$
- (9) ordinary multiplication of scalars associates with scalar multiplication, $(rs) \cdot \vec{v} = r \cdot (s \cdot \vec{v})$
- (10) multiplication by the scalar 1 is the identity operation, $1 \cdot \vec{v} = \vec{v}$.

• Example:

