Linear Algebra

CSCI 2820

Prof. Alexandra Kolla
Lecture 7
Alexandra.Kolla@Colorado.edu ECES 122

Today

- Linear Independence of vectors
- Bases
- Vector Spaces

Refresher on Angles

When does the triangle inequality hold with equality?
ie. what are conditions of vectors \vec{a}, \vec{b} so that

$$
||\vec{a}+\vec{b}||=||\vec{a}||+||\vec{b}||
$$

$$
\theta=0
$$

$$
\overrightarrow{\vec{a}} \vec{b}
$$

Linear Independence
Def: A collection of vectors $\vec{a}_{1}, \ldots, \overrightarrow{a k}$ is culled linearly dependent if (L.D) $\beta_{1} \vec{a}_{1}+\cdots+\beta_{k} \vec{a}_{k}=\overrightarrow{0}$ holds for some $\beta_{1}, \ldots, \beta_{k}$ that are not all zero.
if $\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{k}}$ L.D then at least one of them can be written as a linear comb. of the others.
Proof: assume $\beta: \neq 0$:

$$
\begin{gathered}
\beta_{i} \vec{a}_{i}=-\beta_{1} \vec{a}_{1}-\cdots-\beta_{k} \vec{a}_{k} \\
\vec{a}_{1}=\left(-\beta_{1} / \beta_{i}\right) \vec{a}_{1}+\cdots+\left(-\frac{\beta_{k}}{\beta_{i}}\right) \vec{a}_{k} \\
\rightarrow
\end{gathered}
$$

converse also true: if $\vec{a}_{i}=\sum c_{i} \vec{a}_{j}$ then $\left\{\vec{a}_{1}, \ldots, \vec{a}_{k}\right) L . D$

Linear Independence
Def: Linear Independent vectors
A collection of n vectors $\vec{a}_{1}, \ldots, \vec{a}_{k}(k \geqslant 1)$ is linearly independent:
$\beta_{1} \vec{a}_{1}+\cdots+\beta_{1} \vec{a}_{k}=\overrightarrow{0}$ only balds
for $\quad \beta_{1}=\cdots=\beta_{k}=0$.
Egg: (1) $\{\vec{a}\}$: when is this linearly dep?
if $\beta \neq 0 \quad B \vec{a}=\overrightarrow{0}$ than L.D, $\vec{a}=\overrightarrow{0}$
$\vec{a} \pm \overrightarrow{0}$ linearly indes.
(2) Any list containing the zero vector is L.D

$$
\beta \neq 0 \quad \overrightarrow{0}+\sum \beta i \overrightarrow{\theta_{i}}=\overrightarrow{0} \text {, ext } \beta_{i}=0
$$

(3) $\left\{\vec{a}_{1}, \vec{a}_{2}\right\}$ when are they $l \cdot D ? \quad \vec{a}_{12}=\beta \cdot \vec{q}_{2} \Rightarrow \vec{a}_{1}+(-\beta) \vec{a}_{2}=\overrightarrow{0}$

Linear Independence
(4) $\vec{a}_{1}=\left[\begin{array}{c}0.2 \\ -7 \\ 8.6\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}-0.1 \\ 2.0 \\ -1.0\end{array}\right], \vec{a}_{3}=\left[\begin{array}{c}0.0 \\ -1.0 \\ 2.2\end{array}\right]$

$$
\overrightarrow{a_{1}}+2 \overrightarrow{a_{2}}-3 \overrightarrow{a_{3}}=\overrightarrow{0} \Rightarrow \vec{a}_{2}=(-1 / 2) \overrightarrow{a_{1}}+\left(\frac{3}{2}\right) \overrightarrow{a_{3}}
$$

(5) $\vec{e}_{1}, \ldots, \vec{e}_{n}$ linearly indef.
assume $\quad \beta_{1} \overrightarrow{e_{1}}+\cdots+\beta_{n} \vec{e}_{q}=\overrightarrow{0} \Rightarrow$

$$
\left[\begin{array}{c}
\beta_{1} \\
\dot{\beta}_{n}
\end{array}\right]=\overrightarrow{0} \quad \Rightarrow \quad \beta_{i}=0
$$

Linear combination of Linearly undep vectors:

$$
\vec{a}=\overrightarrow{a_{c}}+\cdots+\beta_{k} \overrightarrow{a_{k}}, \quad\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{k}}\right\} \text { is lindep }
$$

Clocine: coefficients that for $\vec{\omega}$ are unique
Proof: assume, toward $\rightarrow \leftarrow$, that we also have $\vec{x}=\gamma_{1} \vec{a}_{1}+\cdots+\gamma_{n} \vec{a}_{n}$ then $\quad \beta_{1} \vec{a}_{1}+\cdots+\beta_{k} \vec{a} k_{k}=\gamma_{1} \vec{a}_{1}+\cdots+\gamma_{k} \vec{a} k \Rightarrow\left(\beta_{1}-\gamma_{1}\right) \vec{a}_{1}+\cdots+\left(\beta x-\gamma_{k}\right) \overrightarrow{a_{k}}=\overrightarrow{0}$ but $\vec{a}_{i}{ }^{\prime} s$ are L.mdip. $\quad \beta_{i}-\gamma i=0 \Rightarrow \beta i=\gamma i$ converse also true

Linear Independence

- Superrets: $\left\{\vec{a}_{1}, \ldots, \overrightarrow{a_{k}}\right\}$ L.D $\left\{\vec{a}_{1}, \ldots, \overrightarrow{a_{k}}, \overrightarrow{\beta_{1}}, \ldots \overrightarrow{m_{m}}\right\}$ is L.D $\propto L$.
- Subset : $\left\{\vec{a}_{1}, \ldots, \overrightarrow{a_{k}}\right\}$ L.I take $\left\{\vec{a}_{1}, \ldots, \vec{a}_{j}\right\}_{j 2 k} \rightarrow$ L.I

Linear Independence

Vector Space, Subspace

- Vector space X over a field f (elements are called socelars) is a collection (set) of elements called vectors, equipped with two binary operations
(1) vector addition
(2) scalar mult.
satisfying a bunch of properties
(1) closure: if $\vec{x}, \vec{y} \in X, a \in F$ than $\vec{x}+\vec{y} \in X, a \vec{x} \in X$
+7 mare properties
eg: $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{j} \notin \mathbb{R}\right\}$
$\mathbb{C}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{j} \in c\right\}$
Q: what is a subspace of \mathbb{R}^{3} ?
\mathbb{R}^{2} is indeed \boldsymbol{T}
\mathbb{R}
$\left(\begin{array}{l}* \\ \text { * } \\ 0\end{array}\right)$ or $\left(\begin{array}{l}* \\ 0 \\ 0\end{array}\right)$
subspace of vector space
(i) $S \subset x$
(ii) if \vec{x}, \vec{y} es then $\overrightarrow{a x}+b \vec{y} \in S$
span of $\vec{x}_{1} \ldots \vec{x}_{n}$
$S=\left\langle\vec{x}_{1}, \ldots, \vec{x}_{k}\right\rangle=$ set of all linear combinations of $\overrightarrow{x i}$ $c_{1} \vec{x}_{1}+\cdots+c_{k} \vec{x}_{k} \in S$

Linear Span

Basis
ludependence-dimension inequality
How many L. I vectors in n-dom?
"A linearly independent collection of n-vectors can have at most n elements"
OR: Any collection of $x+1$ or more $n-v e c t o r s$, is Linearly dependent
eg

$$
e_{1}=\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right], \cdots, e_{n}=\left[\begin{array}{c}
0 \\
1 \\
1
\end{array}\right], \vec{v}=\left[\begin{array}{c}
10 \\
0 \\
0 \\
0
\end{array}\right]=\mid v \vec{e}_{1}+5 \overrightarrow{e_{4}}
$$

Basis (def): A collection of n linearly indep. n-vectors (ie. a collection of L.I vectors of maximum size) if $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is basis than any vector \vec{b} in our vector space can be written as a linear combination of them

Basis
consider $\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{n}}, \vec{b}\right\} n+1$ vectors by independence-dimension ineq \Rightarrow they are L.D., ヨ $\beta_{1}, \ldots, \beta_{n+1}$ not all zero,

$$
\beta_{1} \vec{a}_{1}+\cdots+\beta_{n} \vec{a}_{n}+\beta_{n+1} \vec{b}=\overrightarrow{0}
$$

Q: can $\beta_{n+1}=0$?
if $\beta_{n+1}=0, \quad \beta_{1} \vec{a}_{1}+\cdots+\beta_{n} \vec{a}_{n}=\overrightarrow{0}$
since \vec{a}_{i} L.I, it implies $\beta_{1}=\ldots<p_{n}=0=p_{n+1}$ conclude $p_{n+1} \neq 0$

$$
\vec{b}=\underbrace{\gamma_{1}}_{\text {unique }}\left(-p_{1} / \beta_{n+1}\right) ~ \stackrel{\rightharpoonup}{a_{1}}+\cdots+\underbrace{\left(-\beta_{n} / \beta_{n+1}\right.}_{\gamma_{n}}) \stackrel{\rightharpoonup}{a_{n}}
$$

- expansion of \vec{b} in basis - ri coefficients of the expansion

Basis
cg
(i) $\left\{\overrightarrow{e_{i}}\right\}, \quad \vec{b}=\left[\begin{array}{l}b_{1} \\ \vdots \\ b_{n}\end{array}\right]=b_{1} \vec{e}_{\imath} L+b_{n-n}$
(2) $\mathbb{R}^{2}\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ "standard basis"

$$
\begin{aligned}
& \quad \vec{a}_{1}=\left[\begin{array}{c}
1.2 \\
-2.6
\end{array}\right],\left[\begin{array}{l}
-0.3 \\
-3.7
\end{array}\right]=\vec{a}_{2} \\
& \overrightarrow{e_{1}}=\beta_{1} \overrightarrow{a_{1}}+\beta_{2} \overrightarrow{a_{2}} \\
& \vec{e}_{2}=\beta_{1}^{\prime} \vec{a}_{1}+\beta_{2}^{\prime} \overrightarrow{a_{2}}
\end{aligned}
$$

Basis
Proof of independence-dimension ineq.
by induction on dimension n.

- Base case: $n=1$. Consider a collection of 1-dim vectors a_{1}, \ldots, a_{k} that ore linearly mud. means $a_{1} \neq 0$ so for every $a_{i}=\frac{a_{i}}{a_{1}}, a_{1}$ contradict L.I unless $k=1$.
, I.H: Suppose, for $n \geqslant 2$, the independence-dim inequality hods for dimesusion $\leq n-1$.
-I.S: Need to show that it holds for dim n. meaning for amy collection of L. I vectors $\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{\alpha_{k}}\right\}, k \leq n$.

Linear Independence
$\overrightarrow{a_{1}}, \ldots, \overrightarrow{a_{k}} \quad L . I$
$\vec{a}_{i}=\left[\begin{array}{l}\overrightarrow{b_{i}} \\ a_{i}[n]\end{array}\right]_{i}^{n-1} \quad \operatorname{dim}$, where $\quad \vec{b}_{i}=\left[\begin{array}{c}a_{i}[1] \\ \vdots \\ a_{i}[n-1]\end{array}\right] \quad i=1, \ldots, k$
cad 1
First, suppose that $a_{1}[n]=a_{2}[n]=\cdots=a_{*}[n]=0$
Then $\vec{b}_{1}, \ldots, \overrightarrow{b_{k}}$ are linearly indef. b / c

$$
\sum_{i=1}^{k} p_{i} \vec{b}_{i}=0 \Leftrightarrow \sum_{i=1}^{k} p_{i} \vec{a}_{i}=0 \Rightarrow \beta_{1}=\cdots=p_{x}=0
$$

by induction tyro thesis for $n-1$ dimensions (\vec{b}_{i} are $n-1-$ din) $k \leq n-1$, so definitely $k \leq n$.
care 2

- Now rect step suppose $a_{i}[n]$ not all zero. try to recreate care 1 by modifying The vectors.

