Linear Algebra

Lecture 7

0

Prof. Alexandra Kolla

<u>Alexandra.Kolla@Colorado.edu</u> ECES 122

Today

- Linear Independence of vectors
- Bases
- Vector Spaces

0=0

à

5

Refresher on Angles

When does the triangle inequality hold with equality? i.e. what are conditions of vectors \vec{a}, \vec{b} so that $\left|\left|\vec{a} + \vec{b}\right|\right| = \left|\left|\vec{a}\right|\right| + \left|\left|\vec{b}\right|\right|$

Linear Independence
Def: A collection of vectors
$$\vec{a_1},...,\vec{a_k}$$
 is
called linearly dependent if (LD)
 $\vec{\beta}.\vec{a_1}+...+\vec{\beta}.\vec{a_k}=\vec{O}$ holds for some
 $\vec{\beta}_1...,\vec{\beta}$ k that are not all zero.
if $\vec{a_1},..,\vec{a_k}$ LD then at least onl of
them can be written as a linear comb.
of the others.
Proof: assume $\vec{\beta}.\neq 0$:
 $\vec{\beta}.\vec{a_1} = -\vec{\beta}.\vec{a_1} + ... + (-\frac{\vec{\beta}.k}{\vec{\beta}}.\vec{a_k})$
 $\vec{\alpha}_1 = (-\frac{\vec{\beta}.k}{\vec{\beta}}.\vec{a_1} + ... + (-\frac{\vec{\beta}.k}{\vec{\beta}}.\vec{a_k})$
Converse also true: if $\vec{\alpha}_1 = \vec{2}.\vec{\beta}.\vec{a_1}$ then $\vec{\xi}.\vec{\alpha}_1,...,\vec{\alpha}.\vec{k}$ LD

Linear Independence Def: Linear Independent vectors A collection of n-vectors $\vec{\alpha}_1, ..., \vec{\alpha}_k$ (k71) is linearly independent: Biai+...+ Break = 2 only holds for B1=...= \$K=0. E.O: () Eag: when is this linearly dep! if $\beta \neq 0$ $\beta a = \overline{\partial}$ then L.D, $\overline{a} = \overline{\partial}$ $\overline{a} \neq \overline{\partial}$ linearly indep. (2) they list containing the zero vector is L.D B= p. 0 + 2 pi 0; = 0, set pi = 0 (3) $\{\overline{q}_1, \overline{q}_2\}$ when are they $2 \cdot D$? $\overline{q}_1 = \beta \cdot \overline{q}_2 = \beta \cdot \overline{q}_1 + (-\beta) \cdot \overline{q}_2 = 0$

Linear Independence
a)
$$\vec{a}_{1} = \begin{bmatrix} 0, 2 \\ -7 \\ 8.6 \end{bmatrix}$$
, $\vec{a}_{2} = \begin{bmatrix} -0, 1 \\ 2.0 \\ -1.0 \end{bmatrix}$, $\vec{a}_{3} = \begin{bmatrix} 0.0 \\ -1.0 \\ 2.2 \end{bmatrix}$
 $\vec{a}_{1} + 2\vec{a}_{2} - 3\vec{a}_{3} = \vec{0} \Rightarrow \vec{a}_{2} = (-1/2)\vec{a}_{1} + (\frac{3}{2})\vec{a}_{3}$
(s) $\vec{e}_{1}, ..., \vec{e}_{n}$ linearly indep.
 $assume$ $p_{1}\vec{e}_{1} + ... + p_{n}\vec{e}_{n} = \vec{0} \Rightarrow$
 $\begin{bmatrix} \vec{B}_{1} \\ \vec{p}_{n} \end{bmatrix} = \vec{0} \Rightarrow \vec{P}_{1} = \vec{0}$
Linear combination of Linearly Indep vectors:
 $\vec{a} = \beta \vec{e}_{1} + ... + \beta x \vec{a}_{k}$ $\beta \vec{e}_{1}, ..., \vec{e}_{k}$ jis Lindep
Clocime: coefficients that form \vec{a}_{1} are unique
Proof: assume, toward $\rightarrow c$, that we also have $\vec{a}_{2} = 3(\vec{a}_{1} + ... + y_{n}\vec{a}_{n} + ... + y_{n}\vec{a}_{n} = \vec{0}$
but \vec{e}_{1} 's are Lindep $\vec{p}_{1} - \vec{y}_{1} = \vec{0} \rightarrow \beta i = \vec{y}_{1}$

uper vets: Eai, aig L.D

- · Supersets: Eai, ..., akg L.D Eai,..., ak, p..., Ang is L.D of L.C.
 - · Subset : 2ā, ..., 02 } L.I take {ai, ..., aj}; k -> L.I

Linear Independence

Vector Space, Subspace · Vector space X over a field F (elements are called socilars) 15 a collection (set) of elements called vectors, equipped with two loinery operations () vector addition (2) scalar mult. sortisfying a bunch of properties D closure: if X, ye X, at F they rey eX, axeX subspace of vector space (i) SCX + 7 more properties $\mathbf{e}_{\mathbf{x}}: \mathbf{R}^{\mathbf{x}} = \{(\mathbf{x}_{1}, \dots, \mathbf{x}_{n}): \mathbf{x}_{j} \in \mathbf{R}^{\mathbf{x}}\}$ (ii) if $\mathbf{x}_{i} \mathbf{y}_{\ell} \in \mathbf{x}$ then $\mathbf{a} \mathbf{x} + \mathbf{b} \mathbf{y} \in \mathbf{S}$ $C' = \{(x_1, ..., x_n) : X_{j \in C} \mid \underline{Span of x_{i..., x_n}}\}$ $(S = \langle \vec{x_1}, \dots, \vec{x_k} \rangle = \text{set of all}$ Q: what is a subspace of TRs? linear combinations of ai \mathbb{R}^2 is indeed 7 $\binom{*}{\circ}$ or $\binom{*}{\circ}$ (1x) + ... + CKXk & S

Linear Span

Basis

٠

.

Independence-dimension inequality
How many L.I vectors in m-dum?
"A linearly independent collection of n-vectors
can have at most n elements"
OR: Any collection of not or more
n-vectors, is Linearly dependent

$$e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}_{1}^{-\dots}$$
, $e_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}_{1}^{-\dots}$, $e_1 = \begin{bmatrix} 0$

Basis
Lonsider
$$2\overline{\alpha_1}, ..., \overline{\alpha_n}, \overline{b}$$
 number vectors
by independence-dimension inleq =) they are
 $L \cdot D \cdot , \underline{P} D \cdot ..., \underline{P} L + 1$ not all zero,
 $B_1\overline{\alpha_1} + ... + B_n\overline{\alpha_n} + \underline{p}_{m_1}\overline{b} = \overline{O}$
 $Q \cdot con \underline{p}_{m_1} = O$?
is $p_{n+1} = O$. $B_1\overline{\alpha_1} + ... + \underline{p}_n\overline{\alpha_m} = \overline{O}$
since $\overline{\alpha_1}$ L.I., it implies $\underline{p}_{1} = ... = \underline{p}_{n} = O = \underline{p}_{n+1}$
conclude $\underline{p}_{n+1} = O$
 $\overline{b} = (-\underline{P} \cdot \underline{p}_{n+1})\overline{\alpha_1} + ... + (-\underline{P} \cdot \underline{p}_{n+1})\overline{\alpha_n}$ of $\overline{b} \overline{a}$ in
 $\underline{b} = x_1 - x_1$ of the expansion
 $\underline{v}_{n} = x_1$ of the expansion

Basis $\overrightarrow{D} \in \overrightarrow{Ci}$ $\overrightarrow{b} = \begin{bmatrix} b_i \\ b_n \end{bmatrix} = b_i \overrightarrow{e_i} + b_n \overrightarrow{e_n}$ ② R² [o], [i] "stoudard basis" $\vec{a}_{1} = \begin{bmatrix} 1.2 \\ -2.6 \end{bmatrix}, \begin{bmatrix} -0.3 \\ -3.7 \end{bmatrix}$ is abasis $\vec{e}_1 = \vec{p}_1 \vec{a}_1 + \vec{p}_2 \vec{a}_2$ $\vec{e}_2 = \vec{p}_1 \vec{a}_1 + \vec{p}_2 \vec{a}_2$

Basis Proof of independence-dimension ineq. by induction on dimension n. · Base case: n=1. Consider a collection of 1-dim vectors an, ..., ak that are linearly hid. means $a_1 \neq 0$ so for every $\alpha i = \frac{\alpha i}{\alpha_1} \cdot \alpha_1$ contradict L.I unless k=1 · I.H : Suppose, or n??, the independence-dim inequality holds for domension $\leq n-1$. "I.S: Need to show that it holds for dim n. meaning for any collection of L.I vectors Eai, ard, KEN.

1

Linear Independence $\vec{a_{1,...,a_{k}}}$ LI $\vec{a_{i}} = \begin{bmatrix} \vec{b_{i}} \\ a_{i}(n) \end{bmatrix}$ $\vec{a_{i}}$, where $\vec{b_{i}} = \begin{bmatrix} a_{i}(1) \\ \vdots \\ a_{i}(n-1) \end{bmatrix}$ $\vec{b_{i-1,...,k}}$ 1 scalar Ease 1 suppose that as[n]=a2[n]=...=a*[n]=0 They bi..., bix are linearly indep. Uc Zpibi=0 (=> Zpidi=0 => Bi=...= Br=0 by induction typothesis for n-1 dimensions (bi are n-1-din) KEN-1, so depinitely KEN. - now next step. suppose a; [n] not all zero. try to recreate case I by modifying the vectors