

CSCI 2820

Lecture 6

Prof. Alexandra Kolla

Alexandra.Kolla@Colorado.edu ECES 122

Today

- Cauchy-Schwartz
- Angles
- Complexity
- Examples

Refresher on Distance/std

For a vector \vec{v} , let $\vec{u} = \frac{\tilde{v}}{std(\vec{v})}$ what is the 2-norm of \vec{u} ?

$$||\widetilde{u}|| = \frac{||\widetilde{v}||}{||\widetilde{v}||} = \frac{||\widetilde{v}||}{||\widetilde{v}||} = \sqrt{n}$$

$$\operatorname{std}(x) = \frac{||x - (\mathbf{1}^T x/n)\mathbf{1}||}{\sqrt{n}}.$$

$$\mathbf{std}(x) = \frac{\|x - (\mathbf{1}^T x/n)\mathbf{1}\|}{\sqrt{n}}$$

Cauchy-Schwartz Inequality

C-5 Inleq:
$$|\langle a,b \rangle| \leq ||\vec{a}|| \cdot ||\vec{b}||$$
 for any n-vections $||a_1b_1+...+a_nb_1| \leq (a_1^2+...+a_n^2)(b_1^2+...+b_n^2)/2$

Proof: $||\Sigma a_1b_1|| \leq ||\Sigma a_1^2|| \cdot ||\Sigma b_1^2||$

if \vec{a} or $\vec{b} = \vec{0}$, then immediate

So assume $\vec{a} \neq \vec{0}$ (so $||\vec{a}||$), $||\vec{b}|| \neq 0$)

define $||S|| = ||\vec{a}||$, $||S|| = ||\vec{b}||$.

 $||B\vec{a} - y\vec{b}||^2 > 0 \Rightarrow (B\vec{a} - y\vec{b})(B\vec{a} - y\vec{b}) > 0$
 $||S^2||\vec{a}||^2 - aBy(\vec{a},\vec{b}) + y^2||\vec{b}||^2 > 0$
 $||\vec{b}||^2 ||\vec{a}||^2 - a||\vec{b}|| ||\vec{a}|| ||\vec{a}||^2 > 0$
 $||\vec{b}||^2 ||\vec{a}||^2 - a||\vec{b}|| ||\vec{a}|| ||\vec{a}||^2 > 0$
 $||\vec{a}||^2 ||\vec{b}||^2 - a||\vec{b}|| ||\vec{a}|| ||\vec{a}||^2 > 0$
 $||\vec{a}||^2 ||\vec{b}||^2 - a||\vec{b}|| ||\vec{a}|| ||\vec{a}||^2 > 0$
 $||\vec{a}||^2 ||\vec{b}||^2 - a||\vec{b}|| ||\vec{b}||^2 > 0$

Cauchy-Schwartz Inequality

when is it tight? (equality)
tight 11 pa - y b 11 = 0, pa=y b (P, o \ equality) is à is a scalar multiple of b (or vice vera) 12a,6>12 11a111b11

verity triangle inequality:

$$||\vec{a} + \vec{b}|| \leq ||\vec{a}|| + ||\vec{b}|| + ||\vec{a}|| + ||\vec{a}|| + ||\vec{a}||^{2} + ||$$

Angles

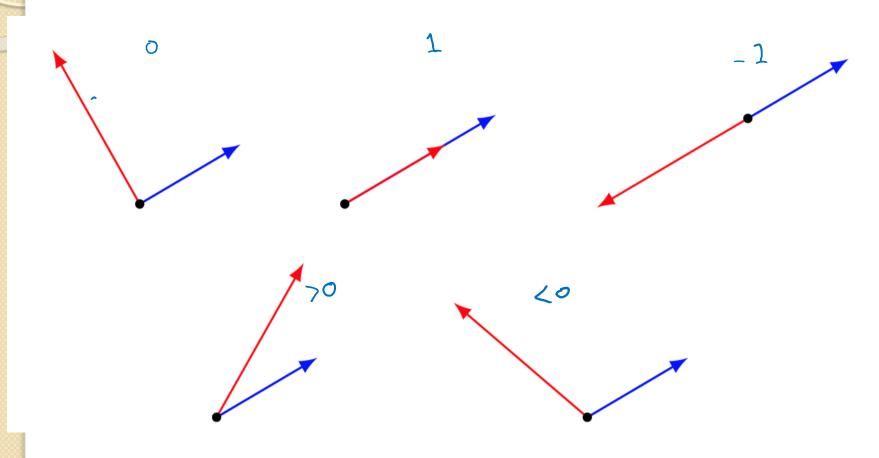
$$\theta = \arccos\left(\frac{\langle \vec{a}, \vec{b} \rangle}{\|\vec{a}\|\|\vec{b}\|}\right)$$
, $\langle \vec{a}, \vec{b} \rangle = \|\vec{a}\|\|\vec{b}\|\cos\theta$
angle between \vec{a}, \vec{b} :
$$\angle(\vec{a}, \vec{b})$$

$$\forall (\vec{a}, \vec{b}) = (\vec{a}, \vec{b}) \Rightarrow (\vec{a}, \vec{b}) \Rightarrow$$

Angles

. $L(\vec{a},\vec{b}) \times 90^{\circ} (17/2)$, accute angle $(\vec{a},\vec{b}) \times 90^{\circ}$, obtuse angle $(\vec{a},\vec{b}) \times 90^{\circ}$. $L(\vec{a},\vec{b}) \times 90^{\circ}$, obtuse angle $(\vec{a},\vec{b}) \times 90^{\circ}$

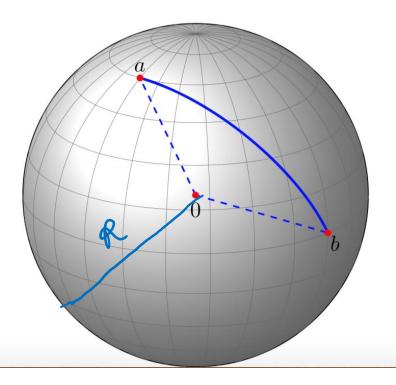
Angles, examples



Angles, examples

· sperical distance

R. L(a,b)



Angles, examples

	Veterans Day	$\underbrace{\frac{\text{Memorial}}{\text{Day}}}$	Academy Awards	Golden Globe Awards	Super Bowl
Veterans Day	0	60.6	85.7	87.0	87.7
Memorial Day	60.6	0	85.6	87.5	87.5
Academy A.	85.7	85.6	0	(58.7)	85.7
Golden Globe A.	. 87.0	87.5	58.7	0	86.0
Super Bowl	87.7	87.5	86.1	86.0	0

2, y = word counts for two documents L(2,y) to measure similarity

Can the angle be more than 90 degrees?

Angles

Norm of the sum of two vectors. \$\vec{2}{2}, \vec{1}{3} $||\vec{x} + \vec{y}||^2 = (\vec{x} + \vec{y})^2 (\vec{x} + \vec{y}) = ||\vec{x}||^2 + 2\vec{x} \cdot \vec{y} + ||\vec{y}||^2$ = 112 112+2/12/11/1/1 650 + 11/3/112

· if \(\frac{1}{2}, \frac{1}{3}\) are aliqued: \(\lambda = \frac{1}{12} + \frac{1}{3} \limbda \rightarrow \rightar

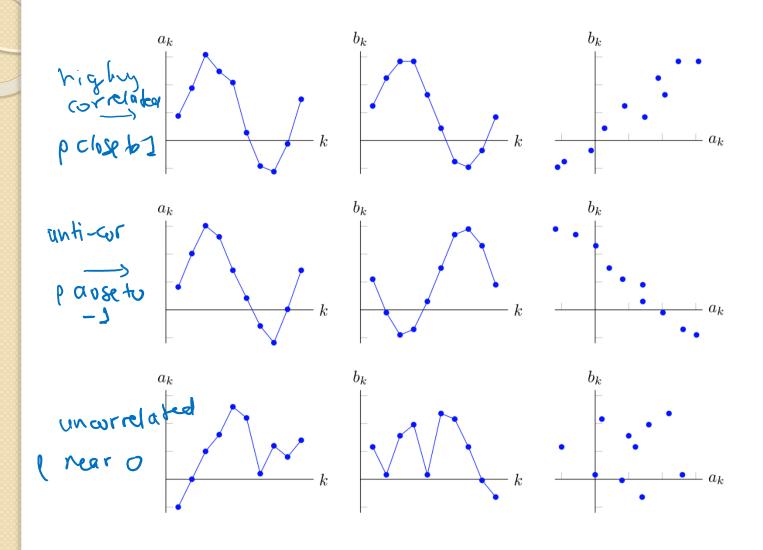
· if \$\overline{a}\$, \$\overline{y}\$ are orthogonal (0=90) | 112+4/1 = 12/1+114/1

and Pythongo cean theorem

Correlation coefficient

$$\vec{a}$$
, \vec{b}
 $\vec{a} = \vec{a} - avg(\vec{a})\vec{1}$
 $\vec{b} = \vec{b} - avg(\vec{b})\vec{1}$
 $\vec{c} = \vec{a} - avg(\vec{b})\vec{1}$
 $\vec{c} = \vec{b} - avg(\vec{b})\vec{1}$
 $\vec{c} = \vec{b} - avg(\vec{b})\vec{1}$
 $\vec{c} = \vec{c} -$

Correlation coefficient



Std of sum

Agint std
$$(a+b)^2 = std(a)^2 + 20 std(a) std(b) + std(a)^2$$

a, b de-meaned vector of $a+b$

des of std: $std(a+b)^2 = ||a+b||^2$ $||a+b||^2$ $||a+b||^2$ $||a+b||^2 = ||a||^2 + 20 ||a|||b|| ||axo + ||b||^2$

= $||a||^2 + 20 ||a|||b|| + ||b||^2$

= $||a||^2 + 20 ||a|||b|| + ||b||^2$

• $||a||^2 + 3td(a+b) = ||a+b||^2 + 20 ||a|||b|| + ||b||^2$

• $||a||^2 + 20 ||a|||b|| + ||b||^2$

• $||a||^2 + 3td(a+b) = ||a+b||^2 + ||a||^2 + ||a||$

Complexity