Linear Algebra
 CSCI 2820

Prof. Alexandra Kolla
Lecture 4

Today

- Norm of vectors
- Distances
- Examples

Refresher on Linear functions

Which of the functions above is affine and why (or why not)?

$$
\text { Max } \Rightarrow \text { last lecture }
$$

- Minimum: The min element of an n-vector $\mid \vec{x}>, f(\vec{x})=\min \left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
- The average of the entries of the vectors $山 \vec{\omega}, \vec{x}$ with odd indices, minus the average of the entries of the vector with even indices (assume $\mathbf{n}=2 \mathbf{k}$ is even) $\quad\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\vec{x}$ $\vec{\omega}=(1,-1,1,-1, \ldots) \cdot 1 / 2 k \quad f(\vec{r})=\frac{x_{1}+x_{3}-x_{2}-x_{4}}{4}$

Norm
Euclidean norm of n-vector $\vec{x},\|\vec{x}\|$

$$
\|x\|_{2}=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}=\sqrt{\langle x, x\rangle}
$$

Norm examples

$$
\left\|\left[\begin{array}{r}
2 \\
-1 \\
2
\end{array}\right]\right\|=? \sqrt{2^{2}+(-1)^{2}+2^{2}}=\sqrt{4+1+4}=\sqrt{9}=3
$$

When vector is 1 -dim? (scalar) absolute value When vector is unit? $\Rightarrow 1 \quad\left[\overrightarrow{e_{1}}, \vec{e}_{2}, \ldots, \overrightarrow{e n}_{n}\right]$
Norm Properties: def: \vec{v} is a unit vector iffl|$\|_{2}=1$

- Nonnegative homogeneity: $\|\beta \vec{x}\|=|\beta|\|\vec{x}\|$
- Triangle inequality; $\|\vec{x}+\vec{y}\| \leq\|\vec{x}\| *\|\vec{y}\|$
- Defritiveress. $\overrightarrow{A x} \|=0$ only if $\vec{x}=\overrightarrow{0}\}$ definiteness verify: $\left\|\vec{x}^{2}\right\|_{0} \Rightarrow x_{1}^{2}+\cdots+x_{n}^{2}=0 \Rightarrow x_{i}^{2}=0 \Rightarrow \vec{x}=\overrightarrow{0}$

Norm
Rost-mean-square value. (LMS)

$$
\operatorname{rms}(\vec{x})=\sqrt{\frac{\sqrt{x_{1}^{2}+\cdots+x_{n}^{2}}}{n}}=\frac{\|\vec{x}\|}{\sqrt{n}(\vec{x})}
$$

tells us what a "typical" value of $\left|x_{i}\right|$ is

$$
\begin{aligned}
& \overrightarrow{1},\|\overrightarrow{1}\|=? \sqrt{1^{1}+\cdots+1^{2}}=\sqrt{n} \\
& \operatorname{RMS}(\overrightarrow{\mathbb{I}})=? \quad 1 \\
& \text { if } \vec{v}=(a, a, \ldots, a), \operatorname{pmS}(\vec{u})=|a|
\end{aligned}
$$

Norm of Sum:

$$
\begin{aligned}
& \|\vec{x}+\vec{y}\|^{2}=(\vec{x}+\vec{y})^{\top}(\vec{x}+\vec{y})= \\
= & \underbrace{\vec{x} \vec{x}}+\underbrace{\vec{x} \vec{y}+\vec{y}^{\prime} \vec{x}}+\vec{y}^{+} \vec{y}= \\
= & \|\vec{x}\|^{2}+2 \vec{x}^{2} \vec{y}+\|\vec{y}\|^{2}
\end{aligned}
$$

Norm
Norm of block vectors $\vec{d}=\left(\begin{array}{l}\vec{a} \\ \vec{b} \\ \vec{c}\end{array}\right)$ or $\begin{gathered}-\vec{a}: 2 \mathrm{dim} \\ \vec{b}: 3 \mathrm{dim} \\ \vec{c}=10 \mathrm{dim}\end{gathered}$

$$
\vec{d}=(\vec{a}, \vec{b}, \vec{c}) \quad \text { but: } \quad\|\vec{d}\|=\|\vec{k}\|
$$

$$
\vec{k}=(\|\vec{a}\|,\|\vec{b}\|,\|\vec{c}\|)
$$

$$
\begin{aligned}
& \vec{d}=(\vec{a}, \vec{b}, \vec{c}) \\
& \rightarrow\|\vec{d}\|^{2}=\vec{d}^{\top} d=\vec{a}^{\top} \vec{a}+\vec{b}^{\top} \vec{b}+\vec{c} \vec{c} \vec{c}=\|\vec{a}\|^{2}+\mid \vec{b}\left\|^{2}+\right\| \vec{c} \|^{2} \\
& \|\vec{j}\|=\|\underbrace{\| \vec{a}, \vec{b}, \vec{c}) \|}_{15-d \mathrm{~d}}=\underbrace{\sqrt{\|\vec{a}\|^{2}+\|\vec{b}\|^{2}+\|\vec{c}\|^{2}}}_{\pi}=\| \frac{(\|\vec{a}\|}{\uparrow}, \frac{\|\vec{b}\|}{\uparrow}, \frac{\|\vec{c}\|}{\uparrow} \|
\end{aligned}
$$

Norm
cheby sher inequality: $\vec{x} \quad n$-vector assume k of its entries satisfy, $\frac{x_{i}^{2} \geqslant a^{2}}{\left|x_{i}\right| \geqslant a, a>0}$

$$
\|\vec{x}\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2} \geqslant k a^{2} \Rightarrow \frac{\leq \frac{\|\vec{x}\|^{2}}{a^{2}} \text { chelashar } \quad\left\|\overrightarrow{a^{2}}\right\|^{2}}{}
$$

- $\|\vec{x}\|^{2} / a^{2} \geqslant n \Rightarrow$ nothing new

$$
(k \leq n)
$$

- $\|\vec{x}\|^{2}<a^{2} \xrightarrow{\text { chebosher }} k \leq \frac{\|\vec{x}\|^{2}}{a^{2}}<1, \Rightarrow k=0$

Q: how many entries of \vec{x}
can exceed its pms can exceed its RMS value by more than a factor of 5?

Distance

$$
\begin{aligned}
& \operatorname{dist}(\vec{a}, \vec{b})=\|\vec{a}-\vec{b}\| \\
& \operatorname{dist}(\vec{a}, \vec{b})=0 ?\|\vec{a}-\vec{b}\|=0
\end{aligned}
$$

if $\vec{a}-\vec{b}=\overrightarrow{0} \Rightarrow \vec{a}=\vec{b}$

- Triangle

$$
\begin{aligned}
& \operatorname{dist}(\vec{a}, \vec{b})=\|\vec{a}-\vec{b}\| \\
& \operatorname{dist}(\vec{b}, \vec{c})=\|\vec{b}-\vec{c}\| \\
& \operatorname{dist}(\vec{a}, \vec{c})=\|\vec{a} z\|
\end{aligned}
$$

$\|\vec{a}-\vec{c}\| \leq\|\vec{a}-\vec{b}\|+\|\vec{b}-\vec{c}\|$ (triangle inea. for the actual triangle)
follows from (3): $\|\vec{a}-\vec{c}\|=\|(\vec{a}-\vec{b})+(\vec{b}-\vec{c})\| \leq\|\vec{a}-\vec{b}\|+\|\vec{b}-\vec{c}\|$

Distance

Distance

$$
u=\left[\begin{array}{r}
1.8 \\
2.0 \\
-3.7 \\
4.7
\end{array}\right], \quad v=\left[\begin{array}{r}
0.6 \\
2.1 \\
1.9 \\
-1.4
\end{array}\right], \quad w=\left[\begin{array}{r}
2.0 \\
1.9 \\
-4.0 \\
4.6
\end{array}\right]
$$

Distance

Figure 3.2 Triangle inequality.

