Linear Algebra
 CSCI 2820

Prof. Alexandra Kolla
Lecture 3

Today

- Linear functions
- Inner products and linear functions
- Examples
- Taylor series (if we have time)

Refresher on Linear combinations

Geometrically:

- (I) what is the the linear combinations of a nonzero vector (ID)? $\rightarrow \vec{v}$
- (2) the lingaractornbinations oftwb non $\hat{\bar{z}}$ eroivectors $\overrightarrow{2}(2 D)+50$
- Whem are pit and (2) the same?
- Exampte of $\overrightarrow{\mathrm{h}} \overrightarrow{\mathrm{n}} \mathrm{a}$ arjindêpendence!

Refresher on Linear combinations

Geometrically:

- Write $\left(\begin{array}{c}1.4 \\ 2 \\ -4.3\end{array}\right)$ as a linear combinations of 3 unit vectors. e_{1}, e_{2}, e_{3}
- Generally, we can choose what we call a basis and write any vector as a linear combination of basis vectors.
- Solving systems of linear equations?

Linear Functions
Function notation: $f: \underset{\text { dow ain }}{\mathbb{R}^{n}} \rightarrow \underbrace{\mathbb{R}}_{\text {range }}$

$$
\begin{aligned}
& f(\vec{x})=\text { some scalar }=f\left(x_{1}, \ldots, x_{n}\right) \\
& \vec{x}=\left(x_{1}, \ldots, x_{n}\right) \\
& \text { e.g } f: \mathbb{R}^{4} \rightarrow \mathbb{R}, f_{0}(\vec{x})=x_{1}+\lambda_{2}-x_{4}^{2} \\
& \rightarrow f_{1}(\vec{x})=5 \text { constant } \\
& f: \mathbb{R}^{10} \rightarrow \mathbb{R} \rightarrow f_{2}(\vec{x})=5 \\
& f_{1}((0,1,1,-5))=5 \\
& f_{1}((0,1,1,1,0,0,0,0,1,-5)) \text { doesnition } \\
& \text { make sense }
\end{aligned}
$$

Sum function: input vector, output sum of coordinates

Linear Functions
Inner product function: hel \vec{a} be an n-vector

$$
\begin{aligned}
f_{a}(\vec{x})= & \vec{a}^{\top} \vec{x} \\
& (\langle\vec{x} \mid \vec{x}\rangle)
\end{aligned}
$$

- Linear functions: Superposition

$$
\left.\begin{array}{rl}
f(\underset{x}{f(\beta \vec{y})} & =\gamma f \overrightarrow{f(x)} \pm \beta f(\vec{y})
\end{array}\right] \quad[1] \quad \begin{aligned}
f_{a}(\gamma \vec{x}+\beta \vec{y}) & =\langle\vec{a} \mid b \vec{x}+\beta \vec{y}\rangle \\
& =\langle\vec{a} \mid b \vec{x}\rangle+\langle\vec{a} \mid \beta \vec{y}\rangle \\
& =\gamma\langle\vec{a}| \vec{x})+\beta\langle\vec{a} \mid \vec{y}\rangle \\
& =\gamma f_{a}(\vec{x})+\beta f_{a}(\vec{y})
\end{aligned}
$$

inner product function \rightarrow super position
Def: Linear function ifs it satisfies [1]

Linear Functions as Inner Products
any linear $f: f\left(\underline{a}_{1} \vec{x}_{1}+\cdots+a_{k} \vec{x}_{k}\right)=a_{1} f(\vec{x})+,\cdots+a_{k} f\left(\overrightarrow{x_{k}}\right)$

$$
\begin{aligned}
& =f\left(a_{1} \vec{x}_{1}+\swarrow\right)=a_{1} f\left(\vec{x}_{1}\right)+f(\underbrace{}_{2} \vec{x}_{2}+\cdots+a_{k} \vec{x}_{k}) \\
& =a_{1} f\left(\vec{x}_{1}\right)+a_{2} f\left(\vec{x}_{2}\right)+f\left(a_{3} \vec{x}_{3}+\cdots+a_{k} \vec{x}_{k}\right) \\
& =a_{1} f\left(\vec{x}_{1}\right)+\cdots+a_{k} f\left(\overrightarrow{x_{k}}\right)
\end{aligned}
$$

- Homogeneity: $f(\overrightarrow{a x})=a f(\vec{x})$ [2]
- Additivity: $f(\vec{x}+\vec{y})=f(\vec{x})+f(\vec{y})$ [3]

N
superposition or eq [1]
already saw: Inner product function is linear we will see: If a function is linear, then it can always be expressed as on inner product of its argument with some fixed vector

Affine Functions

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

assume f is linear (superposition is satisfied)

$$
\begin{aligned}
f(\vec{x})=f\left(x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n}\right)^{[1]} & =x_{1} f\left(\overrightarrow{e_{1}}\right)+\cdots+x_{n} f\left(\vec{e}_{n}\right) \\
\rightarrow \vec{x}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n} & =\left\langle\vec{a}_{1}\right\rangle
\end{aligned}
$$

$$
\text { define } \vec{a}=\left(f\left(\vec{e}_{1}\right), \ldots, f\left(\vec{e}_{n}\right)\right)
$$

unique \vec{a} sit. a linear function can be written as $\langle\vec{a}, \vec{x}\rangle$
If: Assume, towards contradiction, that $f(\vec{x})=\vec{a}, \vec{x}\rangle$ and $f(\vec{x})=\langle\vec{b}, \vec{x}\rangle$ take $\vec{x}=\vec{e}_{i}: f\left(\vec{e}_{i}\right)=a_{i}$ and also $f\left(\vec{e}_{i}\right)=b_{i}$

$$
a_{i}=b_{i} \quad \forall i \Rightarrow \vec{a}=\vec{b}
$$

Examples: 2D
\rightarrow counter example ($n=2$): $\vec{x}=(1,-1), \vec{y}=(-1,1), \alpha=\beta=1 / 2$

$$
\begin{aligned}
& \qquad \begin{array}{l}
f(\alpha \vec{x}+(\vec{y})= \\
\left.\neq \frac{\vec{x}}{}+\vec{x}\right)+\beta f(\vec{y})
\end{array}=\frac{1}{2} \max (\overrightarrow{0})=0
\end{aligned}
$$

ex 1: Average of n-vector: $f(\vec{x})=\left(x_{1}+\cdots+x_{n}\right) / n \rightarrow$

$$
f(\vec{x})=\langle\vec{a}, \vec{x}\rangle \quad \vec{a}=(1 / n, \ldots, 1 / n)=\frac{1}{n}
$$

e12: Maximum element of n-vector $\vec{x}, f(\vec{x})=\max \left\{x_{1}, \ldots, x_{n}\right\}$

Affine Functions
f is affine: $f(\vec{x})=\langle\vec{a}, \vec{x}\rangle+b$

$$
f: \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

ex. $f(\vec{x})=\underbrace{2.3}_{\text {scalar }} \underbrace{-2 x_{1}+1.3 x_{2}-x_{3}}_{\text {linear }}$
$b \quad \vec{a}=(-2,1.3,-1)$
variation of superposition:

$$
f(\alpha \vec{x}+\beta \vec{y})=\alpha f(\vec{x})+\beta f(\vec{y}) \quad[4]
$$

for $\alpha+\beta=1$
take $\gamma ; \beta: \gamma+\beta=1: \quad f(\langle\vec{x}+\beta \vec{y})=\langle\vec{a} \mid \vec{\gamma}+\beta \vec{y}\rangle+b$

$$
\begin{aligned}
& =\gamma\langle\vec{a} \mid \vec{x}\rangle+\beta\langle\vec{a} \mid \vec{x}\rangle+(\underbrace{(\gamma+\beta) b} \\
& =\gamma f(\vec{x})+\beta f(\vec{y})
\end{aligned}
$$

- Any $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that satisfies restricted superposition property (4] is affine.

$$
f(\overrightarrow{2})=f(\overrightarrow{0})+x\left(f\left(\overrightarrow{e_{1}}\right)-f(\overrightarrow{0})\right)+\cdots+x_{n}\left(f\left(\overrightarrow{e_{n}}\right)-f(\overrightarrow{0})\right)
$$

[exercise to show that every affine function san be whiter like this]
(1) assume $f(\vec{x})=\langle\vec{a}, \vec{x}\rangle+b$
(2) assume only restricted superposition

Example

