Linear Algebra
 CSCI 2820

Prof. Alexandra Kolla
Lecture 19

Today

- Elementary row operations
- Row/column space
- Rank and nullspace

Exercise

- If either A or B (both square matrices) are not invertible, can $A B$ be invertible?
case 1: B not invert
Assume $(A B)^{-1}=C$

$$
A^{-1} A B C C^{-1}=A^{-1} C^{-1}
$$

$B=A^{-1} C^{-1}$ invertible $\Rightarrow F$
$7 \vec{x}: B \vec{x}=\overrightarrow{0} \Rightarrow(A \cdot B) \vec{x}=\overrightarrow{0}$

Exercise

11.5 Inverse of a block matrix. Consider the $(n+1) \times(n+1)$ matrix

$$
A=\left[\begin{array}{cc}
I & a \\
a^{T} & 0
\end{array}\right],
$$

where a is an n-vector.
(a) When is A invertible? Give your answer in terms of a. Justify your answer.
(b) Assuming the condition you found in part (a) holds, give an expression for the inverse $\operatorname{matrix} A^{-1}$.

Solving systems of equations

$$
\begin{aligned}
& \text { - 5. [equation 1] } \\
& \frac{+ \text { [equation 3] }}{\text { [new equation 3] }} \quad \frac{5 x_{1}-5 x_{3}}{10 x_{2}-10 x_{3}=10} \\
& x_{1}-2 x_{2}+x_{3}=0 \\
& \rightarrow\left(1 / 22 \times 2 \frac{1}{2} 8 \times 3=1 / 28\right) \\
& x_{2}-4 x_{3}=4 \\
& 10 x_{2}-10 x_{3}=10 \\
& \text {-10. [equation 2] } \\
& + \text { [equations] } \\
& \text { [new Cq.3] } \\
& {\left[\begin{array}{cccc}
1 & -2 & 1 & 0 \\
0 & 1 & -4 & 4 \\
0 & 10 & -10 & 10
\end{array}\right]}
\end{aligned}
$$

Solving systems of equations

$$
\begin{aligned}
& x_{2}-4 x_{3}=8 \\
& 2 x_{1}-3 x_{2}+2 x_{3}=1 \\
& 4 x_{1}-8 x_{2}+12 x_{3}=1 \\
& {\left[\begin{array}{cccc}
0 & 1 & -4 & 8 \\
2 & -3 & 2 & 1 \\
4 & -8 & 12 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
2 & -3 & 2 & 1 \\
0 & 1 & -4 & 8 \\
4 & -8 & 12 & 1
\end{array}\right]+} \\
& {\left[\begin{array}{cccc}
2 & -3 & 2 & 1 \\
0 & 1 & -4 & 8 \\
0 & -2 & 8 & -1
\end{array}\right] \times 2 \rightarrow \frac{\left[\begin{array}{rrrr}
2 & -3 & 2 & 1 \\
0 & 1 & -4 & 8 \\
0 & 0 & 0 & 15
\end{array}\right]}{0=15}} \\
& 0 x_{1}+0 x_{2}+0 x_{3}=15 x
\end{aligned}
$$ operations

1) (Replacement): Replace one row by the sum of itself and a multiple of another new
2) (Interclane): Interchave two rows
3) (scaling) Multiply all entries in a row by a mon-zero scalar.

$$
A \underset{\partial F E, R, B}{\text { any \# }} B \quad A, B \text { "row equivaled" }
$$

Q. Is system consistent?

- is a solution unique.?

Echelon form
Def: A rectangular matrix is in/echelon form 1. All nan-zero rems are above any rows of all zeroes 2. Each leading curry of a row is in a column to the right of the leading entry of the row above it
3. All entries in a colum below a leading entry are zero.
Reduced echelon form 4. leading entry in each [each matrix is row non-zens row is 1 Lequivaled to ont and my ont
Reduced echelon matrix . Inch leading 1 is the an ty nonzero Reduced pretor matrix entry in its clues.
eg. $\left[\begin{array}{cccc}2 & -3 & 2 & 1 \\ 0 & 1 & -4 & 8 \\ 0 & 0 & 0 & 5 / 2\end{array}\right]$ echelser form

reduced acheron form

Echelon form
Def: A pivot position in a matrix A is a location in A That corresponds to a beating 1 in the reduced echelon form of A A pivot colum es is a colum er of A that contain a pivot position.

Row reduction algorithm

EXAMPLE 3 Apply elementary row operations to transform the following matrix first into echelon form and then into reduced echelon form:

$$
A=\left[\begin{array}{rrrrrr}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right]
$$

SOLUTION

STEP 1

Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.

Row reduction algorithm

STEP 2

Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.

Interchange rows 1 and 3. (We could have interchanged rows 1 and 2 instead.)

$$
\left[\begin{array}{rrrrrr}
3-\sqrt{-9} & \text { Pivot } \\
3 & -7 & -9 & -5 & 6 & 15 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right]
$$

Row reduction algorithm

STEP 3

Use row replacement operations to create zeros in all positions below the pivot.

As a preliminary step, we could divide the top row by the pivot, 3 . But with two 3 's in column 1 , it is just as easy to add -1 times row 1 to row 2 .

Row reduction algorithm

STEP 4

Cover (or ignore) the row containing the pivot position and cover all rows, if any, above it. Apply steps $1-3$ to the submatrix that remains. Repeat the process until there are no more nonzero rows to modify.

With row 1 covered, step 1 shows that column 2 is the next pivot column; for step 2, select as a pivot the "top" entry in that column.

For step 3, we could insert an optional step of dividing the "top" row of the submatrix by the pivot, 2 . Instead, we add $-3 / 2$ times the "top" row to the row below. This produces

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 6 ; & 15 \\
0 & 2 & -4 & 4 & 2 \uparrow & -6 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right]_{\text {pirot }} \text { dove. }
$$

Row reduction algorithm (reduced echelon form)

STEP 5

Beginning with the rightmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1 , make it 1 by a scaling operation.

The rightmost pivot is in row 3. Create zeros above it, adding suitable multiples of row 3 to rows 2 and 1 .

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 0 & -9 \\
0 & 2 & -4 & 4 & 0 & -14 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \quad \begin{array}{|}
\\
\leftarrow \text { Row } 1+(-6) \cdot \text { row } 3 \\
\leftarrow \text { Row } 2+(-2) \cdot \text { row } 3
\end{array}
$$

The next pivot is in row 2 . Scale this row, dividing by the pivot.

$$
\left[\begin{array}{rrrrrr}
3 & -9 & 12 & -9 & 0 & -9 \\
0 & 0 & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \quad \leftarrow \text { Row scaled by } \frac{1}{2}
$$

Create a zero in column 2 by adding 9 times row 2 to row 1 .

$$
1 / 3\left[\begin{array}{crrrrr}
3 \\
\hline & 0 & -6 & 9 & 0 & -72 \\
0 & (1) & -2 & 2 & 0 & -7 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right] \leftarrow \text { Row } 1+(9) \cdot \text { row } 2
$$

Row reduction algorithm (reduced echelon form)

Finally, scale row 1 , dividing by the pivot, 3 .

$$
\left.\left.\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
(1) \\
0
\end{array}\right]-2 \begin{array}{r}
3 \\
-2 \\
0
\end{array}\right]\left[\begin{array}{r}
0 \\
0 \\
0
\end{array}\right] \begin{array}{r}
-24 \\
-7 \\
4
\end{array}\right] \leftarrow \text { Row scaled by } \frac{1}{3}
$$

This is the reduced echelon form of the original matrix.
steps 1-4 - forward phase stop s is backward phase
Thy: A linear systere is assistant if the rightmost column of the auginuled matrix is not a pivot column. if $[0 \ldots 0 \vec{b}], \vec{b} \neq \overrightarrow{0}$ then inconsistat!.

Row and column spaces
Def: The colum space of a matrix A is the set $\operatorname{Col} A$ of all linear combinations of colum of A.

$$
A=\left[\vec{a}_{1} \ldots \vec{a}_{n}\right], \vec{\alpha}_{i} \in \mathbb{R}^{m}, \operatorname{col} A=\operatorname{spon}\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{,}, \vec{n}\right\}
$$

eg.

$$
A=\left[\begin{array}{ccc}
1 & -3 & -4 \\
-4 & 6 & -2 \\
-3 & 6 & 6
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{c}
3 \\
3 \\
-4
\end{array}\right]
$$

$Q: \quad$ is $\vec{b} \in \operatorname{col} A$?
rephrase: can \vec{b} be written as $\vec{A} \vec{x}$ for sone \vec{x} ?
rephrase': $\overrightarrow{A x}=\vec{b}$ consistent?

$$
\begin{aligned}
& \left.\left[\begin{array}{cccc}
1 & -3 & -4 & 3 \\
-4 & 6 & -2 & 3 \\
-3 & 7 & 6 & -4
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -3 & -4 & 3 \\
0 & -6 & -18 & 15 \\
0 & -2 & -6 & 5
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & -3 & -4 & 3 \\
0 & -6 & -18 & 15 \\
0 & 0 & 0 & 0
\end{array}\right]\right] \\
& \begin{array}{l}
\Rightarrow+\begin{array}{l}
\text { his system is consistut } \\
\vec{b}
\end{array}=\operatorname{col} A
\end{array}
\end{aligned}
$$

Column space, rank, nullspace

- Null space.

Del null space of A is there set Nut A of all Solutions of the nomogenans equation $A \vec{x}=\overrightarrow{0}$

$$
A=\left[\overrightarrow{u_{1}} \ldots \overrightarrow{a_{n}}\right], A \vec{a}=\overrightarrow{0} \overrightarrow{0} \neq \mathbb{R}^{n} \text {, Nu } A \subset \mathbb{R}^{n}
$$

in fact, NulA is subspace. of \mathbb{R}^{n} ($c x$. verify \longrightarrow)

- Rank of matrix A, rank A, is dimension of the colum space of A.
prot colum of A form a basis for col $A \Rightarrow$ rank $A=\#$ of (row equivalence \Leftrightarrow save column space) A
The: Rank the if A has n columns, rankA+dimnulA $=$ n

Column space, rank, nullspace

$$
\left.\begin{array}{l}
A=\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
4 & 7 & -4 & -3 & 9 \\
6 & 9 & -5 & 2 & 4 \\
0 & -9 & 6 & 5 & -6
\end{array}\right] \\
\sim\left[\begin{array}{ccccc}
2 & 5 & -3 & -4 & 8 \\
0 & -3 & 2 & 5 & -7 \\
0 & -6 & 4 & 14 & -20 \\
0 & -9 & 6 & 5 & -6
\end{array}\right] \sim \cdots \sim\left[\begin{array}{ccc}
(2) & 5 & -4 \\
0 & -3 & 5 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right] \\
0
\end{array}\right]
$$

Invertibility and elementary operations
Anon matrix. Tfae

1) $\cos A=R^{n}$
$21 \operatorname{dim} \operatorname{Col} A=n$
2) $\operatorname{rank} A=n$
3) $\operatorname{Nat} A=\{\overrightarrow{0}\}$
4) $\operatorname{dim} N a l A=0$
