Linear Algebra

CSCl 2820

Prof. Alexandra Kolla

Lecture 16

Today

- Matrix Multiplication, Revisited
- Composition of vector valued linear functions
- OR factorization

Matrix-Matrix multiplication reminder

$$
\begin{aligned}
& A_{m \times n}, B_{n \times k} \\
& C=A \cdot B, \operatorname{dim}=m \times k \\
& C_{i j}=\sum_{k=1}^{n} A_{i n} B_{k j} \rightarrow \downarrow \downarrow
\end{aligned}
$$

- scalar-vector product $\vec{x}_{x \times 1 \times 1}=\vec{y}_{n \times 1}(a \vec{x})$
- inner product $\langle x, y\rangle$ nxm,ma1 $=$ solar
- Matrix-vector $\vec{y}=A \vec{x}, \underset{\vec{x} n x^{2}}{A_{m i n}} \vec{y} \vec{y} m \times 1$ dim
- Outer product m-vector \vec{a}, n vector $\vec{b}=\vec{a} \overrightarrow{\vec{b}}: \operatorname{man}_{\text {ma tn }}$

Matrix-Matrix multiplication reminder

- In funeral, $A B \neq B A$

$$
\cdot(A B)^{\top}=B^{\top} A^{\top}
$$

inner product: \vec{y}, \vec{x}, A

$$
\langle y, A x\rangle=\left\langle A^{\top} y, x\right\rangle
$$

Ps: $\vec{y}^{\top}(A \vec{x})=\left(\vec{y}^{A}\right) \cdot \vec{x}=\left(A^{\top} y\right)^{\top} \vec{x}$

$$
(c-A) B \quad(\langle\overline{\bar{A}} y, x\rangle)
$$

multiple rets of

- Column interpretation:
$A, B=\left[\vec{b}_{1} \ldots \vec{b}_{n}\right]$

$$
A B=\left[\begin{array}{ll}
A \vec{b}_{1} & A \vec{b}_{n}
\end{array}\right]
$$

$$
\left\lvert\, \begin{aligned}
& x: A \vec{x}_{i}=\vec{b}_{i}, i=1 \cdots k \\
& A x=B \\
& x=\left[\vec{x}_{1}, \vec{x}_{k}\right], B=\left[\vec{b}_{1} \ldots \vec{b}_{k}\right.
\end{aligned}\right.
$$

Matrix-Matrix multiplication reminder
Inner product representation

$$
A B=\left[\begin{array}{cccc}
\vec{a}_{1}^{+} \vec{b}_{1} & \vec{a}_{1}^{\top} \vec{b}_{2} & \cdots & \vec{a}_{1}^{r} \vec{b}_{n} \\
\vdots \\
\vec{a}_{m}^{+} & \vec{b}_{1} & \vec{a}_{m}^{\prime} \vec{b}_{2} & \\
\vec{a}_{m}^{\top} \vec{b}_{n}
\end{array}\right]
$$

Gram matrix $A_{m \times n} \quad A=\left[\begin{array}{lll}\vec{a}_{1} & \ldots & \vec{a}_{n}\end{array}\right]$

$$
G=A^{\top} A=\left[\begin{array}{cccc}
\vec{a}_{1}^{\top} \vec{a}_{1} & \vec{a}_{1} \vec{a}_{2} & \ldots & \vec{a}_{1} \vec{a}_{n} \\
\vdots & & & \\
\vec{a}_{n}^{\top} \vec{a}_{1} & \vec{a}_{n} \vec{a}_{2} & \cdots & \vec{a}_{n}^{\top} \vec{a}_{n}
\end{array}\right] \begin{gathered}
\text { orpmetic } \\
\vec{a}_{i}^{\top} a_{j}=\vec{a}_{j}^{\top} \vec{a}_{i}
\end{gathered}
$$

e.g. $A_{m \times n}: A_{i j}=\left\{\begin{array}{l}\text { if item i } \\ 0\end{array}\right.$
$G=A^{\top} A$: $G_{i j}=$ number of i tens both in group i is j
$G_{i i}=$ number of item in group i.

Outer Product, Gram Matrix

- Outer product interpretation

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
\vec{a}_{1} & \cdots & \overrightarrow{a_{p}}
\end{array}\right], \quad B=\left[\begin{array}{c}
b_{1}^{\top} \\
\vdots \\
b_{p}
\end{array}\right] \\
& A \cdot B=\overrightarrow{a_{1}} \vec{b}_{1}^{\top}+\cdots+\vec{a}_{p} \overrightarrow{b_{p}^{\top}}
\end{aligned}
$$

Outer Product, Gram Matrix

Outer Product, Gram Matrix

Bra/Ket notation
$\langle x, y\rangle$.inner product (scalar)
$|x| y \mid$: outer product (matrix)
$|x\rangle^{(k+d)}$ column vector
$\langle y| \stackrel{\text { bra }}{=}$ raw rector $\left(\vec{y}^{\top}\right)$

$$
\begin{aligned}
& \vec{b} \cdot \vec{a}^{\top} \cdot \vec{c} \cdot \vec{d}^{\top} \quad \stackrel{?}{=} \\
& \text { ||bXa|cXd| }=\langle a \mid c\rangle \cdot \underbrace{|b \times d|}_{\text {cuter }} \\
& \text { inner product } \\
& \text { (scalar) } \\
& \text { product } \\
& \text { (matrix) }
\end{aligned}
$$

Matrix products as Composition of Linear Functions

$$
\begin{aligned}
& f(\vec{x})=A \vec{x} \quad f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m} \\
& g(\vec{x})=B \vec{x} \quad g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \\
& \text { composition of } f, g: h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& h(\vec{x})=\underbrace{f(\vec{x}))}_{f(\underbrace{f(g-\vec{x} m}_{m-d m})}=A(B \vec{x})=\underbrace{(A B) \vec{x}}_{C}
\end{aligned}
$$

e. of composition of linear function: $(n-1) \times n$ difference

$$
D_{n}=\left[\begin{array}{ccccc}
-1 & 1 & 0 & 0 & 0 \\
0-1 & 1 & \cdots & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & \cdots & -1
\end{array}\right], \begin{aligned}
& \text { matrix } D_{n} \\
& D_{n} \vec{x}=\left(x_{2}-x_{1}, \cdots, x n-x n-1\right) \\
& D_{n-1}:(n-2) \times(n-1) \text { matrix }
\end{aligned}
$$

$D_{n-1} D_{n}=$ second difference matrix

Matrix products as Composition of Linear Functions

$$
\begin{aligned}
& \begin{array}{l}
\text { - Difference matrix. The }(n-1) \times n \text { matrix } \\
D_{\eta}=\left[\begin{array}{rrrrrrr}
-1 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & -1 & 1 & \cdots & 0 & 0 & 0 \\
& & \ddots & \ddots & & & \\
& & & \ddots & \ddots & & \\
0 & 0 & 0 & \cdots & -1 & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & -1 & 1
\end{array}\right]
\end{array} \\
& D_{n-1} D_{n} \vec{x}=\underbrace{\operatorname{Dn}_{n}\left(\widetilde{x}_{2}-x_{1}, \ldots, x_{n-1}-x_{n-1}\right)}=\left(x_{1}-2 x_{2}+x_{3}, \cdots, x_{n-2} 2 x_{n-1}+x_{n}\right)
\end{aligned}
$$

Matrix products as Composition of Linear Functions
Composition of Affine functions

$$
\begin{aligned}
& f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m} \quad f(\vec{x})=A \vec{x}+\vec{b} \\
& g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \quad g(\vec{x})=C \vec{x} \cdot \vec{d} \\
& h(\vec{x})=f(g(\vec{x}))=A(C \vec{x}+\vec{d})+\vec{b}=\underbrace{(A C}_{\tilde{A}} \vec{x}+\underbrace{(A \vec{d}+\vec{b}}_{\tilde{b}}) \\
& h(\vec{x})=\tilde{A} \vec{x}+\tilde{b}
\end{aligned}
$$

Matrix Powers and graphs

$$
\underbrace{A \cdot A \cdots A}_{k}=A^{k} \quad \begin{aligned}
& A^{1 / 2} \\
& \left(A^{-1}\right)^{k} \text { inverse }
\end{aligned}
$$

$A^{k} \cdot A^{l}=A^{k+l}$
$A_{\text {nos: }}$ adjacency matrix

$$
\left(A^{k}\right)^{l}=A^{k \cdot l}
$$

$$
A_{i j}=\left\{\begin{array}{lll}
1 & \text { if } j \rightarrow i \\
0 & \text { ow }
\end{array}\right.
$$

- path of length l : sequence of $l+1$ vertices

$$
\begin{aligned}
& \left(A^{2}\right)_{i j}=\sum_{k=1}^{n} \underbrace{A_{i x}^{\prime} A_{k j}^{=}}_{\neq 0 \text { risk }}
\end{aligned}
$$

$=4$ paths of length
2 from $j \rightarrow i$

Matrix Powers and graphs

Matrix Powers and graphs

$$
A^{2}=A \cdot A=\left[\begin{array}{llll|l}
1 & 0 & 1 & 1 & 0 \\
\hline 0 & 1 & 1 & 1 & 2 \\
\hline 1 & 0 & 1 & 2 & 1 \\
\hline 0 & 1 & 0 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left.\begin{array}{ll}
\left(A^{2}\right)_{11}=1 & (1 \text { path }(1,2,1)) \\
\left(A^{2}\right)_{341}=2 & (2 \text { paths }(4,5,3) \\
\operatorname{con}(4,3,3)
\end{array}\right)
$$

$\left(A^{l}\right)_{i j}=$ \# paths of length e from vertex j to vertex:
Po by induction: Bare case: $A^{2} \vee$
 need to show it holds for $l+1 .\left(A^{l+1}\right)_{i j}=\left(A \cdot A^{l}\right)_{i j}=\sum_{k=1}^{n} A_{i n}\left(A^{l}\right)_{j}$ x th term $=*$ length l path gr $\rightarrow k$ is edge $k \rightarrow i$ $=$ F length l_{+1} paths $j \rightarrow i$ that end with edge $\left.k \rightarrow i\right\}_{k}$ sum over all

QR factorization

Algorithm 5.1 Gram-Schmidt algorithm
given n-vectors a_{1}, \ldots, a_{k}
for $i=1, \ldots, k$,

1. Orthogonalization. $\tilde{q}_{i}=a_{i}-\left(q_{1}^{T} a_{i}\right) q_{1}-\cdots-\left(q_{i-1}^{T} a_{i}\right) q_{i-1}$
2. Test for linear dependence. if $\tilde{q}_{i}=0$, quit.
3. Normalization. $q_{i}=\tilde{q}_{i} /\left\|\tilde{q}_{i}\right\|$

- Matrices with orthonormal columns:
$\left\{\overrightarrow{a_{1}}, \ldots, \overrightarrow{a k}\right\}$ orthonormal: $A^{\top} A=I$ if A is square

$$
A=\left[\begin{array}{lll}
\vec{a}_{1} & \ldots & \vec{a}_{k}
\end{array}\right]
$$

ex: Anon with orthonormal column also has orthonormal raps.

QR factorization
Norm, inver product, angle
$A_{m \times n}$, orthonomal colums, $\vec{x}, \vec{y} \quad m$-vectors
(1) $\|A \vec{x}\|=\|\vec{x}\|$
(2) $\langle A x, A y\rangle=\langle x, y\rangle$
(3) $L(A \vec{x}, A \vec{y})=-\angle(\vec{x}, \vec{y})$

$$
(A B)^{\top}=\beta^{\top} A^{\top}
$$

ff: (2) $(A \vec{x})^{\top}(A \vec{y})=\left(\vec{a}^{\top} A^{\top}\right)(A \vec{y})=\vec{x}^{\top} \underbrace{\left(A^{\top} A\right)}_{\substack{\text { imer } \\ \text { pNoduct } \\ \text { pNoperty }}} \vec{y}=\vec{a} I \vec{y}=\vec{x} \vec{y}$

$$
\begin{aligned}
&(2) \rightarrow(1) \quad \vec{y}=\vec{a} \\
&(A \vec{x})^{\top}(A \vec{a})= \vec{a}^{\top} \vec{x} \quad \text { by }(2) \\
&\|A \vec{x}\|^{2}=\|\vec{x}\|^{2} \Rightarrow\|A \vec{x}\|=\|\vec{a}\| \\
&(1,12) \rightarrow(3): \quad L(A \vec{x}, A \vec{y})=\arccos \left(\frac{(A \vec{x})^{\top}(A \vec{y})}{\|A \vec{x}\|\|A \vec{y}\|}\right)=\operatorname{arcos} \frac{\vec{a}^{\top} y}{\|\vec{x}\|} \|
\end{aligned}
$$

Practice Problems

Matrix sizes. Suppose A, B, and C are matrices that satisfy $A+B B^{T}=C$. Determine which of the following statements are necessarily true. (There may be more than one true statement.)
(a) A is square.
(b) A and B have the same dimensions.
(c) A, B, and C have the same number of rows.
(d) B is a tall matrix.

Practice Problems

When is the outer product symmetric? Let a and b be n-vectors. The inner product is symmetric, i.e., we have $a^{T} b=b^{T} a$. The outer product of the two vectors is generally not symmetric; that is, we generally have $a b^{T} \neq b a^{T}$. What are the conditions on a and b under which $a b=b a^{T}$? You can assume that all the entries of a and b are nonzero. (The conclusion you come to will hold even when some entries of a or b are zero.) Hint. Show that $a b^{T}=b a^{T}$ implies that a_{i} / b_{i} is a constant (i.e., independent of i).

